1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
|
//===--- MetadataCache.h - Implements the metadata cache --------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_METADATACACHE_H
#define SWIFT_RUNTIME_METADATACACHE_H
#include "swift/Runtime/AtomicWaitQueue.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Threading/Mutex.h"
#include "swift/shims/Visibility.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include <atomic>
#include <condition_variable>
#include <optional>
#include <tuple>
#ifndef SWIFT_DEBUG_RUNTIME
#define SWIFT_DEBUG_RUNTIME 0
#endif
namespace swift {
RelativeWitnessTable *lookThroughOptionalConditionalWitnessTable(const RelativeWitnessTable *);
#if !SWIFT_STDLIB_PASSTHROUGH_METADATA_ALLOCATOR
class MetadataAllocator : public llvm::AllocatorBase<MetadataAllocator> {
private:
uint16_t Tag;
public:
constexpr MetadataAllocator(uint16_t tag) : Tag(tag) {}
MetadataAllocator() = delete;
void Reset() {}
/// Get the location of the allocator's initial statically allocated pool.
/// The return values are start and size. If there is no statically allocated
/// pool, the return values are NULL, 0.
static std::tuple<const void *, size_t> InitialPoolLocation();
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
void *Allocate(size_t size, size_t alignment);
using AllocatorBase<MetadataAllocator>::Allocate;
void Deallocate(const void *Ptr, size_t size, size_t Alignment);
using AllocatorBase<MetadataAllocator>::Deallocate;
void PrintStats() const {}
MetadataAllocator withTag(uint16_t Tag) {
MetadataAllocator Allocator = *this;
Allocator.Tag = Tag;
return Allocator;
}
};
#else
class MetadataAllocator {
public:
MetadataAllocator(uint16_t tag) {}
static std::tuple<const void *, size_t> InitialPoolLocation() {
return {nullptr, 0};
}
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
void *Allocate(size_t size, size_t alignment) {
if (alignment < sizeof(void*)) alignment = sizeof(void*);
void *ptr = nullptr;
if (SWIFT_UNLIKELY(posix_memalign(&ptr, alignment, size) != 0 || !ptr)) {
swift::crash("Could not allocate memory for type metadata.");
}
return ptr;
}
void Deallocate(const void *ptr, size_t size = 0, size_t Alignment = 0) {
return free(const_cast<void *>(ptr));
}
};
#endif
template <uint16_t StaticTag>
class TaggedMetadataAllocator : public MetadataAllocator {
public:
constexpr TaggedMetadataAllocator() : MetadataAllocator(StaticTag) {}
};
using RawPrivateMetadataState = uint8_t;
enum class PrivateMetadataState : RawPrivateMetadataState {
/// The metadata is being allocated.
Allocating,
/// The metadata has been allocated, but is not yet complete for
/// external layout: that is, it does not have a size.
Abstract,
/// The metadata has a complete external layout, but may not have
/// been fully initialized.
LayoutComplete,
/// The metadata has a complete external layout and has been fully
/// initialized, but has not yet satisfied its transitive completeness
/// requirements.
NonTransitiveComplete,
/// The metadata is fully complete. There should no longer be waiters.
Complete
};
inline bool operator<(PrivateMetadataState lhs, PrivateMetadataState rhs) {
return RawPrivateMetadataState(lhs) < RawPrivateMetadataState(rhs);
}
inline bool operator<=(PrivateMetadataState lhs, PrivateMetadataState rhs) {
return RawPrivateMetadataState(lhs) <= RawPrivateMetadataState(rhs);
}
inline bool operator>(PrivateMetadataState lhs, PrivateMetadataState rhs) {
return RawPrivateMetadataState(lhs) > RawPrivateMetadataState(rhs);
}
inline bool operator>=(PrivateMetadataState lhs, PrivateMetadataState rhs) {
return RawPrivateMetadataState(lhs) >= RawPrivateMetadataState(rhs);
}
inline bool satisfies(PrivateMetadataState state, MetadataState requirement) {
switch (requirement) {
case MetadataState::Abstract:
return state >= PrivateMetadataState::Abstract;
case MetadataState::LayoutComplete:
return state >= PrivateMetadataState::LayoutComplete;
case MetadataState::NonTransitiveComplete:
return state >= PrivateMetadataState::NonTransitiveComplete;
case MetadataState::Complete:
return state >= PrivateMetadataState::Complete;
}
swift_unreachable("unsupported requirement kind");
}
inline MetadataState getAccomplishedRequestState(PrivateMetadataState state) {
switch (state) {
case PrivateMetadataState::Allocating:
swift_unreachable("cannot call on allocating state");
case PrivateMetadataState::Abstract:
return MetadataState::Abstract;
case PrivateMetadataState::LayoutComplete:
return MetadataState::LayoutComplete;
case PrivateMetadataState::NonTransitiveComplete:
return MetadataState::NonTransitiveComplete;
case PrivateMetadataState::Complete:
return MetadataState::Complete;
}
swift_unreachable("bad state");
}
struct MetadataStateWithDependency {
/// The current state of the metadata.
PrivateMetadataState NewState;
/// The known dependency that the metadata has, if any.
MetadataDependency Dependency;
};
/// A typedef for simple global caches with stable addresses for the entries.
template <class EntryTy, uint16_t Tag>
using SimpleGlobalCache =
StableAddressConcurrentReadableHashMap<EntryTy,
TaggedMetadataAllocator<Tag>>;
struct ConcurrencyControl {
using LockType = SmallMutex;
LockType Lock;
};
template <class EntryType, uint16_t Tag>
class LockingConcurrentMapStorage {
// This class must fit within
// TargetGenericMetadataInstantiationCache::PrivateData. On 32-bit archs, that
// space is not large enough to accommodate a Mutex along with everything
// else. There, use a SmallMutex to squeeze into the available space.
using MutexTy = std::conditional_t<sizeof(void *) == 8 && sizeof(Mutex) <= 56,
Mutex, SmallMutex>;
StableAddressConcurrentReadableHashMap<EntryType,
TaggedMetadataAllocator<Tag>, MutexTy>
Map;
ConcurrencyControl Concurrency;
public:
LockingConcurrentMapStorage() {}
ConcurrencyControl &getConcurrency() { return Concurrency; }
template <class KeyType, class... ArgTys>
std::pair<EntryType*, bool>
getOrInsert(KeyType key, ArgTys &&...args) {
return Map.getOrInsert(key, args...);
}
template <class KeyType>
EntryType *find(KeyType key) {
return Map.find(key);
}
/// A default implementation for resolveEntry that assumes that the
/// key type is a lookup key for the map.
template <class KeyType>
EntryType *resolveExistingEntry(KeyType key) {
auto entry = Map.find(key);
assert(entry && "entry doesn't already exist!");
return entry;
}
};
/// A map for which there is a phase of initialization that is guaranteed
/// to be performed exclusively.
///
/// In addition to the requirements of ConcurrentMap, the entry type must
/// provide the following members:
///
/// /// An encapsulation of the status of the entry. The result type
/// /// of most operations.
/// using Status = ...;
///
/// /// Given that this is not the thread currently responsible for
/// /// initializing the entry, wait for the entry to complete.
/// Status await(ConcurrencyControl &concurrency, ArgTys...);
///
/// /// Perform allocation. If this returns a status, initialization
/// /// is skipped.
/// Optional<Status>
/// beginAllocation(WaitQueue::Worker &worker, ArgTys...);
///
/// /// Attempt to initialize an entry. This is called once for the entry,
/// /// immediately after construction, by the thread that successfully
/// /// constructed the entry.
/// Status beginInitialization(WaitQueue::Worker &worker, ArgTys...);
///
/// /// Perform a checkDependency operation. This only needs to be
/// /// implemented if checkDependency is called on the map.
/// MetadataStateWithDependency
/// checkDependency(ConcurrencyControl &concurrency, ArgTys...);
template <class EntryType,
class StorageType = LockingConcurrentMapStorage<EntryType, true>>
class LockingConcurrentMap {
StorageType Storage;
using Status = typename EntryType::Status;
using WaitQueue = typename EntryType::WaitQueue;
using Worker = typename WaitQueue::Worker;
using Waiter = typename WaitQueue::Waiter;
public:
LockingConcurrentMap() = default;
template <class KeyType, class... ArgTys>
std::pair<EntryType*, Status>
getOrInsert(KeyType key, ArgTys &&...args) {
Worker worker(Storage.getConcurrency().Lock);
auto result = Storage.getOrInsert(key, worker, args...);
auto entry = result.first;
// If we are not inserting the entry, we need to potentially block on
// currently satisfies our conditions.
if (!result.second) {
auto status =
entry->await(Storage.getConcurrency(), std::forward<ArgTys>(args)...);
return { entry, status };
}
// Okay, we inserted. We are responsible for allocating and
// subsequently trying to initialize the entry.
// Insertion should have called worker.createQueue(); tell the Worker
// object that we published it.
worker.flagCreatedQueueIsPublished();
// Allocation. This can fast-path and bypass initialization by returning
// a status.
if (auto status = entry->beginAllocation(worker, args...)) {
return { entry, *status };
}
// Initialization.
auto status = entry->beginInitialization(worker,
std::forward<ArgTys>(args)...);
return { entry, status };
}
template <class KeyType>
EntryType *find(KeyType key) {
return Storage.find(key);
}
/// Given that an entry already exists, await it.
template <class KeyType, class... ArgTys>
Status await(KeyType key, ArgTys &&...args) {
EntryType *entry = Storage.resolveExistingEntry(key);
return entry->await(Storage.getConcurrency(),
std::forward<ArgTys>(args)...);
}
/// If an entry already exists, await it; otherwise report failure.
template <class KeyType, class... ArgTys>
std::optional<Status> tryAwaitExisting(KeyType key, ArgTys &&...args) {
EntryType *entry = Storage.find(key);
if (!entry)
return std::nullopt;
return entry->await(Storage.getConcurrency(),
std::forward<ArgTys>(args)...);
}
/// Given that an entry already exists, check whether it has an active
/// dependency.
template <class KeyType, class... ArgTys>
MetadataStateWithDependency
checkDependency(KeyType key, ArgTys &&...args) {
EntryType *entry = Storage.resolveExistingEntry(key);
return entry->checkDependency(Storage.getConcurrency(),
std::forward<ArgTys>(args)...);
}
};
/// A base class for metadata cache entries which supports an unfailing
/// one-phase allocation strategy that should not be done by trial.
///
/// In addition to the requirements of ConcurrentMap, subclasses should
/// provide:
///
/// /// Allocate the cached entry. This is not allowed to fail.
/// ValueType allocate(ArgTys...);
template <class Impl, class ValueType>
class SimpleLockingCacheEntryBase {
public:
using WaitQueue = SimpleAtomicWaitQueue<ConcurrencyControl::LockType>;
private:
static_assert(std::is_pointer<ValueType>::value,
"value type must be a pointer type");
static const uintptr_t IsWaitQueue = 1;
static WaitQueue *getAsWaitQueue(uintptr_t value) {
if (value & IsWaitQueue)
return reinterpret_cast<WaitQueue*>(value & ~IsWaitQueue);
return nullptr;
}
static ValueType castAsValue(uintptr_t value) {
assert(!(value & IsWaitQueue));
return reinterpret_cast<ValueType>(value);
}
std::atomic<uintptr_t> Value;
protected:
Impl &asImpl() { return static_cast<Impl &>(*this); }
const Impl &asImpl() const { return static_cast<const Impl &>(*this); }
SimpleLockingCacheEntryBase(WaitQueue::Worker &worker)
: Value(reinterpret_cast<uintptr_t>(worker.createQueue()) | IsWaitQueue) {}
public:
using Status = ValueType;
template <class... ArgTys>
Status await(ConcurrencyControl &concurrency, ArgTys &&...args) {
WaitQueue::Waiter waiter(concurrency.Lock);
// Load the value. If this is not a queue, we're done.
auto value = Value.load(std::memory_order_acquire);
if (getAsWaitQueue(value)) {
bool waited = waiter.tryReloadAndWait([&] {
// We can use a relaxed load because we're already ordered
// by the lock.
value = Value.load(std::memory_order_relaxed);
return getAsWaitQueue(value);
});
if (waited) {
// This load can be relaxed because we acquired the wait queue
// lock, which was released by the worker thread after
// initializing Value to the value.
value = Value.load(std::memory_order_relaxed);
assert(!getAsWaitQueue(value));
}
}
return castAsValue(value);
}
template <class... ArgTys>
std::optional<Status> beginAllocation(WaitQueue::Worker &worker,
ArgTys &&...args) {
// Delegate to the implementation class.
ValueType origValue =
asImpl().allocate(std::forward<ArgTys>(args)...);
auto value = reinterpret_cast<uintptr_t>(origValue);
assert(!getAsWaitQueue(value) && "allocate returned an unaligned value");
// Publish the value, which unpublishes the queue.
worker.finishAndUnpublishQueue([&] {
Value.store(value, std::memory_order_release);
});
return origValue;
}
template <class... ArgTys>
Status beginInitialization(WaitQueue::Worker &worker,
ArgTys &&...args) {
swift_unreachable("beginAllocation always short-circuits");
}
};
/// A summary of the information from a generic signature that's
/// sufficient to compare arguments.
template<typename Runtime>
struct GenericSignatureLayout {
uint16_t NumKeyParameters = 0;
uint16_t NumWitnessTables = 0;
uint16_t NumPacks = 0;
uint16_t NumShapeClasses = 0;
const GenericPackShapeDescriptor *PackShapeDescriptors = nullptr;
GenericSignatureLayout(const RuntimeGenericSignature<Runtime> &sig)
: NumPacks(sig.getGenericPackShapeHeader().NumPacks),
NumShapeClasses(sig.getGenericPackShapeHeader().NumShapeClasses),
PackShapeDescriptors(sig.getGenericPackShapeDescriptors().data()) {
#ifndef NDEBUG
unsigned packIdx = 0;
#endif
for (const auto &gp : sig.getParams()) {
if (gp.hasKeyArgument()) {
#ifndef NDEBUG
if (gp.getKind() == GenericParamKind::TypePack) {
assert(packIdx < NumPacks);
assert(PackShapeDescriptors[packIdx].Kind
== GenericPackKind::Metadata);
assert(PackShapeDescriptors[packIdx].Index
== NumShapeClasses + NumKeyParameters);
assert(PackShapeDescriptors[packIdx].ShapeClass
< NumShapeClasses);
++packIdx;
}
#endif
++NumKeyParameters;
}
}
for (const auto &reqt : sig.getRequirements()) {
if (reqt.Flags.hasKeyArgument() &&
reqt.getKind() == GenericRequirementKind::Protocol) {
#ifndef NDEBUG
if (reqt.getFlags().isPackRequirement()) {
assert(packIdx < NumPacks);
assert(PackShapeDescriptors[packIdx].Kind
== GenericPackKind::WitnessTable);
assert(PackShapeDescriptors[packIdx].Index
== NumShapeClasses + NumKeyParameters + NumWitnessTables);
assert(PackShapeDescriptors[packIdx].ShapeClass
< NumShapeClasses);
++packIdx;
}
#endif
++NumWitnessTables;
}
}
#ifndef NDEBUG
assert(packIdx == NumPacks);
#endif
}
size_t sizeInWords() const {
return NumShapeClasses + NumKeyParameters + NumWitnessTables;
}
friend bool operator==(const GenericSignatureLayout<Runtime> &lhs,
const GenericSignatureLayout<Runtime> &rhs) {
if (lhs.NumKeyParameters != rhs.NumKeyParameters ||
lhs.NumWitnessTables != rhs.NumWitnessTables ||
lhs.NumShapeClasses != rhs.NumShapeClasses ||
lhs.NumPacks != rhs.NumPacks) {
return false;
}
for (unsigned i = 0; i < lhs.NumPacks; ++i) {
const auto &lhsElt = lhs.PackShapeDescriptors[i];
const auto &rhsElt = rhs.PackShapeDescriptors[i];
if (lhsElt.Kind != rhsElt.Kind ||
lhsElt.Index != rhsElt.Index ||
lhsElt.ShapeClass != rhsElt.ShapeClass)
return false;
}
return true;
}
friend bool operator!=(const GenericSignatureLayout<Runtime> &lhs,
const GenericSignatureLayout<Runtime> &rhs) {
return !(lhs == rhs);
}
};
/// A key value as provided to the concurrent map.
class MetadataCacheKey {
const void * const *Data;
GenericSignatureLayout<InProcess> Layout;
uint32_t Hash;
public:
/// Compare two witness tables, which may involving checking the
/// contents of their conformance descriptors.
static bool areWitnessTablesEqual(const WitnessTable *awt,
const WitnessTable *bwt) {
if (awt == bwt)
return true;
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
auto *aDescription = lookThroughOptionalConditionalWitnessTable(
reinterpret_cast<const RelativeWitnessTable*>(awt))->getDescription();
auto *bDescription = lookThroughOptionalConditionalWitnessTable(
reinterpret_cast<const RelativeWitnessTable*>(bwt))->getDescription();
#else
auto *aDescription = awt->getDescription();
auto *bDescription = bwt->getDescription();
#endif
return areConformanceDescriptorsEqual(aDescription, bDescription);
}
static void installGenericArguments(uint16_t numKeyArguments, uint16_t numPacks,
const GenericPackShapeDescriptor *packShapeDescriptors,
const void **dst, const void * const *src);
/// Compare two conformance descriptors, checking their contents if necessary.
static bool areConformanceDescriptorsEqual(
const ProtocolConformanceDescriptor *aDescription,
const ProtocolConformanceDescriptor *bDescription) {
if (aDescription == bDescription)
return true;
if (!aDescription->isSynthesizedNonUnique() ||
!bDescription->isSynthesizedNonUnique())
return aDescription == bDescription;
auto aType = aDescription->getCanonicalTypeMetadata();
auto bType = bDescription->getCanonicalTypeMetadata();
if (!aType || !bType)
return aDescription == bDescription;
return (aType == bType &&
aDescription->getProtocol() == bDescription->getProtocol());
}
private:
static bool areMetadataPacksEqual(const void *lhsPtr,
const void *rhsPtr,
uintptr_t count) {
MetadataPackPointer lhs(lhsPtr);
MetadataPackPointer rhs(rhsPtr);
// lhs is the user-supplied key, which might be on the stack.
// rhs is the stored key in the cache.
assert(rhs.getLifetime() == PackLifetime::OnHeap);
auto *lhsElt = lhs.getElements();
auto *rhsElt = rhs.getElements();
for (uintptr_t i = 0; i < count; ++i) {
if (lhsElt[i] != rhsElt[i])
return false;
}
return true;
}
static bool areWitnessTablePacksEqual(const void *lhsPtr,
const void *rhsPtr,
uintptr_t count) {
WitnessTablePackPointer lhs(lhsPtr);
WitnessTablePackPointer rhs(rhsPtr);
// lhs is the user-supplied key, which might be on the stack.
// rhs is the stored key in the cache.
assert(rhs.getLifetime() == PackLifetime::OnHeap);
auto *lhsElt = lhs.getElements();
auto *rhsElt = rhs.getElements();
for (uintptr_t i = 0; i < count; ++i) {
if (!areWitnessTablesEqual(lhsElt[i], rhsElt[i]))
return false;
}
return true;
}
public:
MetadataCacheKey(const GenericSignatureLayout<InProcess> &layout,
const void *const *data)
: Data(data), Layout(layout), Hash(computeHash()) {}
MetadataCacheKey(const GenericSignatureLayout<InProcess> &layout,
const void *const *data, uint32_t hash)
: Data(data), Layout(layout), Hash(hash) {}
bool operator==(const MetadataCacheKey &rhs) const {
// Compare the hashes.
if (hash() != rhs.hash()) return false;
// Fast path the case where they're bytewise identical. That's nearly always
// the case if the hashes are the same, and we can skip the slower deep
// comparison.
auto *adata = begin();
auto *bdata = rhs.begin();
auto asize = (uintptr_t)end() - (uintptr_t)adata;
auto bsize = (uintptr_t)rhs.end() - (uintptr_t)bdata;
// If sizes don't match, they can never be equal.
if (asize != bsize)
return false;
// If sizes match, see if the bytes match. If they do, then the contents
// must necessarily match. Otherwise do a deep comparison.
if (memcmp(adata, bdata, asize) == 0)
return true;
// Compare the layouts.
if (Layout != rhs.Layout) return false;
// Compare the content.
const uintptr_t *packCounts = reinterpret_cast<const uintptr_t *>(adata);
unsigned argIdx = 0;
// Compare pack lengths for shape classes.
for (unsigned i = 0; i != Layout.NumShapeClasses; ++i) {
if (adata[argIdx] != bdata[argIdx])
return false;
++argIdx;
}
auto *packs = Layout.PackShapeDescriptors;
unsigned packIdx = 0;
// Compare generic arguments for key parameters.
for (unsigned i = 0; i != Layout.NumKeyParameters; ++i) {
// Is this entry a metadata pack?
if (packIdx < Layout.NumPacks &&
packs[packIdx].Kind == GenericPackKind::Metadata &&
argIdx == packs[packIdx].Index) {
assert(packs[packIdx].ShapeClass < Layout.NumShapeClasses);
uintptr_t count = packCounts[packs[packIdx].ShapeClass];
if (!areMetadataPacksEqual(adata[argIdx], bdata[argIdx], count))
return false;
++packIdx;
++argIdx;
continue;
}
if (adata[argIdx] != bdata[argIdx])
return false;
++argIdx;
}
// Compare witness tables.
for (unsigned i = 0; i != Layout.NumWitnessTables; ++i) {
// Is this entry a witness table pack?
if (packIdx < Layout.NumPacks &&
packs[packIdx].Kind == GenericPackKind::WitnessTable &&
argIdx == packs[packIdx].Index) {
assert(packs[packIdx].ShapeClass < Layout.NumShapeClasses);
uintptr_t count = packCounts[packs[packIdx].ShapeClass];
if (!areWitnessTablePacksEqual(adata[argIdx], bdata[argIdx], count))
return false;
++packIdx;
++argIdx;
continue;
}
if (!areWitnessTablesEqual((const WitnessTable *)adata[argIdx],
(const WitnessTable *)bdata[argIdx]))
return false;
++argIdx;
}
assert(packIdx == Layout.NumPacks && "Missed a pack");
return true;
}
uint32_t hash() const {
return Hash;
}
const GenericSignatureLayout<InProcess> &layout() const { return Layout; }
friend llvm::hash_code hash_value(const MetadataCacheKey &key) {
return key.Hash;
}
const void * const *begin() const { return Data; }
const void * const *end() const { return Data + size(); }
unsigned size() const { return Layout.sizeInWords(); }
void installInto(const void **buffer) const {
MetadataCacheKey::installGenericArguments(
Layout.sizeInWords(),
Layout.NumPacks,
Layout.PackShapeDescriptors,
buffer, Data);
}
private:
uint32_t computeHash() const {
size_t H = 0x56ba80d1u * Layout.NumKeyParameters;
auto *packs = Layout.PackShapeDescriptors;
unsigned packIdx = 0;
auto update = [&H](uintptr_t value) {
H = (H >> 10) | (H << ((sizeof(uintptr_t) * 8) - 10));
H ^= (value ^ (value >> 19));
};
// FIXME: The first NumShapeClasses entries are pack counts;
// incorporate them into the hash
for (unsigned i = Layout.NumShapeClasses,
e = Layout.NumShapeClasses + Layout.NumKeyParameters;
i != e; ++i) {
// Is this entry a metadata pack?
if (packIdx < Layout.NumPacks &&
packs[packIdx].Kind == GenericPackKind::Metadata &&
i == packs[packIdx].Index) {
assert(packs[packIdx].ShapeClass < Layout.NumShapeClasses);
auto count = reinterpret_cast<uintptr_t>(Data[packs[packIdx].ShapeClass]);
++packIdx;
MetadataPackPointer pack(Data[i]);
for (unsigned j = 0; j < count; ++j)
update(reinterpret_cast<uintptr_t>(pack.getElements()[j]));
continue;
}
update(reinterpret_cast<uintptr_t>(Data[i]));
}
H *= 0x27d4eb2d;
// Rotate right by 10 and then truncate to 32 bits.
return uint32_t((H >> 10) | (H << ((sizeof(uintptr_t) * 8) - 10)));
}
};
/// A helper class for ConcurrentMap entry types which allows trailing objects
/// objects and automatically implements the getExtraAllocationSize methods
/// in terms of numTrailingObjects calls.
///
/// For each trailing object type T, the subclass must provide:
/// size_t numTrailingObjects(OverloadToken<T>) const;
/// static size_t numTrailingObjects(OverloadToken<T>, ...) const;
/// where the arguments to the latter are the arguments to getOrInsert,
/// including the key.
template <class Impl, class... Objects>
struct ConcurrentMapTrailingObjectsEntry
: swift::ABI::TrailingObjects<Impl, Objects...> {
protected:
using TrailingObjects =
swift::ABI::TrailingObjects<Impl, Objects...>;
Impl &asImpl() { return static_cast<Impl &>(*this); }
const Impl &asImpl() const { return static_cast<const Impl &>(*this); }
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
public:
template <class KeyType, class... Args>
static size_t getExtraAllocationSize(const KeyType &key,
Args &&...args) {
return TrailingObjects::template additionalSizeToAlloc<Objects...>(
Impl::numTrailingObjects(OverloadToken<Objects>(), key, args...)...);
}
size_t getExtraAllocationSize() const {
return TrailingObjects::template additionalSizeToAlloc<Objects...>(
asImpl().numTrailingObjects(OverloadToken<Objects>())...);
}
};
/// Reserve the runtime extra space to use for its own tracking.
struct PrivateMetadataCompletionContext {
MetadataCompletionContext Public;
};
/// The alignment required for objects that will be stored in
/// PrivateMetadataTrackingInfo.
const size_t PrivateMetadataTrackingAlignment = 16;
/// The wait queue object that we create for metadata that are
/// being actively initialized right now.
struct alignas(PrivateMetadataTrackingAlignment) MetadataWaitQueue :
public AtomicWaitQueue<MetadataWaitQueue, ConcurrencyControl::LockType> {
/// A pointer to the completion context being used to complete this
/// metadata. This is only actually filled in if:
///
/// - the initializing thread is unable to complete the metadata,
/// but its request doesn't need it to, and
/// - the current completion context is non-zero. (Completion contexts
/// are initially zeroed, so this only happens if the initialization
/// actually stores to the context, which is uncommon.)
///
/// This should only be touched by the initializing thread, i.e. the
/// thread that holds the lock embedded in this object.
std::unique_ptr<PrivateMetadataCompletionContext> PersistentContext;
/// The dependency that is currently blocking this initialization.
/// This should only be touched while holding the global lock
/// for this metadata cache.
MetadataDependency BlockingDependency;
class Worker : public AtomicWaitQueue::Worker {
using super = AtomicWaitQueue::Worker;
PrivateMetadataState State = PrivateMetadataState::Allocating;
public:
Worker(ConcurrencyControl::LockType &globalLock) : super(globalLock) {}
void flagCreatedQueueIsPublished() {
// This method is called after successfully inserting an entry into
// the atomic storage, at a point that just assumes that a queue
// was created. However, we may not have created a queue if the
// metadata was completed during construction.
//
// Testing CurrentQueue to see if we published a queue is generally
// suspect because we might be looping and calling createQueue()
// on each iteration. However, the metadata cache system won't do
// this, at least on the path leading to the call to this method,
// so this works in this one case.
if (CurrentQueue) {
assert(State < PrivateMetadataState::Complete);
super::flagCreatedQueueIsPublished();
} else {
assert(State == PrivateMetadataState::Complete);
}
}
void setState(PrivateMetadataState newState) {
// It would be nice to assert isWorkerThread() here, but we need
// this to be callable before we've published the queue.
State = newState;
}
PrivateMetadataState getState() const {
assert(isWorkerThread() || State == PrivateMetadataState::Complete);
return State;
}
};
};
/// A record used to store information about an attempt to
/// complete a metadata when there's no active worker thread.
struct alignas(PrivateMetadataTrackingAlignment) SuspendedMetadataCompletion {
MetadataDependency BlockingDependency;
std::unique_ptr<PrivateMetadataCompletionContext> PersistentContext;
SuspendedMetadataCompletion(MetadataDependency blockingDependency,
PrivateMetadataCompletionContext *context)
: BlockingDependency(blockingDependency),
PersistentContext(context) {}
};
class PrivateMetadataTrackingInfo {
public:
using RawType = uintptr_t;
private:
enum : RawType {
StateMask = 0x7,
PointerIsWaitQueueMask = 0x8,
AllBitsMask = StateMask | PointerIsWaitQueueMask,
PointerMask = ~AllBitsMask,
};
static_assert(AllBitsMask < PrivateMetadataTrackingAlignment,
"too many bits for alignment");
RawType Data;
public:
// Some std::atomic implementations require a default constructor
// for no apparent reason.
PrivateMetadataTrackingInfo() : Data(0) {}
explicit PrivateMetadataTrackingInfo(PrivateMetadataState state)
: Data(RawType(state)) {}
explicit PrivateMetadataTrackingInfo(PrivateMetadataState state,
MetadataWaitQueue *queue)
: Data(RawType(state) | reinterpret_cast<RawType>(queue)
| PointerIsWaitQueueMask) {
assert(queue);
assert(!(reinterpret_cast<RawType>(queue) & AllBitsMask));
}
explicit PrivateMetadataTrackingInfo(PrivateMetadataState state,
SuspendedMetadataCompletion *suspended)
: Data(RawType(state) | reinterpret_cast<RawType>(suspended)) {
assert(!(reinterpret_cast<RawType>(suspended) & AllBitsMask));
}
static PrivateMetadataTrackingInfo
initial(MetadataWaitQueue::Worker &worker,
PrivateMetadataState initialState) {
worker.setState(initialState);
if (initialState != PrivateMetadataState::Complete)
return PrivateMetadataTrackingInfo(initialState, worker.createQueue());
return PrivateMetadataTrackingInfo(initialState);
}
PrivateMetadataState getState() const {
return PrivateMetadataState(Data & StateMask);
}
/// Does the state mean that we've allocated metadata?
bool hasAllocatedMetadata() const {
return getState() != PrivateMetadataState::Allocating;
}
bool isComplete() const {
return getState() == PrivateMetadataState::Complete;
}
bool hasWaitQueue() const {
return Data & PointerIsWaitQueueMask;
}
MetadataWaitQueue *getWaitQueue() const {
if (hasWaitQueue())
return reinterpret_cast<MetadataWaitQueue*>(Data & PointerMask);
return nullptr;
}
SuspendedMetadataCompletion *getSuspendedCompletion() const {
if (!hasWaitQueue())
return reinterpret_cast<SuspendedMetadataCompletion*>(Data & PointerMask);
return nullptr;
}
/// Return the blocking dependency for this metadata. Should only
/// be called while holding the global lock for the metadata cache.
MetadataDependency getBlockingDependency_locked() const {
if (auto queue = getWaitQueue())
return queue->BlockingDependency;
if (auto dependency = getSuspendedCompletion())
return dependency->BlockingDependency;
return MetadataDependency();
}
bool satisfies(MetadataState requirement) {
return swift::satisfies(getState(), requirement);
}
enum CheckResult {
/// The request is satisfied.
Satisfied,
/// The request is not satisfied, and the requesting thread
/// should report that immediately.
Unsatisfied,
/// The request is not satisfied, and the requesting thread
/// must wait for another thread to complete the initialization.
Wait,
/// The request is not satisfied, and the requesting thread
/// should try to complete the initialization itself.
Resume,
};
CheckResult check(MetadataRequest request) {
switch (getState()) {
// Always wait if the metadata is still allocating. Non-blocking
// requests still need to allocate abstract metadata that
// downstream consumers can report a dependency on.
case PrivateMetadataState::Allocating:
return Wait;
// We never need to do anything if we're complete. This is the
// most common result.
case PrivateMetadataState::Complete:
return Satisfied;
case PrivateMetadataState::Abstract:
case PrivateMetadataState::LayoutComplete:
case PrivateMetadataState::NonTransitiveComplete:
// If the request is satisfied, we don't need to do anything.
if (satisfies(request.getState()))
return Satisfied;
// If there isn't an running thread, we should take over
// initialization.
if (!hasWaitQueue())
return Resume;
// If this is a blocking request, we should wait.
if (request.isBlocking())
return Wait;
// Otherwise, we should return that the request is unsatisfied.
return Unsatisfied;
}
swift_unreachable("bad state");
}
};
/// Given that this is the initializing thread, and we've reached the
/// given state, should we block wait for further initialization?
inline bool shouldBlockInitialization(PrivateMetadataState currentState,
MetadataRequest request) {
switch (currentState) {
case PrivateMetadataState::Allocating:
swift_unreachable("initialization hasn't allocated?");
case PrivateMetadataState::Complete:
return false;
case PrivateMetadataState::Abstract:
case PrivateMetadataState::LayoutComplete:
case PrivateMetadataState::NonTransitiveComplete:
if (satisfies(currentState, request.getState()))
return false;
return request.isBlocking();
}
swift_unreachable("bad state");
}
/// Block until the dependency is satisfied.
void blockOnMetadataDependency(MetadataDependency request,
MetadataDependency dependency);
/// A cache entry class which provides the basic mechanisms for two-phase
/// metadata initialization. Suitable for more heavyweight metadata kinds
/// such as generic types and tuples. Does not provide the lookup-related
/// members.
///
/// The value type may be an arbitrary type, but it must be contextually
/// convertible to bool, and it must be default-constructible in a false
/// state.
///
/// In addition to the lookup members required by ConcurrentMap, concrete
/// implementations should provide:
///
/// /// A name describing the map; used in debugging diagnostics.
/// static const char *getName();
///
/// /// A constructor which should set up an entry. Note that this phase
/// /// of initialization may race with other threads attempting to set up
/// /// the same entry; do not do anything during it which might block or
/// /// need to be reverted.
/// /// The extra arguments are those provided to getOrInsert.
/// Entry(MetadataCacheKey key, ExtraArgTys...);
///
/// /// Allocate the metadata.
/// AllocationResult allocate(ExtraArgTys...);
///
/// /// Try to initialize the metadata.
/// MetadataStateWithDependency tryInitialize(Metadata *metadata,
/// PrivateMetadataState state,
/// PrivateMetadataCompletionContext *ctxt);
template <class Impl, class... Objects>
class MetadataCacheEntryBase
: public ConcurrentMapTrailingObjectsEntry<Impl, Objects...> {
using super = ConcurrentMapTrailingObjectsEntry<Impl, Objects...>;
public:
using ValueType = Metadata *;
using Status = MetadataResponse;
using WaitQueue = MetadataWaitQueue;
protected:
using TrailingObjectsEntry = super;
using super::asImpl;
private:
/// The current state of this metadata cache entry.
///
/// All modifications of this field are performed while holding
/// the global lock associated with this metadata cache. This is
/// because these modifications all coincide with changes to the wait
/// queue reference: either installing, removing, or replacing it.
/// The proper reference-counting of the queue object requires the
/// lock to be held during these operations. However, this field
/// can be read without holding the global lock, as part of the fast
/// path of several operations on the entry, most importantly
/// requesting the metadata.
///
/// Acquiring and releasing the global lock provides a certain
/// amount of memory ordering. Thus:
/// - Reads from the field performed in fast paths without holding
/// the lock must be acquires in order to properly order memory
/// with the initializing thread.
/// - Reads from the field that are performed under the lock can
/// be relaxed because the lock will properly order them.
/// - Modifications of the field can be stores rather than
/// compare-exchanges, although they must still use release
/// ordering to guarantee proper ordering with code in the
/// fast paths.
std::atomic<PrivateMetadataTrackingInfo> TrackingInfo;
static constexpr std::memory_order TrackingInfoIsLockedOrder =
std::memory_order_relaxed;
public:
MetadataCacheEntryBase(MetadataWaitQueue::Worker &worker,
PrivateMetadataState initialState =
PrivateMetadataState::Allocating)
: TrackingInfo(PrivateMetadataTrackingInfo::initial(worker, initialState)) {
}
// Note that having an explicit destructor here is important to make this
// a non-POD class and allow subclass fields to be allocated in our
// tail-padding.
~MetadataCacheEntryBase() {
}
/// Given that this thread doesn't own the right to initialize the
/// metadata, await the metadata being in the right state.
template <class... Args>
Status await(ConcurrencyControl &concurrency, MetadataRequest request,
Args &&...extraArgs) {
return awaitSatisfyingState(concurrency, request);
}
Status getStatusToReturn(PrivateMetadataState state) {
assert(state != PrivateMetadataState::Allocating);
return { asImpl().getValue(), getAccomplishedRequestState(state) };
}
/// The expected return type of allocate.
struct AllocationResult {
Metadata *Value;
PrivateMetadataState State;
};
/// Perform the allocation operation.
template <class... Args>
std::optional<Status> beginAllocation(MetadataWaitQueue::Worker &worker,
MetadataRequest request,
Args &&...args) {
// Returning a non-None value here will preempt initialization, so we
// should only do it if we're reached PrivateMetadataState::Complete.
// We can skip allocation if we were allocated during construction.
auto state = worker.getState();
if (state != PrivateMetadataState::Allocating) {
#ifndef NDEBUG
// We've already published the metadata as part of construction,
// so we can verify that the mangled name round-trips.
if (asImpl().allowMangledNameVerification(std::forward<Args>(args)...))
verifyMangledNameRoundtrip(asImpl().getValue());
#endif
// Skip initialization, too, if we're fully complete.
if (state == PrivateMetadataState::Complete) {
assert(!worker.isWorkerThread());
return Status{asImpl().getValue(), MetadataState::Complete};
}
// Otherwise, go directly to the initialization phase.
assert(worker.isWorkerThread());
return std::nullopt;
}
assert(worker.isWorkerThread());
// Allocate the metadata.
AllocationResult allocationResult =
asImpl().allocate(std::forward<Args>(args)...);
state = allocationResult.State;
worker.setState(state);
// Set the self-link before publishing the new status.
auto value = const_cast<ValueType>(allocationResult.Value);
asImpl().setValue(value);
// If allocation gave us complete metadata, we can short-circuit
// initialization; publish and report that we've finished.
if (state == PrivateMetadataState::Complete) {
finishAndPublishProgress(worker, MetadataDependency(), nullptr);
#ifndef NDEBUG
// Now that we've published the allocated metadata, verify that
// the mangled name round-trips.
if (asImpl().allowMangledNameVerification(std::forward<Args>(args)...))
verifyMangledNameRoundtrip(value);
#endif
asImpl().verifyBuiltMetadata(value, args...);
return Status{allocationResult.Value, MetadataState::Complete};
}
// Otherwise, we always try at least one round of initialization
// even if the request is for abstract metadata, just to avoid
// doing more unnecessary bookkeeping. Publish the current
// state so that e.g. recursive uses of this metadata are
// satisfiable.
notifyWaitingThreadsOfProgress(worker, MetadataDependency());
#ifndef NDEBUG
// Now that we've published the allocated metadata, verify that
// the mangled name round-trips.
if (asImpl().allowMangledNameVerification(std::forward<Args>(args)...))
verifyMangledNameRoundtrip(value);
#endif
return std::nullopt;
}
template <class... Args>
static bool allowMangledNameVerification(Args &&...args) {
// By default, always allow mangled name verification.
return true;
}
template <class... Args>
void verifyBuiltMetadata(Args &&...args) {
// By default, do no verification.
}
/// Begin initialization immediately after allocation.
template <class... Args>
Status beginInitialization(WaitQueue::Worker &worker,
MetadataRequest request, Args &&...args) {
// Note that we ignore the extra arguments; those are just for the
// constructor and allocation.
auto result = doInitialization(worker, request);
asImpl().verifyBuiltMetadata(asImpl().getValue(), args...);
return result;
}
private:
/// Try to complete the metadata.
///
/// This is the initializing thread. The lock is not held.
Status doInitialization(WaitQueue::Worker &worker,
MetadataRequest request) {
assert(worker.isWorkerThread());
assert(worker.getState() > PrivateMetadataState::Allocating);
auto value = asImpl().getValue();
auto queue = worker.getPublishedQueue();
// Figure out a completion context to use.
static const constexpr PrivateMetadataCompletionContext zeroContext = {};
PrivateMetadataCompletionContext scratchContext;
PrivateMetadataCompletionContext *context;
if (auto persistent = queue->PersistentContext.get()) {
context = persistent;
} else {
// Initialize the scratch context to zero.
scratchContext = zeroContext;
context = &scratchContext;
}
// Try the complete the metadata. This only loops if initialization
// has a dependency, but the new dependency is resolved when we go to
// add ourselves to its queue.
while (true) {
assert(worker.getState() < PrivateMetadataState::Complete);
// Try a round of initialization.
auto oldState = worker.getState();
MetadataStateWithDependency MetadataStateWithDependency =
asImpl().tryInitialize(value, oldState, context);
auto newState = MetadataStateWithDependency.NewState;
auto dependency = MetadataStateWithDependency.Dependency;
worker.setState(newState);
assert(oldState <= newState &&
"initialization regressed to an earlier state");
// If we don't have a dependency, we're finished.
bool done, willWait;
if (!dependency) {
assert(newState == PrivateMetadataState::Complete &&
"initialization didn't report a dependency but isn't complete");
done = true;
willWait = false;
} else {
assert(newState != PrivateMetadataState::Complete &&
"initialization reported a dependency but is complete");
done = false;
willWait = shouldBlockInitialization(newState, request);
}
// If we're not going to wait, but we're not done, and the
// completion context is no longer zero, copy the completion
// context into the persistent state (if it isn't already there).
if (!willWait && !done && !queue->PersistentContext) {
if (memcmp(&scratchContext, &zeroContext, sizeof(zeroContext)) != 0)
queue->PersistentContext.reset(
new PrivateMetadataCompletionContext(scratchContext));
}
// If we're not going to wait, publish the new state and finish
// execution.
if (!willWait) {
finishAndPublishProgress(worker, dependency,
queue->PersistentContext.release());
return getStatusToReturn(newState);
}
// We're going to wait. If we've made progress, make sure we notify
// any waiting threads about that progress; if they're satisfied
// by that progress, they shouldn't be blocked.
if (oldState < newState) {
notifyWaitingThreadsOfProgress(worker, dependency);
// This might change the queue pointer.
queue = worker.getPublishedQueue();
assert(!queue->PersistentContext ||
queue->PersistentContext.get() == context);
}
// Block on the target dependency.
blockOnDependency(worker, request, MetadataStateWithDependency.Dependency);
// Go back and try initialization again.
}
}
/// Publish a new metadata state. Wake waiters if we had any.
void finishAndPublishProgress(MetadataWaitQueue::Worker &worker,
MetadataDependency dependency,
PrivateMetadataCompletionContext *context) {
auto newState = worker.getState();
// Create a suspended completion if there's something to record there.
// This will be deallocated when some other thread takes over
// initialization.
SuspendedMetadataCompletion *suspended = nullptr;
if (dependency || context) {
assert(newState != PrivateMetadataState::Complete);
suspended = new SuspendedMetadataCompletion(dependency, context);
}
// We're done with this worker thread; replace the wait queue
// with the dependency record. We still want to do these stores
// under the lock, though.
worker.finishAndUnpublishQueue([&] {
auto newInfo = PrivateMetadataTrackingInfo(newState, suspended);
assert(newInfo.hasAllocatedMetadata());
// Set the new state and unpublish the reference to the queue.
TrackingInfo.store(newInfo, std::memory_order_release);
});
}
/// Notify any waiting threads that metadata has made progress.
void notifyWaitingThreadsOfProgress(MetadataWaitQueue::Worker &worker,
MetadataDependency dependency) {
worker.maybeReplaceQueue([&] {
MetadataWaitQueue *oldQueue = worker.getPublishedQueue();
MetadataWaitQueue *newQueue;
// If there aren't any other references to the existing queue,
// we don't need to replace anything.
if (oldQueue->isUniquelyReferenced_locked()) {
newQueue = oldQueue;
// Otherwise, make a new queue. Cycling queues this way allows
// waiting threads to unblock if they are satisfied with the given
// progress. If they aren't, they'll wait on the new queue.
} else {
newQueue = worker.createReplacementQueue();
newQueue->PersistentContext = std::move(oldQueue->PersistentContext);
}
// Update the current blocking dependency.
newQueue->BlockingDependency = dependency;
// Only the worker thread modifies TrackingInfo, so we can do a
// simple store instead of a compare-exchange.
PrivateMetadataTrackingInfo newTrackingInfo =
PrivateMetadataTrackingInfo(worker.getState(), newQueue);
TrackingInfo.store(newTrackingInfo, std::memory_order_release);
// We signal to maybeReplaceQueue that replacement is required by
// returning a non-null queue.
return (newQueue != oldQueue ? newQueue : nullptr);
});
}
/// Given that the request is not satisfied by the current state of
/// the metadata, wait for the request to be satisfied.
///
/// If there's a thread that currently owns initialization for this
/// metadata (i.e. it has published a wait queue into TrackingInfo),
/// we simply wait on that thread. Otherwise, we take over
/// initialization on the current thread.
///
/// If the request is non-blocking, we do not wait, but we may need
/// to take over initialization.
Status awaitSatisfyingState(ConcurrencyControl &concurrency,
MetadataRequest request) {
// Try loading the current state before acquiring the lock.
auto trackingInfo = TrackingInfo.load(std::memory_order_acquire);
// Return if the current state says to do so.
auto checkResult = trackingInfo.check(request);
if (checkResult == PrivateMetadataTrackingInfo::Satisfied ||
checkResult == PrivateMetadataTrackingInfo::Unsatisfied)
return getStatusToReturn(trackingInfo.getState());
MetadataWaitQueue::Worker worker(concurrency.Lock);
std::unique_ptr<SuspendedMetadataCompletion> suspendedCompletionToDelete;
worker.withLock([&](MetadataWaitQueue::Worker::Operation &op) {
assert(!worker.isWorkerThread());
// Reload the tracking info, since it might have been
// changed by a concurrent worker thread.
trackingInfo = TrackingInfo.load(TrackingInfoIsLockedOrder);
checkResult = trackingInfo.check(request);
switch (checkResult) {
// Either the request is satisfied or we should tell the
// requester immediately that it isn't.
case PrivateMetadataTrackingInfo::Satisfied:
case PrivateMetadataTrackingInfo::Unsatisfied:
return;
// There's currently an initializing thread for this metadata,
// and either we've got a blocking request that isn't yet
// satisfied or the metadata hasn't even been allocated yet.
// Wait on the thread and then call this lambda again.
case PrivateMetadataTrackingInfo::Wait:
assert(trackingInfo.hasWaitQueue());
return op.waitAndRepeat(trackingInfo.getWaitQueue());
// There isn't a thread currently building the metadata,
// and the request isn't satisfied. Become the initializing
// thread and try to build the metadata ourselves.
case PrivateMetadataTrackingInfo::Resume: {
assert(!trackingInfo.hasWaitQueue());
// Create a queue and publish it, taking over execution.
auto queue = op.createQueue();
// Copy the information from the suspended completion, if any,
// into the queue.
if (auto suspendedCompletion =
trackingInfo.getSuspendedCompletion()) {
queue->BlockingDependency =
suspendedCompletion->BlockingDependency;
queue->PersistentContext =
std::move(suspendedCompletion->PersistentContext);
// Make sure we delete the suspended completion later.
suspendedCompletionToDelete.reset(suspendedCompletion);
}
// Publish the wait queue we just made.
auto newTrackingInfo =
PrivateMetadataTrackingInfo(trackingInfo.getState(), queue);
TrackingInfo.store(newTrackingInfo, std::memory_order_release);
return op.flagQueueIsPublished(queue);
}
}
});
// If the check result wasn't Resume, it must have been Satisfied
// or Unsatisfied, and we should return immediately.
if (checkResult != PrivateMetadataTrackingInfo::Resume) {
assert(checkResult == PrivateMetadataTrackingInfo::Satisfied ||
checkResult == PrivateMetadataTrackingInfo::Unsatisfied);
return getStatusToReturn(trackingInfo.getState());
}
// Otherwise, we published and are now the worker thread owning
// this metadata's initialization. Do the initialization.
worker.setState(trackingInfo.getState());
return doInitialization(worker, request);
}
/// Given that we are the active worker thread for this initialization,
/// block until the given dependency is satisfied.
void blockOnDependency(MetadataWaitQueue::Worker &worker,
MetadataRequest request,
MetadataDependency dependency) {
assert(worker.isWorkerThread());
assert(request.isBlocking());
// Formulate the request for this metadata as a dependency.
auto requestDependency = MetadataDependency(asImpl().getValue(),
request.getState());
// Block on the metadata dependency.
blockOnMetadataDependency(requestDependency, dependency);
}
public:
/// Check whether this metadata has reached the given state and,
/// if not, return a further metadata dependency if possible.
///
/// It's possible for this to not return a dependency, but only if some
/// other thread is currently still attempting to complete the first
/// full round of attempted initialization. It's also possible
/// for the reported dependency to be out of date.
MetadataStateWithDependency
checkDependency(ConcurrencyControl &concurrency, MetadataState requirement) {
// Do a quick check while not holding the lock.
auto curInfo = TrackingInfo.load(std::memory_order_acquire);
if (curInfo.satisfies(requirement))
return { curInfo.getState(), MetadataDependency() };
// Alright, try again while holding the lock, which is required
// in order to safely read the blocking dependency.
return concurrency.Lock.withLock([&]() -> MetadataStateWithDependency {
curInfo = TrackingInfo.load(TrackingInfoIsLockedOrder);
if (curInfo.satisfies(requirement))
return { curInfo.getState(), MetadataDependency() };
return { curInfo.getState(), curInfo.getBlockingDependency_locked() };
});
}
};
/// An convenient subclass of MetadataCacheEntryBase which provides
/// metadata lookup using a variadic key.
template <class Impl, class... Objects>
class VariadicMetadataCacheEntryBase :
public MetadataCacheEntryBase<Impl, const void *, Objects...> {
using super = MetadataCacheEntryBase<Impl, const void *, Objects...>;
protected:
using super::asImpl;
using ValueType = typename super::ValueType;
using TrailingObjectsEntry = typename super::TrailingObjectsEntry;
friend TrailingObjectsEntry;
using TrailingObjects = typename super::TrailingObjects;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
size_t numTrailingObjects(OverloadToken<const void *>) const {
return Layout.sizeInWords();
}
template <class... Args>
static size_t numTrailingObjects(OverloadToken<const void *>,
const MetadataCacheKey &key,
Args &&...extraArgs) {
return key.size();
}
private:
/// These are set during construction and never changed.
const GenericSignatureLayout<InProcess> Layout;
const uint32_t Hash;
/// Valid if TrackingInfo.getState() >= PrivateMetadataState::Abstract.
ValueType Value;
friend super;
ValueType getValue() {
return Value;
}
void setValue(ValueType value) {
Value = value;
}
public:
VariadicMetadataCacheEntryBase(const MetadataCacheKey &key,
MetadataWaitQueue::Worker &worker,
PrivateMetadataState initialState,
ValueType value)
: super(worker, initialState),
Layout(key.layout()),
Hash(key.hash()),
Value(value) {
assert((value != nullptr) ==
(initialState != PrivateMetadataState::Allocating));
key.installInto(this->template getTrailingObjects<const void *>());
}
MetadataCacheKey getKey() const {
return MetadataCacheKey(Layout,
this->template getTrailingObjects<const void*>(),
Hash);
}
intptr_t getKeyIntValueForDump() const {
return Hash;
}
friend llvm::hash_code hash_value(const VariadicMetadataCacheEntryBase<Impl, Objects...> &value) {
return hash_value(value.getKey());
}
bool matchesKey(const MetadataCacheKey &key) const {
return key == getKey();
}
friend struct StaticAssertGenericMetadataCacheEntryValueOffset;
};
template <class EntryType, uint16_t Tag>
class MetadataCache :
public LockingConcurrentMap<EntryType,
LockingConcurrentMapStorage<EntryType, Tag>> {
};
} // namespace swift
#endif // SWIFT_RUNTIME_METADATACACHE_H
|