1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
|
//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of runtime functions for looking up a type by name.
//
//===----------------------------------------------------------------------===//
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include "Tracing.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/Range.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeDecoder.h"
#include "swift/RemoteInspection/Records.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/LibPrespecialized.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Strings.h"
#include "swift/Threading/Mutex.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include <cctype>
#include <cstring>
#include <functional>
#include <list>
#include <new>
#include <optional>
#include <vector>
using namespace swift;
using namespace Demangle;
using namespace reflection;
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#include <dlfcn.h>
#endif
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#endif
/// A Demangler suitable for resolving runtime type metadata strings.
template <class Base = Demangler>
class DemanglerForRuntimeTypeResolution : public Base {
public:
using Base::demangleSymbol;
using Base::demangleType;
// Force callers to explicitly pass `nullptr` to demangleSymbol or
// demangleType if they don't want to demangle symbolic references.
NodePointer demangleSymbol(StringRef symbolName) = delete;
NodePointer demangleType(StringRef typeName) = delete;
NodePointer demangleTypeRef(StringRef symbolName) {
// Resolve symbolic references to type contexts into the absolute address of
// the type context descriptor, so that if we see a symbolic reference in
// the mangled name we can immediately find the associated metadata.
return Base::demangleType(symbolName,
ResolveAsSymbolicReference(*this));
}
};
/// Resolve the relative reference in a mangled symbolic reference.
static uintptr_t resolveSymbolicReferenceOffset(SymbolicReferenceKind kind,
Directness isIndirect,
int32_t offset,
const void *base) {
uintptr_t ptr;
// Function references may be resolved differently than other data references.
switch (kind) {
case SymbolicReferenceKind::AccessorFunctionReference:
ptr = (uintptr_t)TargetCompactFunctionPointer<InProcess, void>::resolve(base, offset);
break;
default:
ptr = detail::applyRelativeOffset(base, offset);
break;
}
// Indirect references may be authenticated in a way appropriate for the
// referent.
if (isIndirect == Directness::Indirect) {
switch (kind) {
case SymbolicReferenceKind::Context: {
ContextDescriptor *contextPtr =
*(const TargetSignedContextPointer<InProcess> *)ptr;
return (uintptr_t)contextPtr;
}
case SymbolicReferenceKind::ObjectiveCProtocol:
case SymbolicReferenceKind::UniqueExtendedExistentialTypeShape:
case SymbolicReferenceKind::NonUniqueExtendedExistentialTypeShape:
case SymbolicReferenceKind::AccessorFunctionReference: {
swift_unreachable("should not be indirectly referenced");
}
}
swift_unreachable("unknown symbolic reference kind");
} else {
return ptr;
}
}
NodePointer
ResolveAsSymbolicReference::operator()(SymbolicReferenceKind kind,
Directness isIndirect,
int32_t offset,
const void *base) {
// Resolve the absolute pointer to the entity being referenced.
auto ptr = resolveSymbolicReferenceOffset(kind, isIndirect, offset, base);
if (SWIFT_UNLIKELY(!ptr)) {
auto symInfo = SymbolInfo::lookup(base);
const char *fileName = "<unknown>";
const char *symbolName = "<unknown>";
if (symInfo) {
if (symInfo->getFilename())
fileName = symInfo->getFilename();
if (symInfo->getSymbolName())
symbolName = symInfo->getSymbolName();
}
swift::fatalError(
0,
"Failed to look up symbolic reference at %p - offset %" PRId32
" - symbol %s in %s\n",
base, offset, symbolName, fileName);
}
// Figure out this symbolic reference's grammatical role.
Node::Kind nodeKind;
bool isType;
switch (kind) {
case Demangle::SymbolicReferenceKind::Context: {
auto descriptor = (const ContextDescriptor *)ptr;
switch (descriptor->getKind()) {
case ContextDescriptorKind::Protocol:
nodeKind = Node::Kind::ProtocolSymbolicReference;
isType = false;
break;
case ContextDescriptorKind::OpaqueType:
nodeKind = Node::Kind::OpaqueTypeDescriptorSymbolicReference;
isType = false;
break;
default:
if (auto typeContext = dyn_cast<TypeContextDescriptor>(descriptor)) {
nodeKind = Node::Kind::TypeSymbolicReference;
isType = true;
break;
}
// References to other kinds of context aren't yet implemented.
return nullptr;
}
break;
}
case Demangle::SymbolicReferenceKind::AccessorFunctionReference: {
// Save the pointer to the accessor function. We can't demangle it any
// further as AST, but the consumer of the demangle tree may be able to
// invoke the function to resolve the thing they're trying to access.
nodeKind = Node::Kind::AccessorFunctionReference;
isType = false;
#if SWIFT_PTRAUTH
// The pointer refers to an accessor function, which we need to sign.
ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr,
ptrauth_key_function_pointer, 0);
#endif
break;
}
case Demangle::SymbolicReferenceKind::UniqueExtendedExistentialTypeShape:
nodeKind = Node::Kind::UniqueExtendedExistentialTypeShapeSymbolicReference;
isType = false;
#if SWIFT_PTRAUTH
ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
break;
case Demangle::SymbolicReferenceKind::NonUniqueExtendedExistentialTypeShape:
nodeKind = Node::Kind::NonUniqueExtendedExistentialTypeShapeSymbolicReference;
isType = false;
#if SWIFT_PTRAUTH
ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::NonUniqueExtendedExistentialTypeShape);
#endif
break;
case Demangle::SymbolicReferenceKind::ObjectiveCProtocol:
nodeKind = Node::Kind::ObjectiveCProtocolSymbolicReference;
isType = false;
break;
}
auto node = Dem.createNode(nodeKind, ptr);
if (isType) {
auto typeNode = Dem.createNode(Node::Kind::Type);
typeNode->addChild(node, Dem);
node = typeNode;
}
return node;
}
static NodePointer
_buildDemanglingForSymbolicReference(SymbolicReferenceKind kind,
const void *resolvedReference,
Demangler &Dem) {
switch (kind) {
case SymbolicReferenceKind::Context:
return _buildDemanglingForContext(
(const ContextDescriptor *)resolvedReference, {}, Dem);
case SymbolicReferenceKind::AccessorFunctionReference:
#if SWIFT_PTRAUTH
// The pointer refers to an accessor function, which we need to sign.
resolvedReference = ptrauth_sign_unauthenticated(resolvedReference,
ptrauth_key_function_pointer, 0);
#endif
return Dem.createNode(Node::Kind::AccessorFunctionReference,
(uintptr_t)resolvedReference);
case SymbolicReferenceKind::UniqueExtendedExistentialTypeShape:
#if SWIFT_PTRAUTH
resolvedReference = ptrauth_sign_unauthenticated(resolvedReference,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
return Dem.createNode(Node::Kind::UniqueExtendedExistentialTypeShapeSymbolicReference,
(uintptr_t)resolvedReference);
case SymbolicReferenceKind::NonUniqueExtendedExistentialTypeShape:
#if SWIFT_PTRAUTH
// The pointer refers to an accessor function, which we need to sign.
resolvedReference = ptrauth_sign_unauthenticated(resolvedReference,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::NonUniqueExtendedExistentialTypeShape);
#endif
return Dem.createNode(Node::Kind::NonUniqueExtendedExistentialTypeShapeSymbolicReference,
(uintptr_t)resolvedReference);
case SymbolicReferenceKind::ObjectiveCProtocol:
return Dem.createNode(Node::Kind::ObjectiveCProtocolSymbolicReference,
(uintptr_t)resolvedReference);
}
swift_unreachable("invalid symbolic reference kind");
}
NodePointer
ResolveToDemanglingForContext::operator()(SymbolicReferenceKind kind,
Directness isIndirect,
int32_t offset,
const void *base) {
auto ptr = resolveSymbolicReferenceOffset(kind, isIndirect, offset, base);
return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem);
}
NodePointer
ExpandResolvedSymbolicReferences::operator()(SymbolicReferenceKind kind,
const void *ptr) {
return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem);
}
#pragma mark Nominal type descriptor cache
// Type Metadata Cache.
namespace {
struct TypeMetadataSection {
const TypeMetadataRecord *Begin, *End;
const TypeMetadataRecord *begin() const {
return Begin;
}
const TypeMetadataRecord *end() const {
return End;
}
};
struct NominalTypeDescriptorCacheEntry {
private:
const char *Name;
size_t NameLength;
const ContextDescriptor *Description;
public:
NominalTypeDescriptorCacheEntry(const llvm::StringRef name,
const ContextDescriptor *description)
: Description(description) {
char *nameCopy = reinterpret_cast<char *>(malloc(name.size()));
memcpy(nameCopy, name.data(), name.size());
Name = nameCopy;
NameLength = name.size();
}
const ContextDescriptor *getDescription() const { return Description; }
bool matchesKey(llvm::StringRef aName) {
return aName == llvm::StringRef{Name, NameLength};
}
friend llvm::hash_code
hash_value(const NominalTypeDescriptorCacheEntry &value) {
return hash_value(llvm::StringRef{value.Name, value.NameLength});
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
} // end anonymous namespace
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
struct SharedCacheInfoState {
uintptr_t dyldSharedCacheStart;
uintptr_t dyldSharedCacheEnd;
bool inSharedCache(const void *ptr) {
auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
}
SharedCacheInfoState() {
size_t length;
dyldSharedCacheStart = (uintptr_t)_dyld_get_shared_cache_range(&length);
dyldSharedCacheEnd =
dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
}
};
static Lazy<SharedCacheInfoState> SharedCacheInfo;
#endif
struct TypeMetadataPrivateState {
ConcurrentReadableHashMap<NominalTypeDescriptorCacheEntry> NominalCache;
ConcurrentReadableArray<TypeMetadataSection> SectionsToScan;
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
ConcurrentReadableArray<TypeMetadataSection> SharedCacheSectionsToScan;
#endif
TypeMetadataPrivateState() {
initializeTypeMetadataRecordLookup();
}
};
static Lazy<TypeMetadataPrivateState> TypeMetadataRecords;
static void
_registerTypeMetadataRecords(TypeMetadataPrivateState &T,
const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
if (SharedCacheInfo.get().inSharedCache(begin)) {
T.SharedCacheSectionsToScan.push_back(TypeMetadataSection{begin, end});
return;
}
#endif
T.SectionsToScan.push_back(TypeMetadataSection{begin, end});
}
void swift::addImageTypeMetadataRecordBlockCallbackUnsafe(
const void *baseAddress,
const void *records, uintptr_t recordsSize) {
assert(recordsSize % sizeof(TypeMetadataRecord) == 0
&& "weird-sized type metadata section?!");
libPrespecializedImageLoaded();
// If we have a section, enqueue the type metadata for lookup.
auto recordBytes = reinterpret_cast<const char *>(records);
auto recordsBegin
= reinterpret_cast<const TypeMetadataRecord*>(records);
auto recordsEnd
= reinterpret_cast<const TypeMetadataRecord*>(recordBytes + recordsSize);
// Type metadata cache should always be sufficiently initialized by this
// point. Attempting to go through get() may also lead to an infinite loop,
// since we register records during the initialization of
// TypeMetadataRecords.
_registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void swift::addImageTypeMetadataRecordBlockCallback(const void *baseAddress,
const void *records,
uintptr_t recordsSize) {
TypeMetadataRecords.get();
addImageTypeMetadataRecordBlockCallbackUnsafe(baseAddress,
records, recordsSize);
}
void
swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
auto &T = TypeMetadataRecords.get();
_registerTypeMetadataRecords(T, begin, end);
}
static const ContextDescriptor *
_findContextDescriptor(Demangle::NodePointer node,
Demangle::Demangler &Dem);
/// Find the context descriptor for the type extended by the given extension.
///
/// If \p maybeExtension isn't actually an extension context, returns nullptr.
static const ContextDescriptor *
_findExtendedTypeContextDescriptor(const ContextDescriptor *maybeExtension,
Demangler &demangler,
Demangle::NodePointer *demangledNode
= nullptr) {
auto extension = dyn_cast<ExtensionContextDescriptor>(maybeExtension);
if (!extension)
return nullptr;
Demangle::NodePointer localNode;
Demangle::NodePointer &node = demangledNode ? *demangledNode : localNode;
auto mangledName = extension->getMangledExtendedContext();
// A extension of the form `extension Protocol where Self == ConcreteType`
// is formally a protocol extension, so the formal generic parameter list
// is `<Self>`, but because of the same type constraint, the extended context
// looks like a reference to that nominal type. We want to match the
// extension's formal generic environment rather than the nominal type's
// in this case, so we should skip out on this case.
//
// We can detect this by looking at whether the generic context of the
// extension has a first generic parameter, which would be the Self parameter,
// with a same type constraint matching the extended type.
for (auto &reqt : extension->getGenericRequirements()) {
if (reqt.getKind() != GenericRequirementKind::SameType) {
continue;
}
// 'x' is the mangling of the first generic parameter
if (!reqt.getParam().equals("x")) {
continue;
}
// Is the generic parameter same-type-constrained to the same type
// we're extending? Then this is a `Self == ExtendedType` constraint.
// This is impossible for normal generic nominal type extensions because
// that would mean that you had:
// struct Foo<T> {...}
// extension Foo where T == Foo<T> {...}
// which would mean that the extended type is the infinite expansion
// Foo<Foo<Foo<Foo<...>>>>, which we don't allow.
if (reqt.getMangledTypeName().data() == mangledName.data()) {
return nullptr;
}
}
node = demangler.demangleType(mangledName,
ResolveAsSymbolicReference(demangler));
if (!node)
return nullptr;
if (node->getKind() == Node::Kind::Type) {
if (node->getNumChildren() < 1)
return nullptr;
node = node->getChild(0);
}
if (Demangle::isSpecialized(node)) {
auto unspec = Demangle::getUnspecialized(node, demangler);
if (!unspec.isSuccess())
return nullptr;
node = unspec.result();
}
return _findContextDescriptor(node, demangler);
}
/// Recognize imported tag types, which have a special mangling rule.
///
/// This should be kept in sync with the AST mangler and with
/// buildContextDescriptorMangling in MetadataReader.
bool swift::_isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity) {
// Tag types are always imported as structs or enums.
if (type->getKind() != ContextDescriptorKind::Enum &&
type->getKind() != ContextDescriptorKind::Struct)
return false;
// Not a typedef imported as a nominal type.
if (identity.isCTypedef())
return false;
// Not a related entity.
if (identity.isAnyRelatedEntity())
return false;
// Imported from C.
return type->Parent->isCImportedContext();
}
ParsedTypeIdentity
ParsedTypeIdentity::parse(const TypeContextDescriptor *type) {
ParsedTypeIdentity result;
// The first component is the user-facing name and (unless overridden)
// the ABI name.
StringRef component = type->Name.get();
result.UserFacingName = component;
// If we don't have import info, we're done.
if (!type->getTypeContextDescriptorFlags().hasImportInfo()) {
result.FullIdentity = result.UserFacingName;
return result;
}
// Otherwise, start parsing the import information.
result.ImportInfo.emplace();
// The identity starts with the user-facing name.
const char *startOfIdentity = component.begin();
const char *endOfIdentity = component.end();
#ifndef NDEBUG
enum {
AfterName,
AfterABIName,
AfterSymbolNamespace,
AfterRelatedEntityName,
AfterIdentity,
} stage = AfterName;
#endif
while (true) {
// Parse the next component. If it's empty, we're done.
component = StringRef(component.end() + 1);
if (component.empty()) break;
// Update the identity bounds and assert that the identity
// components are in the right order.
auto kind = TypeImportComponent(component[0]);
if (kind == TypeImportComponent::ABIName) {
#ifndef NDEBUG
assert(stage < AfterABIName);
stage = AfterABIName;
assert(result.UserFacingName != component.drop_front(1) &&
"user-facing name was same as the ABI name");
#endif
startOfIdentity = component.begin() + 1;
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::SymbolNamespace) {
#ifndef NDEBUG
assert(stage < AfterSymbolNamespace);
stage = AfterSymbolNamespace;
#endif
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::RelatedEntityName) {
#ifndef NDEBUG
assert(stage < AfterRelatedEntityName);
stage = AfterRelatedEntityName;
#endif
endOfIdentity = component.end();
} else {
#ifndef NDEBUG
// Anything else is assumed to not be part of the identity.
stage = AfterIdentity;
#endif
}
// Collect the component, whatever it is.
result.ImportInfo->collect</*asserting*/true>(component);
}
#ifndef NDEBUG
assert(stage != AfterName && "no components?");
#endif
// Record the full identity.
result.FullIdentity =
StringRef(startOfIdentity, endOfIdentity - startOfIdentity);
return result;
}
#if SWIFT_OBJC_INTEROP
/// Determine whether the two demangle trees both refer to the same
/// Objective-C class or protocol referenced by name.
static bool sameObjCTypeManglings(Demangle::NodePointer node1,
Demangle::NodePointer node2) {
// Entities need to be of the same kind.
if (node1->getKind() != node2->getKind())
return false;
auto name1 = Demangle::getObjCClassOrProtocolName(node1);
if (!name1) return false;
auto name2 = Demangle::getObjCClassOrProtocolName(node2);
if (!name2) return false;
return *name1 == *name2;
}
#endif
/// Optimization for the case where we need to compare a StringRef and a null terminated C string
/// Not converting s2 to a StringRef avoids the need to call both strlen and memcmp when non-matching
/// but equal length
static bool stringRefEqualsCString(StringRef s1, const char *s2) {
size_t length = s1.size();
// It may be possible for s1 to contain embedded NULL characters
// so additionally validate that the lengths match
return strncmp(s1.data(), s2, length) == 0 && strlen(s2) == length;
}
bool
swift::_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node) {
while (context) {
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
// We can directly match symbolic references to the current context.
if (node) {
if (node->getKind() == Demangle::Node::Kind::TypeSymbolicReference
|| node->getKind() == Demangle::Node::Kind::ProtocolSymbolicReference){
if (equalContexts(context,
reinterpret_cast<const ContextDescriptor *>(node->getIndex()))) {
return true;
}
}
}
switch (context->getKind()) {
case ContextDescriptorKind::Module: {
auto module = cast<ModuleContextDescriptor>(context);
// Match to a mangled module name.
if (node->getKind() != Demangle::Node::Kind::Module)
return false;
if (!stringRefEqualsCString(node->getText(), module->Name.get()))
return false;
node = nullptr;
break;
}
case ContextDescriptorKind::Extension: {
auto extension = cast<ExtensionContextDescriptor>(context);
// Check whether the extension context matches the mangled context.
if (node->getKind() != Demangle::Node::Kind::Extension)
return false;
if (node->getNumChildren() < 2)
return false;
// Check that the context being extended matches as well.
auto extendedContextNode = node->getChild(1);
DemanglerForRuntimeTypeResolution<> demangler;
auto extendedDescriptorFromNode =
_findContextDescriptor(extendedContextNode, demangler);
Demangle::NodePointer extendedContextDemangled;
auto extendedDescriptorFromDemangled =
_findExtendedTypeContextDescriptor(extension, demangler,
&extendedContextDemangled);
// Determine whether the contexts match.
bool contextsMatch =
extendedDescriptorFromNode && extendedDescriptorFromDemangled &&
equalContexts(extendedDescriptorFromNode,
extendedDescriptorFromDemangled);
#if SWIFT_OBJC_INTEROP
// If we have manglings of the same Objective-C type, the contexts match.
if (!contextsMatch &&
(!extendedDescriptorFromNode || !extendedDescriptorFromDemangled) &&
sameObjCTypeManglings(extendedContextNode,
extendedContextDemangled)) {
contextsMatch = true;
}
#endif
if (!contextsMatch)
return false;
// Check whether the generic signature of the extension matches the
// mangled constraints, if any.
if (node->getNumChildren() >= 3) {
// NB: If we ever support extensions with independent generic arguments
// like `extension <T> Array where Element == Optional<T>`, we'd need
// to look at the mangled context name to match up generic arguments.
// That would probably need a new extension mangling form, though.
// TODO
}
// The parent context of the extension should match in the mangling and
// context descriptor.
node = node->getChild(0);
break;
}
case ContextDescriptorKind::Protocol:
// Match a protocol context.
if (node->getKind() == Demangle::Node::Kind::Protocol) {
auto proto = llvm::cast<ProtocolDescriptor>(context);
auto nameNode = node->getChild(1);
if (nameNode->getKind() != Demangle::Node::Kind::Identifier)
return false;
if (stringRefEqualsCString(nameNode->getText(), proto->Name.get())) {
node = node->getChild(0);
break;
}
}
return false;
default:
if (auto type = llvm::dyn_cast<TypeContextDescriptor>(context)) {
std::optional<ParsedTypeIdentity> _identity;
auto getIdentity = [&]() -> const ParsedTypeIdentity & {
if (_identity) return *_identity;
_identity = ParsedTypeIdentity::parse(type);
return *_identity;
};
switch (node->getKind()) {
// If the mangled name doesn't indicate a type kind, accept anything.
// Otherwise, try to match them up.
case Demangle::Node::Kind::OtherNominalType:
break;
case Demangle::Node::Kind::Structure:
// We allow non-structs to match Kind::Structure if they are
// imported C tag types. This is necessary because we artificially
// make imported C tag types Kind::Structure.
if (type->getKind() != ContextDescriptorKind::Struct &&
!_isCImportedTagType(type, getIdentity()))
return false;
break;
case Demangle::Node::Kind::Class:
if (type->getKind() != ContextDescriptorKind::Class)
return false;
break;
case Demangle::Node::Kind::Enum:
if (type->getKind() != ContextDescriptorKind::Enum)
return false;
break;
case Demangle::Node::Kind::TypeAlias:
if (!getIdentity().isCTypedef())
return false;
break;
default:
return false;
}
auto nameNode = node->getChild(1);
// Declarations synthesized by the Clang importer get a small tag
// string in addition to their name.
if (nameNode->getKind() == Demangle::Node::Kind::RelatedEntityDeclName){
if (!getIdentity().isRelatedEntity(
nameNode->getFirstChild()->getText()))
return false;
nameNode = nameNode->getChild(1);
} else if (getIdentity().isAnyRelatedEntity()) {
return false;
}
// We should only match public or internal declarations with stable
// names. The runtime metadata for private declarations would be
// anonymized.
if (nameNode->getKind() == Demangle::Node::Kind::Identifier) {
if (nameNode->getText() != getIdentity().getABIName())
return false;
node = node->getChild(0);
break;
}
return false;
}
// We don't know about this kind of context, or it doesn't have a stable
// name we can match to.
return false;
}
context = context->Parent;
}
// We should have reached the top of the node tree at the same time we reached
// the top of the context tree.
if (node)
return false;
return true;
}
static const ContextDescriptor *getContextDescriptor(const TypeMetadataRecord &record) {
return record.getContextDescriptor();
}
static const ContextDescriptor *getContextDescriptor(const ProtocolRecord &record) {
return record.Protocol.getPointer();
}
template <typename SectionsContainer>
static const ContextDescriptor *_searchTypeMetadataRecordsInSections(
SectionsContainer §ionsToScan,
Demangle::NodePointer node) {
for (auto §ion : sectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto context = getContextDescriptor(record)) {
if (_contextDescriptorMatchesMangling(context, node)) {
return context;
}
}
}
}
return nullptr;
}
template <typename State, typename TraceBegin>
static const ContextDescriptor *_searchForContextDescriptor(State &state, NodePointer node, TraceBegin traceBegin) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
auto result = getLibPrespecializedTypeDescriptor(node);
// Validate the result if requested.
if (SWIFT_UNLIKELY(
runtime::environment::
SWIFT_DEBUG_VALIDATE_LIB_PRESPECIALIZED_DESCRIPTOR_LOOKUP())) {
// Only validate a definitive result.
if (result.first == LibPrespecializedLookupResult::Found ||
result.first == LibPrespecializedLookupResult::DefinitiveNotFound) {
// Perform a scan of the shared cache sections and see if the result
// matches.
auto scanResult = _searchTypeMetadataRecordsInSections(
state.SharedCacheSectionsToScan, node);
// Ignore a result that's outside the shared cache. This can happen for
// indirect descriptor records that get fixed up to point to a root.
if (SharedCacheInfo.get().inSharedCache(scanResult)) {
// We may find a different but equivalent context if they're not unique,
// as iteration order may be different between the two. Use
// equalContexts to compare distinct but equal non-unique contexts
// properly.
if (!equalContexts(result.second, scanResult)) {
auto tree = getNodeTreeAsString(node);
swift::fatalError(
0,
"Searching for type descriptor, prespecialized descriptor map "
"returned %p, but scan returned %p. Node tree:\n%s",
result.second, scanResult, tree.c_str());
}
}
}
}
if (result.first == LibPrespecializedLookupResult::Found) {
assert(result.second);
return result.second;
}
// If the result was not definitive, then we must search the shared cache
// sections.
if (result.first == LibPrespecializedLookupResult::NonDefinitiveNotFound) {
auto traceState = traceBegin(node);
auto descriptor =
_searchTypeMetadataRecordsInSections(state.SharedCacheSectionsToScan, node);
traceState.end(descriptor);
if (descriptor)
return descriptor;
}
// If we didn't find anything in the shared cache, then search the rest.
#endif
auto traceState = traceBegin(node);
auto foundDescriptor = _searchTypeMetadataRecordsInSections(state.SectionsToScan, node);
traceState.end(foundDescriptor);
return foundDescriptor;
}
// returns the nominal type descriptor for the type named by typeName
static const ContextDescriptor *
_searchTypeMetadataRecords(TypeMetadataPrivateState &T,
Demangle::NodePointer node) {
#if SWIFT_OBJC_INTEROP
// Classes in the __C module are ObjC classes. They never have a
// nominal type descriptor, so don't bother to search for one.
if (node && node->getKind() == Node::Kind::Class)
if (auto child = node->getFirstChild())
if (child->getKind() == Node::Kind::Module && child->hasText())
if (child->getText() == MANGLING_MODULE_OBJC)
return nullptr;
#endif
return _searchForContextDescriptor(T, node, runtime::trace::metadata_scan_begin);
}
#define DESCRIPTOR_MANGLING_SUFFIX_Structure Mn
#define DESCRIPTOR_MANGLING_SUFFIX_Enum Mn
#define DESCRIPTOR_MANGLING_SUFFIX_Protocol Mp
#define DESCRIPTOR_MANGLING_SUFFIX_(X) X
#define DESCRIPTOR_MANGLING_SUFFIX(KIND) \
DESCRIPTOR_MANGLING_SUFFIX_(DESCRIPTOR_MANGLING_SUFFIX_ ## KIND)
#define DESCRIPTOR_MANGLING_(CHAR, SUFFIX) \
$sS ## CHAR ## SUFFIX
#define DESCRIPTOR_MANGLING(CHAR, SUFFIX) DESCRIPTOR_MANGLING_(CHAR, SUFFIX)
#define STANDARD_TYPE(KIND, MANGLING, TYPENAME) \
extern "C" const ContextDescriptor DESCRIPTOR_MANGLING(MANGLING, DESCRIPTOR_MANGLING_SUFFIX(KIND));
// FIXME: When the _Concurrency library gets merged into the Standard Library,
// we will be able to reference those symbols directly as well.
#define STANDARD_TYPE_CONCURRENCY(KIND, MANGLING, TYPENAME)
#if !SWIFT_OBJC_INTEROP
# define OBJC_INTEROP_STANDARD_TYPE(KIND, MANGLING, TYPENAME)
#endif
#include "swift/Demangling/StandardTypesMangling.def"
static const ConcurrencyStandardTypeDescriptors *concurrencyDescriptors;
/// Perform a fast-path lookup for standard library type references with short
/// manglings. Returns the appropriate descriptor, or NULL if the descriptor
/// couldn't be resolved, or if the node does not refer to one of those types.
static const ContextDescriptor *
descriptorFromStandardMangling(Demangle::NodePointer symbolicNode) {
#if SWIFT_STDLIB_SHORT_MANGLING_LOOKUPS
// Fast-path lookup for standard library type references with short manglings.
if (symbolicNode->getNumChildren() >= 2
&& symbolicNode->getChild(0)->getKind() == Node::Kind::Module
&& symbolicNode->getChild(0)->getText().equals("Swift")
&& symbolicNode->getChild(1)->getKind() == Node::Kind::Identifier) {
auto name = symbolicNode->getChild(1)->getText();
#define STANDARD_TYPE(KIND, MANGLING, TYPENAME) \
if (name.equals(#TYPENAME)) { \
return &DESCRIPTOR_MANGLING(MANGLING, DESCRIPTOR_MANGLING_SUFFIX(KIND)); \
}
// FIXME: When the _Concurrency library gets merged into the Standard Library,
// we will be able to reference those symbols directly as well.
#define STANDARD_TYPE_CONCURRENCY(KIND, MANGLING, TYPENAME) \
if (concurrencyDescriptors && name.equals(#TYPENAME)) { \
return concurrencyDescriptors->TYPENAME; \
}
#if !SWIFT_OBJC_INTEROP
# define OBJC_INTEROP_STANDARD_TYPE(KIND, MANGLING, TYPENAME)
#endif
#include "swift/Demangling/StandardTypesMangling.def"
}
#endif
return nullptr;
}
static const ContextDescriptor *
_findContextDescriptor(Demangle::NodePointer node,
Demangle::Demangler &Dem) {
NodePointer symbolicNode = node;
if (symbolicNode->getKind() == Node::Kind::Type)
symbolicNode = symbolicNode->getChild(0);
// If we have a symbolic reference to a context, resolve it immediately.
if (symbolicNode->getKind() == Node::Kind::TypeSymbolicReference) {
return cast<TypeContextDescriptor>(
(const ContextDescriptor *)symbolicNode->getIndex());
}
if (auto *standardDescriptor = descriptorFromStandardMangling(symbolicNode))
return standardDescriptor;
const ContextDescriptor *foundContext = nullptr;
auto &T = TypeMetadataRecords.get();
// Nothing to resolve if have a generic parameter.
if (symbolicNode->getKind() == Node::Kind::DependentGenericParamType)
return nullptr;
auto mangling =
Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem), Dem);
if (!mangling.isSuccess())
return nullptr;
StringRef mangledName = mangling.result();
// Look for an existing entry.
// Find the bucket for the metadata entry.
{
auto snapshot = T.NominalCache.snapshot();
if (auto Value = snapshot.find(mangledName))
return Value->getDescription();
}
// Check type metadata records
// Scan any newly loaded images for context descriptors, then try the context
foundContext = _searchTypeMetadataRecords(T, node);
// Check protocol conformances table. Note that this has no support for
// resolving generic types yet.
if (!foundContext)
foundContext = _searchConformancesByMangledTypeName(node);
if (foundContext)
T.NominalCache.getOrInsert(mangledName, [&](NominalTypeDescriptorCacheEntry
*entry,
bool created) {
if (created)
::new (entry) NominalTypeDescriptorCacheEntry{mangledName, foundContext};
return true;
});
return foundContext;
}
void swift::_swift_registerConcurrencyStandardTypeDescriptors(
const ConcurrencyStandardTypeDescriptors *descriptors) {
concurrencyDescriptors = descriptors;
}
#pragma mark Protocol descriptor cache
namespace {
struct ProtocolSection {
const ProtocolRecord *Begin, *End;
const ProtocolRecord *begin() const {
return Begin;
}
const ProtocolRecord *end() const {
return End;
}
};
struct ProtocolDescriptorCacheEntry {
private:
const char *Name;
size_t NameLength;
const ProtocolDescriptor *Description;
public:
ProtocolDescriptorCacheEntry(const llvm::StringRef name,
const ProtocolDescriptor *description)
: Description(description) {
char *nameCopy = reinterpret_cast<char *>(malloc(name.size()));
memcpy(nameCopy, name.data(), name.size());
Name = nameCopy;
NameLength = name.size();
}
const ProtocolDescriptor *getDescription() const { return Description; }
bool matchesKey(llvm::StringRef aName) {
return aName == llvm::StringRef{Name, NameLength};
}
friend llvm::hash_code
hash_value(const ProtocolDescriptorCacheEntry &value) {
return hash_value(llvm::StringRef{value.Name, value.NameLength});
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
struct ProtocolMetadataPrivateState {
ConcurrentReadableHashMap<ProtocolDescriptorCacheEntry> ProtocolCache;
ConcurrentReadableArray<ProtocolSection> SectionsToScan;
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
ConcurrentReadableArray<ProtocolSection> SharedCacheSectionsToScan;
#endif
ProtocolMetadataPrivateState() {
initializeProtocolLookup();
}
};
static Lazy<ProtocolMetadataPrivateState> Protocols;
}
static void
_registerProtocols(ProtocolMetadataPrivateState &C,
const ProtocolRecord *begin,
const ProtocolRecord *end) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
if (SharedCacheInfo.get().inSharedCache(begin)) {
C.SharedCacheSectionsToScan.push_back(ProtocolSection{begin, end});
return;
}
#endif
C.SectionsToScan.push_back(ProtocolSection{begin, end});
}
void swift::addImageProtocolsBlockCallbackUnsafe(const void *baseAddress,
const void *protocols,
uintptr_t protocolsSize) {
assert(protocolsSize % sizeof(ProtocolRecord) == 0 &&
"protocols section not a multiple of ProtocolRecord");
// If we have a section, enqueue the protocols for lookup.
auto protocolsBytes = reinterpret_cast<const char *>(protocols);
auto recordsBegin
= reinterpret_cast<const ProtocolRecord *>(protocols);
auto recordsEnd
= reinterpret_cast<const ProtocolRecord *>(protocolsBytes + protocolsSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocols(Protocols.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void swift::addImageProtocolsBlockCallback(const void *baseAddress,
const void *protocols,
uintptr_t protocolsSize) {
Protocols.get();
addImageProtocolsBlockCallbackUnsafe(baseAddress, protocols, protocolsSize);
}
void swift::swift_registerProtocols(const ProtocolRecord *begin,
const ProtocolRecord *end) {
auto &C = Protocols.get();
_registerProtocols(C, begin, end);
}
static const ProtocolDescriptor *
_searchProtocolRecords(ProtocolMetadataPrivateState &C,
NodePointer node) {
auto descriptor = _searchForContextDescriptor(C, node, runtime::trace::protocol_scan_begin);
assert(!descriptor || isa<ProtocolDescriptor>(descriptor) && "Protocol record search found non-protocol descriptor.");
return reinterpret_cast<const ProtocolDescriptor *>(descriptor);
}
static const ProtocolDescriptor *
_findProtocolDescriptor(NodePointer node,
Demangle::Demangler &Dem) {
const ProtocolDescriptor *foundProtocol = nullptr;
auto &T = Protocols.get();
// If we have a symbolic reference to a context, resolve it immediately.
NodePointer symbolicNode = node;
if (symbolicNode->getKind() == Node::Kind::Type)
symbolicNode = symbolicNode->getChild(0);
if (symbolicNode->getKind() == Node::Kind::ProtocolSymbolicReference)
return cast<ProtocolDescriptor>(
(const ContextDescriptor *)symbolicNode->getIndex());
if (auto *standardDescriptor = descriptorFromStandardMangling(symbolicNode)) {
assert(standardDescriptor->getKind() == ContextDescriptorKind::Protocol);
return static_cast<const ProtocolDescriptor *>(standardDescriptor);
}
auto mangling =
Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem), Dem);
if (!mangling.isSuccess())
return nullptr;
auto mangledName = mangling.result().str();
// Look for an existing entry.
// Find the bucket for the metadata entry.
{
auto snapshot = T.ProtocolCache.snapshot();
if (auto Value = snapshot.find(mangledName))
return Value->getDescription();
}
// Check type metadata records
foundProtocol = _searchProtocolRecords(T, node);
if (foundProtocol) {
T.ProtocolCache.getOrInsert(mangledName, [&](ProtocolDescriptorCacheEntry
*entry,
bool created) {
if (created)
::new (entry) ProtocolDescriptorCacheEntry{mangledName, foundProtocol};
return true;
});
}
return foundProtocol;
}
#pragma mark Type field descriptor cache
namespace {
struct FieldDescriptorCacheEntry {
private:
const Metadata *Type;
const FieldDescriptor *Description;
public:
FieldDescriptorCacheEntry(const Metadata *type,
const FieldDescriptor *description)
: Type(type), Description(description) {}
const FieldDescriptor *getDescription() { return Description; }
int compareWithKey(const Metadata *other) const {
auto a = (uintptr_t)Type;
auto b = (uintptr_t)other;
return a == b ? 0 : (a < b ? -1 : 1);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
};
} // namespace
#pragma mark Metadata lookup via mangled name
std::optional<unsigned>
swift::_depthIndexToFlatIndex(unsigned depth, unsigned index,
llvm::ArrayRef<unsigned> paramCounts) {
// Out-of-bounds depth.
if (depth >= paramCounts.size())
return std::nullopt;
// Compute the flat index.
unsigned flatIndex = index + (depth == 0 ? 0 : paramCounts[depth - 1]);
// Out-of-bounds index.
if (flatIndex >= paramCounts[depth])
return std::nullopt;
return flatIndex;
}
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool swift::_gatherGenericParameterCounts(
const ContextDescriptor *descriptor,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
Demangler &BorrowFrom) {
DemanglerForRuntimeTypeResolution<> demangler;
demangler.providePreallocatedMemory(BorrowFrom);
if (auto extension = _findExtendedTypeContextDescriptor(descriptor,
demangler)) {
// If we have a nominal type extension descriptor, extract the extended type
// and use that. If the extension is not nominal, then we can use the
// extension's own signature.
descriptor = extension;
}
// Once we hit a non-generic descriptor, we're done.
if (!descriptor->isGeneric()) return false;
// Recurse to record the parent context's generic parameters.
auto parent = descriptor->Parent.get();
(void)_gatherGenericParameterCounts(parent, genericParamCounts, demangler);
// Record a new level of generic parameters if the count exceeds the
// previous count.
unsigned parentCount = parent->getNumGenericParams();
unsigned myCount = descriptor->getNumGenericParams();
if (myCount > parentCount) {
genericParamCounts.push_back(myCount);
return true;
}
return false;
}
/// Retrieve the generic parameters introduced in this context.
static llvm::ArrayRef<GenericParamDescriptor>
getLocalGenericParams(const ContextDescriptor *context) {
if (!context->isGeneric())
return { };
// Determine where to start looking at generic parameters.
unsigned startParamIndex;
if (auto parent = context->Parent.get())
startParamIndex = parent->getNumGenericParams();
else
startParamIndex = 0;
auto genericContext = context->getGenericContext();
return genericContext->getGenericParams().slice(startParamIndex);
}
namespace {
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the complete set of generic
/// arguments "as written".
///
/// Use with \c _getTypeByMangledName to decode potentially-generic types.
class SubstGenericParametersFromWrittenArgs {
/// The complete set of generic arguments.
const llvm::SmallVectorImpl<MetadataOrPack> &allGenericArgs;
/// The counts of generic parameters at each level.
const llvm::SmallVectorImpl<unsigned> &genericParamCounts;
public:
/// Initialize a new function object to handle substitutions. Both
/// parameters are references to vectors that must live longer than
/// this function object.
///
/// \param allGenericArgs The complete set of generic arguments, as written.
/// This could come directly from "source" (where all generic arguments are
/// encoded) or from metadata via gatherWrittenGenericArgs().
///
/// \param genericParamCounts The count of generic parameters at each
/// generic level, typically gathered by _gatherGenericParameterCounts.
explicit SubstGenericParametersFromWrittenArgs(
const llvm::SmallVectorImpl<MetadataOrPack> &allGenericArgs,
const llvm::SmallVectorImpl<unsigned> &genericParamCounts)
: allGenericArgs(allGenericArgs),
genericParamCounts(genericParamCounts) {}
MetadataOrPack getMetadata(unsigned depth, unsigned index) const;
MetadataOrPack getMetadataFullOrdinal(unsigned ordinal) const;
const WitnessTable *getWitnessTable(const Metadata *type,
unsigned index) const;
};
} // end anonymous namespace
static std::optional<TypeLookupError>
_gatherGenericParameters(const ContextDescriptor *context,
llvm::ArrayRef<MetadataOrPack> genericArgs,
const Metadata *parent,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
llvm::SmallVectorImpl<const void *> &allGenericArgsVec,
Demangler &demangler) {
auto makeCommonErrorStringGetter = [&] {
auto metadataVector = genericArgs.vec();
return [=] {
std::string str;
str += "_gatherGenericParameters: context: ";
if (auto contextInfo = SymbolInfo::lookup(context)) {
str += contextInfo->getSymbolName();
str += " ";
}
char *contextStr;
swift_asprintf(&contextStr, "%p", context);
str += contextStr;
free(contextStr);
str += " <";
bool first = true;
for (MetadataOrPack metadata : genericArgs) {
if (!first)
str += ", ";
first = false;
str += metadata.nameForMetadata();
}
str += "> ";
str += "parent: ";
if (parent)
str += nameForMetadata(parent);
else
str += "<null>";
str += " - ";
return str;
};
};
// Figure out the various levels of generic parameters we have in
// this type.
(void)_gatherGenericParameterCounts(context,
genericParamCounts, demangler);
unsigned numTotalGenericParams =
genericParamCounts.empty() ? context->getNumGenericParams()
: genericParamCounts.back();
// Check whether we have the right number of generic arguments.
if (genericArgs.size() == getLocalGenericParams(context).size()) {
// Okay: genericArgs is the innermost set of generic arguments.
} else if (genericArgs.size() == numTotalGenericParams && !parent) {
// Okay: genericArgs is the complete set of generic arguments.
} else {
auto commonString = makeCommonErrorStringGetter();
auto genericArgsSize = genericArgs.size();
return TypeLookupError([=] {
return commonString() + "incorrect number of generic args (" +
std::to_string(genericArgsSize) + "), " +
std::to_string(getLocalGenericParams(context).size()) +
" local params, " + std::to_string(numTotalGenericParams) +
" total params";
});
}
// If there are generic parameters at any level, check the generic
// requirements and fill in the generic arguments vector.
if (!genericParamCounts.empty()) {
// Compute the set of generic arguments "as written".
llvm::SmallVector<MetadataOrPack, 8> allGenericArgs;
auto generics = context->getGenericContext();
assert(generics);
// If we have a parent, gather its generic arguments "as written". If our
// parent is not generic, there are no generic arguments to add.
if (parent && parent->getTypeContextDescriptor() &&
parent->getTypeContextDescriptor()->getGenericContext()) {
auto parentDescriptor = parent->getTypeContextDescriptor();
auto parentGenerics = parentDescriptor->getGenericContext();
auto packHeader = parentGenerics->getGenericPackShapeHeader();
// _gatherWrittenGenericParameters expects to immediately read key generic
// arguments, so skip past the shape classes if we have any.
auto nonShapeClassGenericArgs = parent->getGenericArgs() + packHeader.NumShapeClasses;
auto numKeyArgs = 0;
for (auto param : parentGenerics->getGenericParams()) {
if (param.hasKeyArgument()) {
numKeyArgs += 1;
}
}
llvm::ArrayRef<const void *> genericArgsRef(
reinterpret_cast<const void * const *>(nonShapeClassGenericArgs),
numKeyArgs);
if (!_gatherWrittenGenericParameters(parentDescriptor,
genericArgsRef,
allGenericArgs, demangler)) {
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "failed to get parent context's written" +
" generic arguments";
});
}
}
// Add the generic arguments we were given.
allGenericArgs.insert(allGenericArgs.end(),
genericArgs.begin(), genericArgs.end());
// Copy the generic arguments needed for metadata from the generic
// arguments "as written".
{
// Add a placeholder length for each shape class.
auto packShapeHeader = generics->getGenericPackShapeHeader();
if (packShapeHeader.NumShapeClasses > 0) {
assert(allGenericArgsVec.empty());
allGenericArgsVec.resize(packShapeHeader.NumShapeClasses);
}
// If we have the wrong number of generic arguments, fail.
auto genericParams = generics->getGenericParams();
unsigned n = genericParams.size();
if (allGenericArgs.size() != n) {
auto commonString = makeCommonErrorStringGetter();
auto argsVecSize = allGenericArgsVec.size();
return TypeLookupError([=] {
return commonString() + "have " + std::to_string(argsVecSize) +
"generic args, expected " + std::to_string(n);
});
}
// Add metadata for each canonical generic parameter.
auto packShapeDescriptors = generics->getGenericPackShapeDescriptors();
unsigned packIdx = 0;
for (unsigned i = 0; i != n; ++i) {
const auto ¶m = genericParams[i];
auto arg = allGenericArgs[i];
switch (param.getKind()) {
case GenericParamKind::Type: {
if (!arg.isMetadata()) {
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "param " + std::to_string(i) +
" expected metadata but got a metadata pack";
});
}
if (param.hasKeyArgument()) {
allGenericArgsVec.push_back(arg.getMetadata());
}
break;
}
case GenericParamKind::TypePack: {
if (!arg.isMetadataPack()) {
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "param " + std::to_string(i) +
" expected a metadata pack but got metadata";
});
}
if (param.hasKeyArgument()) {
auto packShapeDescriptor = packShapeDescriptors[packIdx];
assert(packShapeDescriptor.Kind == GenericPackKind::Metadata);
assert(packShapeDescriptor.Index == allGenericArgsVec.size());
assert(packShapeDescriptor.ShapeClass < packShapeHeader.NumShapeClasses);
auto argPack = arg.getMetadataPack();
assert(argPack.getLifetime() == PackLifetime::OnHeap);
// Fill in the length for each shape class.
allGenericArgsVec[packShapeDescriptor.ShapeClass] =
reinterpret_cast<const void *>(argPack.getNumElements());
allGenericArgsVec.push_back(argPack.getPointer());
++packIdx;
}
break;
}
default:
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "param " + std::to_string(i) +
" has unexpected kind " +
std::to_string(static_cast<uint8_t>(param.getKind()));
});
}
}
}
// Check whether the generic requirements are satisfied, collecting
// any extra arguments we need for the instantiation function.
SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs,
genericParamCounts);
auto error = _checkGenericRequirements(
generics->getGenericParams(),
generics->getGenericRequirements(), allGenericArgsVec,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](unsigned fullOrdinal, unsigned keyOrdinal) {
return substitutions.getMetadataFullOrdinal(fullOrdinal).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (error)
return *error;
// If we still have the wrong number of generic arguments, this is
// some kind of metadata mismatch.
if (generics->getGenericContextHeader().getNumArguments() !=
allGenericArgsVec.size()) {
auto commonString = makeCommonErrorStringGetter();
auto argsVecSize = allGenericArgsVec.size();
return TypeLookupError([=] {
return commonString() + "generic argument count mismatch, expected " +
std::to_string(
generics->getGenericContextHeader().getNumArguments()) +
", have " + std::to_string(argsVecSize);
});
}
}
return std::nullopt;
}
namespace {
/// Find the offset of the protocol requirement for an associated type with
/// the given name in the given protocol descriptor.
std::optional<const ProtocolRequirement *>
findAssociatedTypeByName(const ProtocolDescriptor *protocol, StringRef name) {
// If we don't have associated type names, there's nothing to do.
const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get();
if (!associatedTypeNamesPtr)
return std::nullopt;
// Look through the list of associated type names.
StringRef associatedTypeNames(associatedTypeNamesPtr);
unsigned matchingAssocTypeIdx = 0;
bool found = false;
while (!associatedTypeNames.empty()) {
// Avoid using StringRef::split because its definition is not
// provided in the header so that it requires linking with libSupport.a.
auto splitIdx = associatedTypeNames.find(' ');
if (associatedTypeNames.substr(0, splitIdx) == name) {
found = true;
break;
}
++matchingAssocTypeIdx;
associatedTypeNames = associatedTypeNames.substr(splitIdx).substr(1);
}
if (!found)
return std::nullopt;
// We have a match on the Nth associated type; go find the Nth associated
// type requirement.
unsigned currentAssocTypeIdx = 0;
unsigned numRequirements = protocol->NumRequirements;
auto requirements = protocol->getRequirements();
for (unsigned reqIdx = 0; reqIdx != numRequirements; ++reqIdx) {
if (requirements[reqIdx].Flags.getKind() !=
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction)
continue;
if (currentAssocTypeIdx == matchingAssocTypeIdx)
return requirements.begin() + reqIdx;
++currentAssocTypeIdx;
}
swift_unreachable("associated type names don't line up");
}
} // end unnamed namespace
static Lazy<Mutex> DynamicReplacementLock;
namespace {
struct OpaqueTypeMappings {
llvm::DenseMap<const OpaqueTypeDescriptor *, const OpaqueTypeDescriptor *>
descriptorMapping;
const OpaqueTypeDescriptor* find(const OpaqueTypeDescriptor *orig) {
const OpaqueTypeDescriptor *replacement = nullptr;
DynamicReplacementLock.get().withLock([&] {
auto entry = descriptorMapping.find(orig);
if (entry != descriptorMapping.end())
replacement = entry->second;
});
return replacement;
}
// We take a mutex argument to make sure someone is holding the lock.
void insert(const OpaqueTypeDescriptor *orig,
const OpaqueTypeDescriptor *replacement, const Mutex &) {
descriptorMapping[orig] = replacement;
}
};
} // end unnamed namespace
static Lazy<OpaqueTypeMappings> opaqueTypeMappings;
static const OpaqueTypeDescriptor *
_findOpaqueTypeDescriptor(NodePointer demangleNode,
Demangler &dem) {
// Directly resolve a symbolic reference.
if (demangleNode->getKind()
== Node::Kind::OpaqueTypeDescriptorSymbolicReference) {
auto context = (const ContextDescriptor *)demangleNode->getIndex();
auto *orig = cast<OpaqueTypeDescriptor>(context);
if (auto *entry = opaqueTypeMappings.get().find(orig)) {
return entry;
}
return orig;
}
// TODO: Find non-symbolic-referenced opaque decls.
return nullptr;
}
#if SWIFT_OBJC_INTEROP
static Protocol *_asObjectiveCProtocol(NodePointer demangleNode) {
if (demangleNode->getKind() ==
Node::Kind::ObjectiveCProtocolSymbolicReference) {
auto protocolPtr =
((RelativeDirectPointer<Protocol *, false> *)demangleNode->getIndex())
->get();
Protocol *protocol = *protocolPtr;
return protocol;
}
return nullptr;
}
#endif
namespace {
/// Constructs metadata by decoding a mangled type name, for use with
/// \c TypeDecoder.
class DecodedMetadataBuilder {
private:
/// The demangler we'll use when building new nodes.
Demangler &demangler;
/// Substitute generic parameters.
SubstGenericParameterFn substGenericParameter;
/// Substitute dependent witness tables.
SubstDependentWitnessTableFn substWitnessTable;
/// Ownership information related to the metadata we are trying to lookup.
TypeReferenceOwnership ReferenceOwnership;
/// Stack of shape pack/current index pairs.
std::vector<std::pair<MetadataPackPointer, size_t>> ActivePackExpansions;
public:
using BuiltType = MetadataOrPack;
struct BuiltLayoutConstraint {
bool operator==(BuiltLayoutConstraint rhs) const { return true; }
operator bool() const { return true; }
};
using BuiltLayoutConstraint = BuiltLayoutConstraint;
using BuiltTypeDecl = const ContextDescriptor *;
using BuiltProtocolDecl = ProtocolDescriptorRef;
using BuiltGenericSignature = const Metadata *;
using BuiltSubstitution = std::pair<BuiltType, BuiltType>;
using BuiltSubstitutionMap = llvm::ArrayRef<BuiltSubstitution>;
using BuiltGenericTypeParam = const Metadata *;
struct BuiltRequirement {
RequirementKind Kind;
BuiltType FirstType;
union {
BuiltType SecondType;
BuiltLayoutConstraint SecondLayout;
};
BuiltRequirement(RequirementKind kind, BuiltType first,
BuiltType second)
: Kind(kind), FirstType(first), SecondType(second) {
assert(first);
assert(second);
assert(kind != RequirementKind::Layout);
}
BuiltRequirement(RequirementKind kind, BuiltType first,
BuiltLayoutConstraint second)
: Kind(kind), FirstType(first), SecondLayout(second) {
assert(first);
assert(second);
assert(kind == RequirementKind::Layout);
}
/// Determine the kind of requirement.
RequirementKind getKind() const {
return Kind;
}
/// Retrieve the first type.
BuiltType getFirstType() const {
return FirstType;
}
/// Retrieve the second type.
BuiltType getSecondType() const {
assert(getKind() != RequirementKind::Layout);
return SecondType;
}
/// Retrieve the layout constraint.
BuiltLayoutConstraint getLayoutConstraint() const {
assert(getKind() == RequirementKind::Layout);
return SecondLayout;
}
};
struct BuiltInverseRequirement {
BuiltType SubjectType;
InvertibleProtocolKind Kind;
};
DecodedMetadataBuilder(Demangler &demangler,
SubstGenericParameterFn substGenericParameter,
SubstDependentWitnessTableFn substWitnessTable)
: demangler(demangler),
substGenericParameter(substGenericParameter),
substWitnessTable(substWitnessTable) { }
BuiltType decodeMangledType(NodePointer node,
bool forRequirement = true) {
return Demangle::decodeMangledType(*this, node, forRequirement)
.getType();
}
Demangle::NodeFactory &getNodeFactory() { return demangler; }
TypeLookupErrorOr<BuiltType>
resolveOpaqueType(NodePointer opaqueDecl,
llvm::ArrayRef<llvm::ArrayRef<BuiltType>> genericArgs,
unsigned ordinal) {
auto descriptor = _findOpaqueTypeDescriptor(opaqueDecl, demangler);
if (!descriptor)
return BuiltType();
auto outerContext = descriptor->Parent.get();
llvm::SmallVector<MetadataOrPack, 8> allGenericArgs;
for (auto argSet : genericArgs)
allGenericArgs.append(argSet.begin(), argSet.end());
// Gather the generic parameters we need to parameterize the opaque decl.
llvm::SmallVector<unsigned, 8> genericParamCounts;
llvm::SmallVector<const void *, 8> allGenericArgsVec;
if (auto error = _gatherGenericParameters(
outerContext, allGenericArgs, nullptr, /* no parent */
genericParamCounts, allGenericArgsVec, demangler))
return *error;
auto mangledName = descriptor->getUnderlyingTypeArgument(ordinal);
SubstGenericParametersFromMetadata substitutions(descriptor,
allGenericArgsVec.data());
return BuiltType(
swift_getTypeByMangledName(MetadataState::Complete,
mangledName, allGenericArgsVec.data(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType().getMetadata());
}
BuiltTypeDecl createTypeDecl(NodePointer node,
bool &typeAlias) const {
// Look for a nominal type descriptor based on its mangled name.
return _findContextDescriptor(node, demangler);
}
BuiltProtocolDecl createProtocolDecl(NodePointer node) const {
#if SWIFT_OBJC_INTEROP
// Check for an objective c protocol symbolic reference.
if (auto protocol = _asObjectiveCProtocol(node)) {
return ProtocolDescriptorRef::forObjC(protocol);
}
#endif
// Look for a protocol descriptor based on its mangled name.
if (auto protocol = _findProtocolDescriptor(node, demangler))
return ProtocolDescriptorRef::forSwift(protocol);;
#if SWIFT_OBJC_INTEROP
// Look for a Swift-defined @objc protocol with the Swift 3 mangling that
// is used for Objective-C entities.
auto mangling = mangleNodeAsObjcCString(node, demangler);
if (mangling.isSuccess()) {
const char *objcMangledName = mangling.result();
if (auto protocol = objc_getProtocol(objcMangledName))
return ProtocolDescriptorRef::forObjC(protocol);
}
#endif
return ProtocolDescriptorRef();
}
BuiltProtocolDecl createObjCProtocolDecl(
const std::string &mangledName) const {
#if SWIFT_OBJC_INTEROP
return ProtocolDescriptorRef::forObjC(
objc_getProtocol(mangledName.c_str()));
#else
return ProtocolDescriptorRef();
#endif
}
TypeLookupErrorOr<BuiltType>
createObjCClassType(const std::string &mangledName) const {
#if SWIFT_OBJC_INTEROP
auto objcClass = objc_getClass(mangledName.c_str());
return BuiltType(
swift_getObjCClassMetadata((const ClassMetadata *)objcClass));
#else
return BuiltType();
#endif
}
TypeLookupErrorOr<BuiltType>
createBoundGenericObjCClassType(const std::string &mangledName,
llvm::ArrayRef<BuiltType> args) const {
// Generic arguments of lightweight Objective-C generic classes are not
// reified in the metadata.
return createObjCClassType(mangledName);
}
TypeLookupErrorOr<BuiltType>
createNominalType(BuiltTypeDecl metadataOrTypeDecl, BuiltType parent) const {
// Treat nominal type creation the same way as generic type creation,
// but with no generic arguments at this level.
return createBoundGenericType(metadataOrTypeDecl, { }, parent);
}
TypeLookupErrorOr<BuiltType> createTypeAliasType(BuiltTypeDecl typeAliasDecl,
BuiltType parent) const {
// We can't support sugared types here since we have no way to
// resolve the underlying type of the type alias. However, some
// CF types are mangled as type aliases.
return createNominalType(typeAliasDecl, parent);
}
TypeLookupErrorOr<BuiltType>
createBoundGenericType(BuiltTypeDecl anyTypeDecl,
llvm::ArrayRef<BuiltType> genericArgs,
BuiltType parent) const {
auto typeDecl = dyn_cast<TypeContextDescriptor>(anyTypeDecl);
if (!typeDecl) {
if (auto protocol = dyn_cast<ProtocolDescriptor>(anyTypeDecl))
return BuiltType(_getSimpleProtocolTypeMetadata(protocol));
return BuiltType();
}
if (!parent.isMetadataOrNull()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a bound generic type where "
"the parent type is a pack");
}
// Figure out the various levels of generic parameters we have in
// this type.
llvm::SmallVector<unsigned, 8> genericParamCounts;
llvm::SmallVector<const void *, 8> allGenericArgsVec;
if (auto error = _gatherGenericParameters(typeDecl, genericArgs,
parent.getMetadataOrNull(),
genericParamCounts,
allGenericArgsVec, demangler))
return *error;
// Call the access function.
auto accessFunction = typeDecl->getAccessFunction();
if (!accessFunction) return BuiltType();
return BuiltType(accessFunction(MetadataState::Abstract,
allGenericArgsVec));
}
TypeLookupErrorOr<BuiltType>
createSymbolicExtendedExistentialType(NodePointer shapeNode,
llvm::ArrayRef<BuiltType> genArgs) const {
const ExtendedExistentialTypeShape *shape;
if (shapeNode->getKind() ==
Node::Kind::UniqueExtendedExistentialTypeShapeSymbolicReference) {
shape = reinterpret_cast<const ExtendedExistentialTypeShape *>(
shapeNode->getIndex());
} else if (shapeNode->getKind() ==
Node::Kind::NonUniqueExtendedExistentialTypeShapeSymbolicReference) {
auto nonUniqueShape =
reinterpret_cast<const NonUniqueExtendedExistentialTypeShape *>(
shapeNode->getIndex());
shape = swift_getExtendedExistentialTypeShape(nonUniqueShape);
} else {
return TYPE_LOOKUP_ERROR_FMT("Tried to build an extended existential "
"metatype from an unexpected shape node");
}
auto rawShape =
swift_auth_data_non_address(shape,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
auto genSig = rawShape->getGeneralizationSignature();
// Collect the type arguments; they should all be key arguments.
if (genArgs.size() != genSig.getParams().size())
return TYPE_LOOKUP_ERROR_FMT("Length mismatch building an extended "
"existential metatype");
llvm::SmallVector<const void *, 8> allArgsVec;
// FIXME: variadic-generics
for (auto arg : genArgs)
allArgsVec.push_back(arg.getMetadata());
// Collect any other generic arguments.
auto error = _checkGenericRequirements(
genSig.getParams(), genSig.getRequirements(), allArgsVec,
[genArgs](unsigned depth, unsigned index) -> const Metadata * {
if (depth != 0 || index >= genArgs.size())
return (const Metadata*)nullptr;
// FIXME: variadic generics
return genArgs[index].getMetadata();
},
[genArgs](unsigned fullOrdinal, unsigned keyOrdinal) {
if (fullOrdinal >= genArgs.size())
return (const Metadata*)nullptr;
// FIXME: variadic generics
return genArgs[fullOrdinal].getMetadata();
},
[](const Metadata *type, unsigned index) -> const WitnessTable * {
swift_unreachable("never called");
});
if (error)
return *error;
return BuiltType(
swift_getExtendedExistentialTypeMetadata_unique(shape,
allArgsVec.data()));
}
TypeLookupErrorOr<BuiltType> createBuiltinType(StringRef builtinName,
StringRef mangledName) const {
#define BUILTIN_TYPE(Symbol, _) \
if (mangledName.equals(#Symbol)) \
return BuiltType(&METADATA_SYM(Symbol).base);
#if !SWIFT_STDLIB_ENABLE_VECTOR_TYPES
#define BUILTIN_VECTOR_TYPE(ElementSymbol, ElementName, Width)
#endif
#include "swift/Runtime/BuiltinTypes.def"
return BuiltType();
}
TypeLookupErrorOr<BuiltType>
createMetatypeType(BuiltType instance,
std::optional<Demangle::ImplMetatypeRepresentation> repr =
std::nullopt) const {
if (!instance.isMetadata())
return TYPE_LOOKUP_ERROR_FMT("Tried to build a metatype from a pack");
return BuiltType(swift_getMetatypeMetadata(instance.getMetadata()));
}
TypeLookupErrorOr<BuiltType> createExistentialMetatypeType(
BuiltType instance,
std::optional<Demangle::ImplMetatypeRepresentation> repr =
std::nullopt) const {
if (!instance.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build an existential metatype "
"from a pack");
}
auto *instanceMetadata = instance.getMetadata();
if (instanceMetadata->getKind() != MetadataKind::Existential
&& instanceMetadata->getKind() != MetadataKind::ExistentialMetatype) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build an existential metatype from "
"a type that was neither an existential nor "
"an existential metatype");
}
return BuiltType(swift_getExistentialMetatypeMetadata(instanceMetadata));
}
TypeLookupErrorOr<BuiltType>
createProtocolCompositionType(llvm::ArrayRef<BuiltProtocolDecl> protocols,
BuiltType superclass, bool isClassBound,
bool forRequirement = true) const {
// Determine whether we have a class bound.
ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any;
if (isClassBound || superclass) {
classConstraint = ProtocolClassConstraint::Class;
} else {
for (auto protocol : protocols) {
if (protocol.getClassConstraint() == ProtocolClassConstraint::Class) {
classConstraint = ProtocolClassConstraint::Class;
break;
}
}
}
if (!superclass.isMetadataOrNull()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a protocol composition where "
"the superclass type is a pack");
}
return BuiltType(
swift_getExistentialTypeMetadata(classConstraint,
superclass.getMetadataOrNull(),
protocols.size(), protocols.data()));
}
TypeLookupErrorOr<BuiltType>
createConstrainedExistentialType(
BuiltType base,
llvm::ArrayRef<BuiltRequirement> rs,
llvm::ArrayRef<BuiltInverseRequirement> InverseRequirements) const {
// FIXME: Runtime plumbing.
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createDynamicSelfType(BuiltType selfType) const {
// Free-standing mangled type strings should not contain DynamicSelfType.
return BuiltType();
}
void pushGenericParams(llvm::ArrayRef<std::pair<unsigned, unsigned>> parameterPacks) {}
void popGenericParams() {}
BuiltType
createGenericTypeParameterType(unsigned depth, unsigned index) const {
// Use the callback, when provided.
if (substGenericParameter) {
BuiltType substType(substGenericParameter(depth, index));
// If we're in the middle of a pack expansion, return the correct element
// from the substituted pack type.
if (!ActivePackExpansions.empty()) {
size_t index = ActivePackExpansions.back().second;
if (substType.isMetadataPack()) {
auto substPack = substType.getMetadataPack();
if (index >= substPack.getNumElements()) {
swift::fatalError(0, "Pack index %zu exceeds pack length %zu\n",
index, substPack.getNumElements());
}
return BuiltType(substPack.getElements()[index]);
}
}
return substType;
}
return BuiltType();
}
TypeLookupErrorOr<BuiltType>
createFunctionType(
llvm::ArrayRef<Demangle::FunctionParam<BuiltType>> params,
BuiltType result, FunctionTypeFlags flags,
ExtendedFunctionTypeFlags extFlags,
FunctionMetadataDifferentiabilityKind diffKind,
BuiltType globalActorType, BuiltType thrownError) const {
assert(
(flags.isDifferentiable() && diffKind.isDifferentiable()) ||
(!flags.isDifferentiable() && !diffKind.isDifferentiable()));
if (!result.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a function type where "
"the result type is a pack");
}
llvm::SmallVector<const Metadata *, 8> paramTypes;
llvm::SmallVector<uint32_t, 8> paramFlags;
// Fill in the parameters.
paramTypes.reserve(params.size());
if (flags.hasParameterFlags())
paramFlags.reserve(params.size());
for (const auto ¶m : params) {
if (!param.getType().isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a function type where "
"a parameter type is a pack");
}
paramTypes.push_back(param.getType().getMetadata());
if (flags.hasParameterFlags())
paramFlags.push_back(param.getFlags().getIntValue());
}
if (globalActorType) {
if (!globalActorType.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a function type where "
"the global actor type is a pack");
}
flags = flags.withGlobalActor(true);
}
return BuiltType(
swift_getExtendedFunctionTypeMetadata(
flags, diffKind, paramTypes.data(),
flags.hasParameterFlags() ? paramFlags.data() : nullptr,
result.getMetadata(), globalActorType.getMetadataOrNull(), extFlags,
thrownError.getMetadataOrNull()));
}
TypeLookupErrorOr<BuiltType> createImplFunctionType(
Demangle::ImplParameterConvention calleeConvention,
llvm::ArrayRef<Demangle::ImplFunctionParam<BuiltType>> params,
llvm::ArrayRef<Demangle::ImplFunctionResult<BuiltType>> results,
std::optional<Demangle::ImplFunctionResult<BuiltType>> errorResult,
ImplFunctionTypeFlags flags) {
// We can't realize the metadata for a SILFunctionType.
return BuiltType();
}
TypeLookupErrorOr<BuiltType>
createTupleType(llvm::ArrayRef<BuiltType> elements,
llvm::ArrayRef<StringRef> labels) const {
// Unwrap unlabeled one-element tuples.
//
// FIXME: The behavior of one-element labeled tuples is inconsistent
// throughout the different re-implementations of type substitution
// and pack expansion.
if (elements.size() == 1 && labels[0].empty())
return elements[0];
for (auto element : elements) {
if (!element.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a tuple type where "
"an element type is a pack");
}
}
std::string labelStr;
for (unsigned i : indices(labels)) {
auto label = labels[i];
if (label.empty()) {
if (!labelStr.empty())
labelStr += ' ';
continue;
}
// Add spaces to terminate all the previous labels if this
// is the first we've seen.
if (labelStr.empty()) labelStr.append(i, ' ');
// Add the label and its terminator.
labelStr += label;
labelStr += ' ';
}
auto flags = TupleTypeFlags().withNumElements(elements.size());
if (!labelStr.empty())
flags = flags.withNonConstantLabels(true);
return BuiltType(
swift_getTupleTypeMetadata(
MetadataState::Abstract, flags,
reinterpret_cast<const Metadata * const *>(elements.data()),
labelStr.empty() ? nullptr : labelStr.c_str(),
/*proposedWitnesses=*/nullptr));
}
TypeLookupErrorOr<BuiltType>
createPackType(llvm::ArrayRef<BuiltType> elements) const {
for (auto element : elements) {
if (!element.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Can't have nested metadata packs");
}
}
MetadataPackPointer pack(swift_allocateMetadataPack(
reinterpret_cast<const Metadata * const *>(elements.data()),
elements.size()));
return BuiltType(pack);
}
TypeLookupErrorOr<BuiltType>
createSILPackType(llvm::ArrayRef<BuiltType> elements, bool isElementAddress) const {
return TYPE_LOOKUP_ERROR_FMT("Lowered SILPackType cannot be demangled");
}
size_t beginPackExpansion(BuiltType countType) {
if (!countType.isMetadataPack()) {
swift::fatalError(0, "Pack expansion count type should be a pack\n");
}
auto pack = countType.getMetadataPack();
ActivePackExpansions.emplace_back(pack, /*index=*/0);
return pack.getNumElements();
}
void advancePackExpansion(size_t index) {
if (ActivePackExpansions.empty()) {
swift::fatalError(0, "advancePackExpansion() without beginPackExpansion()\n");
}
ActivePackExpansions.back().second = index;
}
BuiltType createExpandedPackElement(BuiltType patternType) {
return patternType;
}
void endPackExpansion() {
if (ActivePackExpansions.empty()) {
swift::fatalError(0, "endPackExpansion() without beginPackExpansion()\n");
}
ActivePackExpansions.pop_back();
}
TypeLookupErrorOr<BuiltType> createDependentMemberType(StringRef name,
BuiltType base) const {
return TYPE_LOOKUP_ERROR_FMT("Unbound dependent member type cannot be demangled");
}
TypeLookupErrorOr<BuiltType>
createDependentMemberType(StringRef name, BuiltType base,
BuiltProtocolDecl protocol) const {
#if SWIFT_OBJC_INTEROP
if (protocol.isObjC())
return BuiltType();
#endif
auto swiftProtocol = protocol.getSwiftProtocol();
// Look for the named associated type within the protocol.
auto assocType = findAssociatedTypeByName(swiftProtocol, name);
if (!assocType) return BuiltType();
auto projectDependentMemberType = [&](const Metadata *baseMetadata) -> const Metadata * {
auto witnessTable = swift_conformsToProtocolCommon(baseMetadata, swiftProtocol);
if (!witnessTable)
return nullptr;
// Call the associated type access function.
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
auto tbl = reinterpret_cast<RelativeWitnessTable *>(
const_cast<WitnessTable *>(witnessTable));
return swift_getAssociatedTypeWitnessRelative(
MetadataState::Abstract,
tbl,
baseMetadata,
swiftProtocol->getRequirementBaseDescriptor(),
*assocType).Value;
#else
return swift_getAssociatedTypeWitness(
MetadataState::Abstract,
const_cast<WitnessTable *>(witnessTable),
baseMetadata,
swiftProtocol->getRequirementBaseDescriptor(),
*assocType).Value;
#endif
};
if (base.isMetadata()) {
return BuiltType(projectDependentMemberType(base.getMetadata()));
} else {
MetadataPackPointer basePack = base.getMetadataPack();
llvm::SmallVector<const Metadata *, 4> packElts;
for (size_t i = 0, e = basePack.getNumElements(); i < e; ++i) {
auto *projectedElt = projectDependentMemberType(basePack.getElements()[i]);
packElts.push_back(projectedElt);
}
return BuiltType(swift_allocateMetadataPack(packElts.data(), packElts.size()));
}
}
#define REF_STORAGE(Name, ...) \
TypeLookupErrorOr<BuiltType> create##Name##StorageType(BuiltType base) { \
ReferenceOwnership.set##Name(); \
return base; \
}
#include "swift/AST/ReferenceStorage.def"
TypeLookupErrorOr<BuiltType> createSILBoxType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
struct BuiltSILBoxField {
BuiltType Type;
bool Mutable;
BuiltSILBoxField(BuiltType type, bool isMutable)
: Type(type), Mutable(isMutable) {}
};
BuiltLayoutConstraint getLayoutConstraint(LayoutConstraintKind kind) {
return {};
}
BuiltLayoutConstraint
getLayoutConstraintWithSizeAlign(LayoutConstraintKind kind, unsigned size,
unsigned alignment) {
return {};
}
BuiltInverseRequirement createInverseRequirement(
BuiltType subjectType, InvertibleProtocolKind kind) {
return BuiltInverseRequirement{subjectType, kind};
}
TypeLookupErrorOr<BuiltType> createSILBoxTypeWithLayout(
llvm::ArrayRef<BuiltSILBoxField> Fields,
llvm::ArrayRef<BuiltSubstitution> Substitutions,
llvm::ArrayRef<BuiltRequirement> Requirements,
llvm::ArrayRef<BuiltInverseRequirement> InverseRequirements) const {
// FIXME: Implement.
return BuiltType();
}
bool isExistential(BuiltType) {
// FIXME: Implement.
return true;
}
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
TypeLookupErrorOr<BuiltType> createOptionalType(BuiltType base) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createArrayType(BuiltType base) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createDictionaryType(BuiltType key,
BuiltType value) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createParenType(BuiltType base) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
};
}
SWIFT_CC(swift)
static TypeLookupErrorOr<TypeInfo>
swift_getTypeByMangledNodeImpl(MetadataRequest request, Demangler &demangler,
Demangle::NodePointer node,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
// Simply call an accessor function if that's all we got.
if (node->getKind() == Node::Kind::AccessorFunctionReference) {
// The accessor function is passed the pointer to the original argument
// buffer. It's assumed to match the generic context.
auto accessorFn =
(const Metadata *(*)(const void * const *))node->getIndex();
auto type = accessorFn(origArgumentVector);
// We don't call checkMetadataState here since the result may not really
// *be* type metadata. If the accessor returns a type, it is responsible
// for completing the metadata.
return TypeInfo{MetadataResponse{type, MetadataState::Complete},
TypeReferenceOwnership()};
}
// TODO: propagate the request down to the builder instead of calling
// swift_checkMetadataState after the fact.
DecodedMetadataBuilder builder(demangler, substGenericParam,
substWitnessTable);
auto type = Demangle::decodeMangledType(builder, node);
if (type.isError()) {
return *type.getError();
}
if (!type.getType()) {
return TypeLookupError("NULL type but no error provided");
}
if (!type.getType().isMetadata()) {
return TypeLookupError("Cannot demangle a free-standing pack");
}
return TypeInfo{swift_checkMetadataState(request,
type.getType().getMetadata()),
builder.getReferenceOwnership()};
}
SWIFT_CC(swift)
static TypeLookupErrorOr<TypeInfo>
swift_getTypeByMangledNameImpl(MetadataRequest request, StringRef typeName,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
NodePointer node;
// Check whether this is the convenience syntax "ModuleName.ClassName".
auto getDotPosForConvenienceSyntax = [&]() -> size_t {
size_t dotPos = llvm::StringRef::npos;
for (unsigned i = 0; i < typeName.size(); ++i) {
// Should only contain one dot.
if (typeName[i] == '.') {
if (dotPos == llvm::StringRef::npos) {
dotPos = i;
continue;
} else {
return llvm::StringRef::npos;
}
}
// Should not contain symbolic references.
if ((unsigned char)typeName[i] <= '\x1F') {
return llvm::StringRef::npos;
}
}
return dotPos;
};
auto dotPos = getDotPosForConvenienceSyntax();
if (dotPos != llvm::StringRef::npos) {
// Form a demangle tree for this class.
NodePointer classNode = demangler.createNode(Node::Kind::Class);
NodePointer moduleNode = demangler.createNode(Node::Kind::Module,
typeName.substr(0, dotPos));
NodePointer nameNode = demangler.createNode(Node::Kind::Identifier,
typeName.substr(dotPos + 1));
classNode->addChild(moduleNode, demangler);
classNode->addChild(nameNode, demangler);
node = classNode;
} else {
// Demangle the type name.
node = demangler.demangleTypeRef(typeName);
if (!node) {
return TypeInfo();
}
}
return swift_getTypeByMangledNode(request, demangler, node,
origArgumentVector,
substGenericParam, substWitnessTable);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInEnvironment(
const char *typeNameStart,
size_t typeNameLength,
const TargetGenericEnvironment<InProcess> *environment,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(environment, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
MetadataState::Complete, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInEnvironmentInMetadataState(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const TargetGenericEnvironment<InProcess> *environment,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(environment, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
(MetadataState)metadataState, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
static
const Metadata * _Nullable
swift_getTypeByMangledNameInContextImpl(
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(context, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
MetadataState::Complete, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContext2(
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
context = swift_auth_data_non_address(
context, SpecialPointerAuthDiscriminators::ContextDescriptor);
return swift_getTypeByMangledNameInContextImpl(typeNameStart, typeNameLength,
context, genericArgs);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContext(
const char *typeNameStart,
size_t typeNameLength,
const void *context,
const void * const *genericArgs) {
// This call takes `context` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getTypeByMangledNameInContextImpl.
return swift_getTypeByMangledNameInContextImpl(
typeNameStart, typeNameLength,
static_cast<const TargetContextDescriptor<InProcess> *>(context),
genericArgs);
}
static
const Metadata * _Nullable
swift_getTypeByMangledNameInContextInMetadataStateImpl(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(context, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
(MetadataState)metadataState, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContextInMetadataState2(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
context = swift_auth_data_non_address(
context, SpecialPointerAuthDiscriminators::ContextDescriptor);
return swift_getTypeByMangledNameInContextInMetadataStateImpl(
metadataState, typeNameStart, typeNameLength, context, genericArgs);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContextInMetadataState(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const void *context,
const void * const *genericArgs) {
// This call takes `descriptor` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getTypeByMangledNameInContextInMetadataState2.
return swift_getTypeByMangledNameInContextInMetadataStateImpl(
metadataState, typeNameStart, typeNameLength,
static_cast<const TargetContextDescriptor<InProcess> *>(context),
genericArgs);
}
/// Demangle a mangled name, but don't allow symbolic references.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const Metadata *_Nullable
swift_stdlib_getTypeByMangledNameUntrusted(const char *typeNameStart,
size_t typeNameLength) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
for (char c : typeName) {
if (c >= '\x01' && c <= '\x1F')
return nullptr;
}
return swift_getTypeByMangledName(MetadataState::Complete, typeName, nullptr,
{}, {}).getType().getMetadata();
}
TypeLookupErrorOr<MetadataPackPointer>
swift::getTypePackByMangledName(StringRef typeName,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
NodePointer node = demangler.demangleTypeRef(typeName);
if (!node)
return TypeLookupError("Demangling failed");
DecodedMetadataBuilder builder(demangler, substGenericParam,
substWitnessTable);
auto type = Demangle::decodeMangledType(builder, node);
if (type.isError()) {
return *type.getError();
}
if (!type.getType()) {
return TypeLookupError("NULL type but no error provided");
}
if (!type.getType().isMetadataPack()) {
return TypeLookupError("This entry point is only for packs");
}
return type.getType().getMetadataPack();
}
// ==== Function metadata functions ----------------------------------------------
static std::optional<llvm::StringRef> cstrToStringRef(const char *typeNameStart,
size_t typeNameLength) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
for (char c : typeName) {
if (c >= '\x01' && c <= '\x1F')
return std::nullopt;
}
return typeName;
}
/// Given mangling for a method, extract its function type in demangled
/// representation.
static NodePointer extractFunctionTypeFromMethod(Demangler &demangler,
const char *typeNameStart,
size_t typeNameLength) {
std::optional<llvm::StringRef> typeName =
cstrToStringRef(typeNameStart, typeNameLength);
if (!typeName)
return nullptr;
auto node = demangler.demangleSymbol(*typeName);
if (!node)
return nullptr;
node = node->findByKind(Node::Kind::Function, /*maxDepth=*/2);
if (!node)
return nullptr;
node = node->findByKind(Node::Kind::Type, /*maxDepth=*/2);
if (!node)
return nullptr;
// If this is a generic function, it requires special handling.
if (auto genericType =
node->findByKind(Node::Kind::DependentGenericType, /*maxDepth=*/1)) {
node = genericType->findByKind(Node::Kind::Type, /*maxDepth=*/1);
return node->findByKind(Node::Kind::FunctionType, /*maxDepth=*/1);
}
auto funcType = node->getFirstChild();
assert(funcType->getKind() == Node::Kind::FunctionType);
return funcType;
}
/// For a single unlabeled parameter this function returns whole
/// `ArgumentTuple`, for everything else a `Tuple` element inside it.
static NodePointer getParameterList(NodePointer funcType) {
assert(funcType->getKind() == Node::Kind::FunctionType);
auto parameterContainer =
funcType->findByKind(Node::Kind::ArgumentTuple, /*maxDepth=*/1);
assert(parameterContainer->getNumChildren() > 0);
// This is a type that covers entire parameter list.
auto parameterList = parameterContainer->getFirstChild();
assert(parameterList->getKind() == Node::Kind::Type);
auto parameters = parameterList->getFirstChild();
if (parameters->getKind() == Node::Kind::Tuple)
return parameters;
return parameterContainer;
}
static const Metadata *decodeType(TypeDecoder<DecodedMetadataBuilder> &decoder,
NodePointer type) {
assert(type->getKind() == Node::Kind::Type);
auto builtTypeOrError = decoder.decodeMangledType(type);
if (builtTypeOrError.isError()) {
auto err = builtTypeOrError.getError();
char *errStr = err->copyErrorString();
err->freeErrorString(errStr);
return nullptr;
}
if (!builtTypeOrError.getType().isMetadata())
return nullptr;
return builtTypeOrError.getType().getMetadata();
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
unsigned swift_func_getParameterCount(const char *typeNameStart,
size_t typeNameLength) {
StackAllocatedDemangler<1024> demangler;
auto funcType =
extractFunctionTypeFromMethod(demangler, typeNameStart, typeNameLength);
if (!funcType)
return -1;
auto parameterList = getParameterList(funcType);
return parameterList->getNumChildren();
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
const Metadata *_Nullable
swift_func_getReturnTypeInfo(const char *typeNameStart, size_t typeNameLength,
GenericEnvironmentDescriptor *genericEnv,
const void * const *genericArguments) {
StackAllocatedDemangler<1024> demangler;
auto *funcType =
extractFunctionTypeFromMethod(demangler, typeNameStart, typeNameLength);
if (!funcType)
return nullptr;
auto resultType = funcType->getLastChild();
if (!resultType)
return nullptr;
assert(resultType->getKind() == Node::Kind::ReturnType);
SubstGenericParametersFromMetadata substFn(genericEnv, genericArguments);
DecodedMetadataBuilder builder(
demangler,
/*substGenericParam=*/
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
/*SubstDependentWitnessTableFn=*/
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
TypeDecoder<DecodedMetadataBuilder> decoder(builder);
return decodeType(decoder, resultType->getFirstChild());
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
unsigned
swift_func_getParameterTypeInfo(
const char *typeNameStart, size_t typeNameLength,
GenericEnvironmentDescriptor *genericEnv,
const void * const *genericArguments,
Metadata const **types, unsigned typesLength) {
if (typesLength < 0) return -1;
StackAllocatedDemangler<1024> demangler;
auto *funcType =
extractFunctionTypeFromMethod(demangler, typeNameStart, typeNameLength);
if (!funcType)
return -1;
auto parameterList = getParameterList(funcType);
// Only successfully return if the expected parameter count is the same
// as space prepared for it in the buffer.
if (!(parameterList && parameterList->getNumChildren() == typesLength))
return -2;
SubstGenericParametersFromMetadata substFn(genericEnv, genericArguments);
DecodedMetadataBuilder builder(
demangler,
/*substGenericParam=*/
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
/*SubstDependentWitnessTableFn=*/
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
TypeDecoder<DecodedMetadataBuilder> decoder(builder);
// for each parameter (TupleElement), store it into the provided buffer
for (unsigned index = 0; index != typesLength; ++index) {
auto *parameter = parameterList->getChild(index);
if (parameter->getKind() == Node::Kind::TupleElement) {
assert(parameter->getNumChildren() == 1);
parameter = parameter->getFirstChild();
}
assert(parameter->getKind() == Node::Kind::Type);
auto type = decodeType(decoder, parameter);
if (!type)
return -3; // Failed to decode a type.
types[index] = type;
} // end foreach parameter
return typesLength;
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
BufferAndSize
swift_distributed_getWitnessTables(GenericEnvironmentDescriptor *genericEnv,
const void *const *genericArguments) {
assert(genericEnv);
assert(genericArguments);
llvm::SmallVector<const void *, 4> witnessTables;
SubstGenericParametersFromMetadata substFn(genericEnv, genericArguments);
auto error = _checkGenericRequirements(
genericEnv->getGenericParameters(),
genericEnv->getGenericRequirements(), witnessTables,
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
[&substFn](unsigned fullOrdinal, unsigned keyOrdinal) {
return substFn.getMetadataKeyArgOrdinal(keyOrdinal).Ptr;
},
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
if (error) {
return {/*ptr=*/nullptr, -1};
}
if (witnessTables.empty())
return {/*ptr=*/nullptr, 0};
void **tables = (void **)malloc(witnessTables.size() * sizeof(void *));
for (unsigned i = 0, n = witnessTables.size(); i != n; ++i)
tables[i] = const_cast<void *>(witnessTables[i]);
return {tables, static_cast<intptr_t>(witnessTables.size())};
}
// ==== End of Function metadata functions ---------------------------------------
static
MetadataResponse
swift_getOpaqueTypeMetadataImpl(MetadataRequest request,
const void * const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
auto mangledName = descriptor->getUnderlyingTypeArgument(index);
SubstGenericParametersFromMetadata substitutions(descriptor, arguments);
return swift_getTypeByMangledName(request.getState(),
mangledName, arguments,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType().getResponse();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
MetadataResponse
swift_getOpaqueTypeMetadata2(MetadataRequest request,
const void * const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
descriptor = swift_auth_data_non_address(
descriptor, SpecialPointerAuthDiscriminators::OpaqueTypeDescriptor);
return swift_getOpaqueTypeMetadataImpl(request, arguments, descriptor, index);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
MetadataResponse
swift_getOpaqueTypeMetadata(MetadataRequest request,
const void * const *arguments,
const void *descriptor,
unsigned index) {
// This call takes `descriptor` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getOpaqueTypeMetadataImpl.
return swift_getOpaqueTypeMetadataImpl(
request, arguments, static_cast<const OpaqueTypeDescriptor *>(descriptor),
index);
}
static const WitnessTable *
swift_getOpaqueTypeConformanceImpl(const void *const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
auto response = swift_getOpaqueTypeMetadataImpl(
MetadataRequest(MetadataState::Complete), arguments, descriptor, index);
return (const WitnessTable *)response.Value;
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const WitnessTable *
swift_getOpaqueTypeConformance2(const void * const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
descriptor = swift_auth_data_non_address(
descriptor, SpecialPointerAuthDiscriminators::OpaqueTypeDescriptor);
return swift_getOpaqueTypeConformanceImpl(arguments, descriptor, index);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const WitnessTable *
swift_getOpaqueTypeConformance(const void * const *arguments,
const void *descriptor,
unsigned index) {
// This call takes `descriptor` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getOpaqueTypeConformanceImpl.
return swift_getOpaqueTypeConformanceImpl(
arguments, static_cast<const OpaqueTypeDescriptor *>(descriptor), index);
}
SWIFT_RUNTIME_STDLIB_SPI
SWIFT_CC(swift)
const Metadata *swift::_swift_instantiateCheckedGenericMetadata(
const TypeContextDescriptor *context,
const void * const *genericArgs,
size_t genericArgsSize) {
context = swift_auth_data_non_address(
context, SpecialPointerAuthDiscriminators::ContextDescriptor);
if (!context->isGeneric()) {
return nullptr;
}
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
// _instantiateCheckedGenericMetadata expects generic args to NOT begin with
// shape classes.
llvm::ArrayRef<const void *> genericArgsRef(genericArgs, genericArgsSize);
llvm::SmallVector<MetadataOrPack, 8> writtenGenericArgs;
// If we fail to fill in all of the generic parameters, just fail.
if (!_gatherWrittenGenericParameters(context, genericArgsRef,
writtenGenericArgs, demangler)) {
return nullptr;
}
llvm::SmallVector<unsigned, 8> genericParamCounts;
llvm::SmallVector<const void *, 8> allGenericArgs;
auto result = _gatherGenericParameters(context, writtenGenericArgs,
/* parent */ nullptr,
genericParamCounts, allGenericArgs,
demangler);
// _gatherGenericParameters returns std::nullopt on success.
if (result.has_value()) {
return nullptr;
}
auto accessFunction = context->getAccessFunction();
return accessFunction(MetadataState::Complete, allGenericArgs).Value;
}
#if SWIFT_OBJC_INTEROP
// Return the ObjC class for the given type name.
// This gets installed as a callback from libobjc.
static bool validateObjCMangledName(const char *_Nonnull typeName) {
// Accept names with a mangling prefix.
if (getManglingPrefixLength(typeName))
return true;
// Accept names that start with a digit (unprefixed mangled names).
if (isdigit(typeName[0]))
return true;
// Accept names that contain a dot.
if (strchr(typeName, '.'))
return true;
// Reject anything else.
return false;
}
// FIXME: delete this #if and dlsym once we don't
// need to build with older libobjc headers
#if !OBJC_GETCLASSHOOK_DEFINED
using objc_hook_getClass = BOOL(*)(const char * _Nonnull name,
Class _Nullable * _Nonnull outClass);
#endif
static objc_hook_getClass OldGetClassHook;
static BOOL
getObjCClassByMangledName(const char * _Nonnull typeName,
Class _Nullable * _Nonnull outClass) {
// Demangle old-style class and protocol names, which are still used in the
// ObjC metadata.
StringRef typeStr(typeName);
const Metadata *metadata = nullptr;
if (typeStr.starts_with("_Tt")) {
Demangler demangler;
auto node = demangler.demangleSymbol(typeName);
if (!node)
return NO;
// If we successfully demangled but there is a suffix, then we did NOT use
// the entire name, and this is NOT a match. Reject it.
if (node->hasChildren() &&
node->getLastChild()->getKind() == Node::Kind::Suffix)
return NO;
metadata = swift_getTypeByMangledNode(
MetadataState::Complete, demangler, node,
nullptr,
/* no substitutions */
[&](unsigned depth, unsigned index) { return nullptr; },
[&](const Metadata *type, unsigned index) { return nullptr; }
).getType().getMetadata();
} else {
if (validateObjCMangledName(typeName))
metadata = swift_stdlib_getTypeByMangledNameUntrusted(typeStr.data(),
typeStr.size());
}
if (metadata) {
auto objcClass =
reinterpret_cast<Class>(
const_cast<ClassMetadata *>(
swift_getObjCClassFromMetadataConditional(metadata)));
if (objcClass) {
*outClass = objcClass;
return YES;
}
}
return OldGetClassHook(typeName, outClass);
}
__attribute__((constructor))
static void installGetClassHook() {
if (SWIFT_RUNTIME_WEAK_CHECK(objc_setHook_getClass)) {
SWIFT_RUNTIME_WEAK_USE(objc_setHook_getClass(getObjCClassByMangledName, &OldGetClassHook));
}
}
#endif
unsigned SubstGenericParametersFromMetadata::
buildDescriptorPath(const ContextDescriptor *context,
Demangler &borrowFrom) const {
assert(sourceKind == SourceKind::Metadata);
// Terminating condition: we don't have a context.
if (!context)
return 0;
DemanglerForRuntimeTypeResolution<> demangler;
demangler.providePreallocatedMemory(borrowFrom);
if (auto extension = _findExtendedTypeContextDescriptor(context, demangler)) {
// If we have a nominal type extension descriptor, extract the extended type
// and use that. If the extension is not nominal, then we can use the
// extension's own signature.
context = extension;
}
// Add the parent's contribution to the descriptor path.
const ContextDescriptor *parent = context->Parent.get();
unsigned numKeyGenericParamsInParent = buildDescriptorPath(parent, demangler);
// If this context is non-generic, we're done.
if (!context->isGeneric())
return numKeyGenericParamsInParent;
// Count the number of key generic params at this level.
auto allGenericParams = baseContext->getGenericContext()->getGenericParams();
unsigned parentCount = parent->getNumGenericParams();
unsigned localCount = context->getNumGenericParams();
auto localGenericParams = allGenericParams.slice(parentCount,
localCount - parentCount);
unsigned numKeyGenericParamsHere = 0;
bool hasNonKeyGenericParams = false;
for (const auto &genericParam : localGenericParams) {
if (genericParam.hasKeyArgument())
++numKeyGenericParamsHere;
else
hasNonKeyGenericParams = true;
}
// Form the path element if there are any new generic parameters.
if (localCount > parentCount)
descriptorPath.push_back(PathElement{localGenericParams,
context->getNumGenericParams(),
numKeyGenericParamsInParent,
numKeyGenericParamsHere,
hasNonKeyGenericParams});
return numKeyGenericParamsInParent + numKeyGenericParamsHere;
}
/// Builds a path from the generic environment.
unsigned SubstGenericParametersFromMetadata::
buildEnvironmentPath(
const TargetGenericEnvironment<InProcess> *environment) const {
unsigned totalParamCount = 0;
unsigned totalKeyParamCount = 0;
auto genericParams = environment->getGenericParameters();
for (unsigned numLocalParams : environment->getGenericParameterCounts()) {
// Adjust totalParamCount so we have the # of local parameters.
numLocalParams -= totalParamCount;
// Get the local generic parameters.
auto localGenericParams = genericParams.slice(0, numLocalParams);
genericParams = genericParams.slice(numLocalParams);
// Count the parameters.
unsigned numKeyGenericParamsInParent = totalKeyParamCount;
unsigned numKeyGenericParamsHere = 0;
bool hasNonKeyGenericParams = false;
for (const auto &genericParam : localGenericParams) {
if (genericParam.hasKeyArgument())
++numKeyGenericParamsHere;
else
hasNonKeyGenericParams = true;
}
// Update totals.
totalParamCount += numLocalParams;
totalKeyParamCount += numKeyGenericParamsHere;
// Add to the descriptor path.
descriptorPath.push_back(PathElement{localGenericParams,
totalParamCount,
numKeyGenericParamsInParent,
numKeyGenericParamsHere,
hasNonKeyGenericParams});
}
return totalKeyParamCount;
}
unsigned SubstGenericParametersFromMetadata::buildShapePath(
const TargetExtendedExistentialTypeShape<InProcess> *shape) const {
unsigned totalParamCount = 0;
auto genSig = shape->getGeneralizationSignature();
if (!genSig.getParams().empty()) {
totalParamCount += genSig.getParams().size();
descriptorPath.push_back(PathElement{genSig.getParams(),
totalParamCount,
/*numKeyGenericParamsInParent*/ 0,
(unsigned)genSig.getParams().size(),
/*hasNonKeyGenericParams*/ false});
}
const unsigned genSigParamCount = genSig.getParams().size();
auto reqSig = shape->getRequirementSignature();
assert(reqSig.getParams().size() > genSig.getParams().size());
{
auto remainingParams = reqSig.getParams().drop_front(genSig.getParams().size());
totalParamCount += remainingParams.size();
descriptorPath.push_back(PathElement{remainingParams,
totalParamCount,
genSigParamCount,
(unsigned)remainingParams.size(),
/*hasNonKeyGenericParams*/ false});
}
// All parameters in this signature are key parameters.
return totalParamCount;
}
void SubstGenericParametersFromMetadata::setup() const {
if (!descriptorPath.empty())
return;
switch (sourceKind) {
case SourceKind::Metadata: {
assert(baseContext);
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
numKeyGenericParameters = buildDescriptorPath(baseContext, demangler);
if (auto *genericCtx = baseContext->getGenericContext())
numShapeClasses = genericCtx->getGenericPackShapeHeader().NumShapeClasses;
return;
}
case SourceKind::Environment: {
assert(environment);
numKeyGenericParameters = buildEnvironmentPath(environment);
// FIXME: Variadic generics
return;
}
case SourceKind::Shape: {
assert(shape);
numKeyGenericParameters = buildShapePath(shape);
// FIXME: Variadic generics
return;
}
}
}
MetadataOrPack
SubstGenericParametersFromMetadata::getMetadata(
unsigned depth, unsigned index) const {
// Don't attempt anything if we have no generic parameters.
if (genericArgs == nullptr)
return MetadataOrPack();
// On first access, compute the descriptor path.
setup();
// If the depth is too great, there is nothing to do.
if (depth >= descriptorPath.size())
return MetadataOrPack();
/// Retrieve the descriptor path element at this depth.
auto &pathElement = descriptorPath[depth];
// Check whether the index is clearly out of bounds.
if (index >= pathElement.numTotalGenericParams)
return MetadataOrPack();
// Compute the flat index.
unsigned flatIndex = pathElement.numKeyGenericParamsInParent + numShapeClasses;
if (pathElement.hasNonKeyGenericParams > 0) {
// We have non-key generic parameters at this level, so the index needs to
// be checked more carefully.
auto genericParams = pathElement.localGenericParams;
// Make sure that the requested parameter itself has a key argument.
if (!genericParams[index].hasKeyArgument())
return MetadataOrPack();
// Increase the flat index for each parameter with a key argument, up to
// the given index.
for (const auto &genericParam : genericParams.slice(0, index)) {
if (genericParam.hasKeyArgument())
++flatIndex;
}
} else {
flatIndex += index;
}
return MetadataOrPack(genericArgs[flatIndex]);
}
MetadataOrPack SubstGenericParametersFromMetadata::getMetadataKeyArgOrdinal(
unsigned ordinal) const {
// Don't attempt anything if we have no generic parameters.
if (genericArgs == nullptr)
return MetadataOrPack();
// On first access, compute the descriptor path.
setup();
return MetadataOrPack(genericArgs[numShapeClasses + ordinal]);
}
const WitnessTable *
SubstGenericParametersFromMetadata::getWitnessTable(const Metadata *type,
unsigned index) const {
// Don't attempt anything if we have no generic parameters.
if (genericArgs == nullptr)
return nullptr;
// On first access, compute the descriptor path.
setup();
return (const WitnessTable *)genericArgs[
index + numKeyGenericParameters + numShapeClasses];
}
MetadataOrPack SubstGenericParametersFromWrittenArgs::getMetadata(
unsigned depth, unsigned index) const {
if (auto flatIndex =
_depthIndexToFlatIndex(depth, index, genericParamCounts)) {
if (*flatIndex < allGenericArgs.size()) {
return MetadataOrPack(allGenericArgs[*flatIndex]);
}
}
return MetadataOrPack();
}
MetadataOrPack SubstGenericParametersFromWrittenArgs::getMetadataFullOrdinal(
unsigned ordinal) const {
if (ordinal < allGenericArgs.size()) {
return MetadataOrPack(allGenericArgs[ordinal]);
}
return MetadataOrPack();
}
const WitnessTable *
SubstGenericParametersFromWrittenArgs::getWitnessTable(const Metadata *type,
unsigned index) const {
return nullptr;
}
/// Demangle the given type name to a generic parameter reference, which
/// will be returned as (depth, index).
static std::optional<std::pair<unsigned, unsigned>>
demangleToGenericParamRef(StringRef typeName) {
StackAllocatedDemangler<1024> demangler;
NodePointer node = demangler.demangleType(typeName);
if (!node)
return std::nullopt;
// Find the flat index that the right-hand side refers to.
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
if (node->getKind() != Demangle::Node::Kind::DependentGenericParamType)
return std::nullopt;
return std::pair<unsigned, unsigned>(node->getChild(0)->getIndex(),
node->getChild(1)->getIndex());
}
bool swift::_gatherWrittenGenericParameters(
const TypeContextDescriptor *descriptor,
llvm::ArrayRef<const void *> keyArgs,
llvm::SmallVectorImpl<MetadataOrPack> &genericArgs,
Demangle::Demangler &Dem) {
if (!descriptor) {
return false;
}
auto genericContext = descriptor->getGenericContext();
// If the type itself is not generic, then we're done.
if (!genericContext) {
return true;
}
unsigned argIndex = 0;
bool missingWrittenArguments = false;
for (auto param : genericContext->getGenericParams()) {
// The type should have a key argument unless it's been same-typed to
// another type.
if (param.hasKeyArgument()) {
genericArgs.push_back(MetadataOrPack(keyArgs[argIndex]));
argIndex += 1;
} else {
// Leave a gap for us to fill in by looking at same-type requirements.
genericArgs.push_back(MetadataOrPack());
missingWrittenArguments = true;
}
assert((param.getKind() == GenericParamKind::Type ||
param.getKind() == GenericParamKind::TypePack) &&
"Unknown generic parameter kind");
}
// If there is no follow-up work to do, we're done.
if (!missingWrittenArguments)
return true;
// We have generic arguments that would be written, but have been
// canonicalized away. Use same-type requirements to reconstitute them.
// Retrieve the mapping information needed for depth/index -> flat index.
llvm::SmallVector<unsigned, 8> genericParamCounts;
(void)_gatherGenericParameterCounts(descriptor, genericParamCounts, Dem);
SubstGenericParametersFromWrittenArgs substitutions(genericArgs,
genericParamCounts);
// Walk through the generic requirements to evaluate same-type
// constraints that are needed to fill in missing generic arguments.
for (const auto &req : genericContext->getGenericRequirements()) {
// We only care about same-type constraints.
if (req.Flags.getKind() != GenericRequirementKind::SameType)
continue;
auto lhsParam = demangleToGenericParamRef(req.getParam());
if (!lhsParam)
continue;
assert(!req.Flags.isPackRequirement() &&
"Pack requirements not supported here yet");
// If we don't yet have an argument for this parameter, it's a
// same-type-to-concrete constraint.
auto lhsFlatIndex =
_depthIndexToFlatIndex(lhsParam->first, lhsParam->second,
genericParamCounts);
if (!lhsFlatIndex || *lhsFlatIndex >= genericArgs.size())
return false;
if (!genericArgs[*lhsFlatIndex]) {
// Substitute into the right-hand side.
auto *genericArg =
swift_getTypeByMangledName(MetadataState::Abstract,
req.getMangledTypeName(),
keyArgs.data(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType().getMetadata();
if (!genericArg)
return false;
genericArgs[*lhsFlatIndex] = MetadataOrPack(genericArg);
continue;
}
// If we do have an argument for this parameter, it might be that
// the right-hand side is itself a generic parameter, which means
// we have a same-type constraint A == B where A is already filled in.
auto rhsParam = demangleToGenericParamRef(req.getMangledTypeName());
// If the rhs parameter is not a generic parameter itself with
// (depth, index), it could potentially be some associated type. If that's
// the case, then we don't need to do anything else for this rhs because it
// won't appear in the key arguments list.
if (!rhsParam) {
continue;
}
auto rhsFlatIndex =
_depthIndexToFlatIndex(rhsParam->first, rhsParam->second,
genericParamCounts);
if (!rhsFlatIndex || *rhsFlatIndex >= genericArgs.size())
return false;
if (genericArgs[*rhsFlatIndex] || !genericArgs[*lhsFlatIndex])
return false;
genericArgs[*rhsFlatIndex] = genericArgs[*lhsFlatIndex];
}
return true;
}
struct InitializeDynamicReplacementLookup {
InitializeDynamicReplacementLookup() {
initializeDynamicReplacementLookup();
}
};
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
static InitializeDynamicReplacementLookup initDynamicReplacements;
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
void DynamicReplacementDescriptor::enableReplacement() const {
// Weakly linked symbols can be zero.
if (replacedFunctionKey.get() == nullptr)
return;
auto *chainRoot = const_cast<DynamicReplacementChainEntry *>(
replacedFunctionKey->root.get());
// Make sure this entry is not already enabled.
// This does not work until we make sure that when a dynamic library is
// unloaded all descriptors are removed.
#if 0
for (auto *curr = chainRoot; curr != nullptr; curr = curr->next) {
if (curr == chainEntry.get()) {
swift::swift_abortDynamicReplacementEnabling();
}
}
#endif
// Unlink the previous entry if we are not chaining.
if (!shouldChain() && chainRoot->next) {
auto *previous = chainRoot->next;
chainRoot->next = previous->next;
//chainRoot->implementationFunction = previous->implementationFunction;
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&chainRoot->implementationFunction),
reinterpret_cast<void *const *>(&previous->implementationFunction),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isAsync(), /*allowNull*/ false);
}
// First populate the current replacement's chain entry.
auto *currentEntry =
const_cast<DynamicReplacementChainEntry *>(chainEntry.get());
// currentEntry->implementationFunction = chainRoot->implementationFunction;
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(¤tEntry->implementationFunction),
reinterpret_cast<void *const *>(&chainRoot->implementationFunction),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isAsync(), /*allowNull*/ false);
currentEntry->next = chainRoot->next;
// Link the replacement entry.
chainRoot->next = chainEntry.get();
// chainRoot->implementationFunction = getReplacementFunction();
swift_ptrauth_init_code_or_data(
reinterpret_cast<void **>(&chainRoot->implementationFunction),
reinterpret_cast<void *>(getReplacementFunction()),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isAsync());
}
void DynamicReplacementDescriptor::disableReplacement() const {
const auto *chainRoot = replacedFunctionKey->root.get();
auto *thisEntry =
const_cast<DynamicReplacementChainEntry *>(chainEntry.get());
// Find the entry previous to this one.
auto *prev = chainRoot;
while (prev && prev->next != thisEntry)
prev = prev->next;
if (!prev) {
swift::swift_abortDynamicReplacementDisabling();
return;
}
// Unlink this entry.
auto *previous = const_cast<DynamicReplacementChainEntry *>(prev);
previous->next = thisEntry->next;
// previous->implementationFunction = thisEntry->implementationFunction;
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&previous->implementationFunction),
reinterpret_cast<void *const *>(&thisEntry->implementationFunction),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isAsync(), /*allowNull*/ false);
}
/// An automatic dynamic replacement entry.
namespace {
class AutomaticDynamicReplacementEntry {
RelativeDirectPointer<DynamicReplacementScope, false> replacementScope;
uint32_t flags;
public:
void enable() const { replacementScope->enable(); }
uint32_t getFlags() { return flags; }
};
/// A list of automatic dynamic replacement scopes.
class AutomaticDynamicReplacements
: private swift::ABI::TrailingObjects<AutomaticDynamicReplacements,
AutomaticDynamicReplacementEntry> {
uint32_t flags;
uint32_t numScopes;
using TrailingObjects =
swift::ABI::TrailingObjects<AutomaticDynamicReplacements,
AutomaticDynamicReplacementEntry>;
friend TrailingObjects;
llvm::ArrayRef<AutomaticDynamicReplacementEntry>
getReplacementEntries() const {
return {
this->template getTrailingObjects<AutomaticDynamicReplacementEntry>(),
numScopes};
}
public:
void enableReplacements() const {
for (auto &replacementEntry : getReplacementEntries())
replacementEntry.enable();
}
uint32_t getNumScopes() const { return numScopes; }
};
/// A map from original to replaced opaque type descriptor of a some type.
class DynamicReplacementSomeDescriptor {
RelativeIndirectablePointer<
const OpaqueTypeDescriptor, false, int32_t,
TargetSignedPointer<InProcess, OpaqueTypeDescriptor *
__ptrauth_swift_type_descriptor>>
originalOpaqueTypeDesc;
RelativeDirectPointer<const OpaqueTypeDescriptor, false>
replacementOpaqueTypeDesc;
public:
void enable(const Mutex &lock) const {
opaqueTypeMappings.get().insert(originalOpaqueTypeDesc.get(),
replacementOpaqueTypeDesc.get(), lock);
}
};
/// A list of dynamic replacements of some types.
class AutomaticDynamicReplacementsSome
: private swift::ABI::TrailingObjects<AutomaticDynamicReplacementsSome,
DynamicReplacementSomeDescriptor> {
uint32_t flags;
uint32_t numEntries;
using TrailingObjects =
swift::ABI::TrailingObjects<AutomaticDynamicReplacementsSome,
DynamicReplacementSomeDescriptor>;
friend TrailingObjects;
llvm::ArrayRef<DynamicReplacementSomeDescriptor>
getReplacementEntries() const {
return {
this->template getTrailingObjects<DynamicReplacementSomeDescriptor>(),
numEntries};
}
public:
void enableReplacements(const Mutex &lock) const {
for (auto &replacementEntry : getReplacementEntries())
replacementEntry.enable(lock);
}
uint32_t getNumEntries() const { return numEntries; }
};
} // anonymous namespace
void swift::addImageDynamicReplacementBlockCallback(
const void *baseAddress,
const void *replacements, uintptr_t replacementsSize,
const void *replacementsSome, uintptr_t replacementsSomeSize) {
auto *automaticReplacements =
reinterpret_cast<const AutomaticDynamicReplacements *>(replacements);
const AutomaticDynamicReplacementsSome *someReplacements = nullptr;
if (replacementsSomeSize) {
someReplacements =
reinterpret_cast<const AutomaticDynamicReplacementsSome *>(
replacementsSome);
}
auto sizeOfCurrentEntry = sizeof(AutomaticDynamicReplacements) +
(automaticReplacements->getNumScopes() *
sizeof(AutomaticDynamicReplacementEntry));
auto sizeOfCurrentSomeEntry =
replacementsSomeSize == 0
? 0
: sizeof(AutomaticDynamicReplacementsSome) +
(someReplacements->getNumEntries() *
sizeof(DynamicReplacementSomeDescriptor));
auto &lock = DynamicReplacementLock.get();
lock.withLock([&] {
auto endOfAutomaticReplacements =
((const char *)automaticReplacements) + replacementsSize;
while (((const char *)automaticReplacements) < endOfAutomaticReplacements) {
automaticReplacements->enableReplacements();
automaticReplacements =
reinterpret_cast<const AutomaticDynamicReplacements *>(
((const char *)automaticReplacements) + sizeOfCurrentEntry);
if ((const char*)automaticReplacements < endOfAutomaticReplacements)
sizeOfCurrentEntry = sizeof(AutomaticDynamicReplacements) +
(automaticReplacements->getNumScopes() *
sizeof(AutomaticDynamicReplacementEntry));
}
if (!replacementsSomeSize)
return;
auto endOfSomeReplacements =
((const char *)someReplacements) + replacementsSomeSize;
while (((const char *)someReplacements) < endOfSomeReplacements) {
someReplacements->enableReplacements(lock);
someReplacements =
reinterpret_cast<const AutomaticDynamicReplacementsSome *>(
((const char *)someReplacements) + sizeOfCurrentSomeEntry);
if ((const char*) someReplacements < endOfSomeReplacements)
sizeOfCurrentSomeEntry = sizeof(AutomaticDynamicReplacementsSome) +
(someReplacements->getNumEntries() *
sizeof(DynamicReplacementSomeDescriptor));
}
});
}
void swift::swift_enableDynamicReplacementScope(
const DynamicReplacementScope *scope) {
scope = swift_auth_data_non_address(
scope, SpecialPointerAuthDiscriminators::DynamicReplacementScope);
DynamicReplacementLock.get().withLock([=] { scope->enable(); });
}
void swift::swift_disableDynamicReplacementScope(
const DynamicReplacementScope *scope) {
scope = swift_auth_data_non_address(
scope, SpecialPointerAuthDiscriminators::DynamicReplacementScope);
DynamicReplacementLock.get().withLock([=] { scope->disable(); });
}
#define OVERRIDE_METADATALOOKUP COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH
|