1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
//===--- Private.h - Private runtime declarations ---------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Private declarations of the Swift runtime.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_PRIVATE_H
#define SWIFT_RUNTIME_PRIVATE_H
#include <functional>
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeLookupError.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Metadata.h"
#include "swift/shims/Visibility.h"
#if defined(__APPLE__) && __has_include(<TargetConditionals.h>)
#include <TargetConditionals.h>
#endif
// Opaque ISAs need to use object_getClass which is in runtime.h
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
#include <objc/runtime.h>
#endif
namespace swift {
class ParsedTypeIdentity;
class TypeReferenceOwnership {
enum : uint8_t {
Weak = 1 << 0,
Unowned = 1 << 1,
Unmanaged = 1 << 2,
};
uint8_t Data;
constexpr TypeReferenceOwnership(uint8_t Data) : Data(Data) {}
public:
constexpr TypeReferenceOwnership() : Data(0) {}
#define REF_STORAGE(Name, ...) \
void set##Name() { Data |= Name; } \
bool is##Name() const { return Data == Name; }
#include "swift/AST/ReferenceStorage.def"
bool isStrong() const { return Data == 0; }
};
/// A struct to return pointer and its size back to Swift
/// as `(UnsafePointer<UInt8>, Int)`.
struct BufferAndSize {
const void *buffer;
intptr_t length; // negative length means error.
};
/// Type information consists of metadata and its ownership info,
/// such information is used by `_typeByMangledName` accessor
/// since we don't represent ownership attributes in the metadata
/// itself related info has to be bundled with it.
class TypeInfo {
MetadataResponse Response;
TypeReferenceOwnership ReferenceOwnership;
public:
TypeInfo()
: Response{nullptr, MetadataState::Abstract}, ReferenceOwnership() {}
TypeInfo(MetadataResponse response, TypeReferenceOwnership ownership)
: Response(response), ReferenceOwnership(ownership) {}
// FIXME: remove this constructor and require a response in all cases.
TypeInfo(const Metadata *type, TypeReferenceOwnership ownership)
: Response{type, MetadataState::Abstract}, ReferenceOwnership(ownership) {}
const Metadata *getMetadata() const { return Response.Value; }
MetadataResponse getResponse() const { return Response; }
operator bool() const { return getMetadata(); }
#define REF_STORAGE(Name, ...) \
bool is##Name() const { return ReferenceOwnership.is##Name(); }
#include "swift/AST/ReferenceStorage.def"
bool isStrong() const { return ReferenceOwnership.isStrong(); }
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
};
#if SWIFT_HAS_ISA_MASKING
SWIFT_RUNTIME_EXPORT
uintptr_t swift_isaMask;
// Hardcode the mask. We have our own copy of the value, as it's hard to work
// out the proper includes from libobjc. The values MUST match the ones from
// libobjc. Debug builds check these values against objc_debug_isa_class_mask
// from libobjc.
# if TARGET_OS_SIMULATOR && __x86_64__
// Simulators don't currently use isa masking on x86, but we still want to emit
// swift_isaMask and the corresponding code in case that changes. libobjc's
// mask has the bottom bits clear to include pointer alignment, match that
// value here.
# define SWIFT_ISA_MASK 0xfffffffffffffff8ULL
# elif __arm64__
// The ISA mask used when ptrauth is available.
# define SWIFT_ISA_MASK_PTRAUTH 0x007ffffffffffff8ULL
// ARM64 simulators always use the ARM64e mask.
# if __has_feature(ptrauth_calls) || TARGET_OS_SIMULATOR
# define SWIFT_ISA_MASK SWIFT_ISA_MASK_PTRAUTH
# else
# if TARGET_OS_OSX
# define SWIFT_ISA_MASK 0x00007ffffffffff8ULL
# else
# define SWIFT_ISA_MASK 0x0000000ffffffff8ULL
# endif
# endif
# elif __x86_64__
# define SWIFT_ISA_MASK 0x00007ffffffffff8ULL
# else
# error Unknown architecture for masked isa.
# endif
#endif
#if SWIFT_OBJC_INTEROP
bool objectConformsToObjCProtocol(const void *theObject,
ProtocolDescriptorRef protocol);
bool classConformsToObjCProtocol(const void *theClass,
ProtocolDescriptorRef protocol);
#endif
/// Is the given value a valid alignment mask?
static inline bool isAlignmentMask(size_t mask) {
// mask == xyz01111...
// mask+1 == xyz10000...
// mask&(mask+1) == xyz00000...
// So this is nonzero if and only if there any bits set
// other than an arbitrarily long sequence of low bits.
return (mask & (mask + 1)) == 0;
}
/// Is the given value an Objective-C tagged pointer?
static inline bool isObjCTaggedPointer(const void *object) {
#if SWIFT_OBJC_INTEROP
return (((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask);
#else
assert(!(((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask));
return false;
#endif
}
static inline bool isObjCTaggedPointerOrNull(const void *object) {
return object == nullptr || isObjCTaggedPointer(object);
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object may or may not have a non-pointer ISA.
/// Masking, or otherwise, may be required to get a class pointer.
static inline const ClassMetadata *_swift_getClassOfAllocated(const void *object) {
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
// The ISA is opaque so masking it will not return a pointer. We instead
// need to call the objc runtime to get the class.
id idObject = reinterpret_cast<id>(const_cast<void *>(object));
return reinterpret_cast<const ClassMetadata*>(object_getClass(idObject));
#else
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
#if SWIFT_HAS_ISA_MASKING
// Apply the mask.
bits &= SWIFT_ISA_MASK;
#endif
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
#endif
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object is known to have a pointer ISA, and no
/// masking is required to convert from non-pointer to pointer ISA.
static inline const ClassMetadata *
_swift_getClassOfAllocatedFromPointer(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
}
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
/// Return whether this object is of a class which uses non-pointer ISAs.
static inline bool _swift_isNonPointerIsaObjCClass(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// If the low bit is set, then we are definitely an objc object.
// FIXME: Use a variable for this.
return bits & 1;
}
#endif
SWIFT_LIBRARY_VISIBILITY
const ClassMetadata *_swift_getClass(const void *object);
SWIFT_LIBRARY_VISIBILITY
bool usesNativeSwiftReferenceCounting(const ClassMetadata *theClass);
static inline
bool objectUsesNativeSwiftReferenceCounting(const void *object) {
assert(!isObjCTaggedPointerOrNull(object));
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
// Fast path for opaque ISAs. We don't want to call
// _swift_getClassOfAllocated as that will call object_getClass.
// Instead we can look at the bits in the ISA and tell if its a
// non-pointer opaque ISA which means it is definitely an ObjC
// object and doesn't use native swift reference counting.
if (_swift_isNonPointerIsaObjCClass(object))
return false;
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocatedFromPointer(object));
#else
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocated(object));
#endif
}
/// Get the superclass pointer value used for Swift root classes.
/// Note that this function may return a nullptr on non-objc platforms,
/// where there is no common root class. rdar://problem/18987058
const ClassMetadata *getRootSuperclass();
/// Check if a class has a formal superclass in the AST.
static inline
bool classHasSuperclass(const ClassMetadata *c) {
return (c->Superclass && c->Superclass != getRootSuperclass());
}
/// Replace entries of a freshly-instantiated value witness table with more
/// efficient common implementations where applicable.
///
/// All information is taken from the passed-in layout rather than the VWT.
/// This is so that we can delay "publishing" the flags in the actual
/// value witness table until all required changes have been made.
///
/// For instance, if the value witness table represents a POD type, this will
/// insert POD value witnesses into the table. The vwtable's flags must have
/// been initialized before calling this function.
///
/// Returns true if common value witnesses were used, false otherwise.
void installCommonValueWitnesses(const TypeLayout &layout,
ValueWitnessTable *vwtable);
const Metadata *
_matchMetadataByMangledTypeName(const llvm::StringRef metadataNameRef,
const Metadata *metadata,
const TypeContextDescriptor *ntd);
bool
_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node);
const ContextDescriptor *
_searchConformancesByMangledTypeName(Demangle::NodePointer node);
SWIFT_RUNTIME_EXPORT
Demangle::NodePointer _swift_buildDemanglingForMetadata(const Metadata *type,
Demangle::Demangler &Dem);
/// Build the demangling for the generic type that's created by specializing
/// the given type context descriptor with the given arguments.
Demangle::NodePointer
_buildDemanglingForGenericType(const TypeContextDescriptor *description,
const void *const *arguments,
Demangle::Demangler &Dem);
/// Callback used to provide the substitution of a generic parameter
/// (described by depth/index) to its metadata.
///
/// The return type here is a lie; it's actually a MetadataOrPack.
using SubstGenericParameterFn =
std::function<const void *(unsigned depth, unsigned index)>;
/// Callback used to provide the substitution of a generic parameter
/// (described by the ordinal, or "flat index") to its metadata. The index may
/// be "full" or it may be only relative to key arguments. The call is
/// provided both indexes and may use the one it requires.
///
/// The return type here is a lie; it's actually a MetadataOrPack.
using SubstGenericParameterOrdinalFn =
std::function<const void *(unsigned fullOrdinal, unsigned keyOrdinal)>;
/// Callback used to provide the substitution of a witness table based on
/// its index into the enclosing generic environment.
using SubstDependentWitnessTableFn =
std::function<const WitnessTable *(const Metadata *type, unsigned index)>;
/// A pointer to type metadata or a heap-allocated metadata pack.
struct SWIFT_RUNTIME_LIBRARY_VISIBILITY MetadataOrPack {
const void *Ptr;
MetadataOrPack() : Ptr(nullptr) {}
explicit MetadataOrPack(const void *ptr) : Ptr(ptr) {}
explicit MetadataOrPack(MetadataResponse response) : Ptr(response.Value) {}
explicit MetadataOrPack(MetadataPackPointer ptr) : Ptr(ptr.getPointer()) {
if (ptr.getLifetime() != PackLifetime::OnHeap)
fatalError(0, "Cannot have an on-stack pack here\n");
}
explicit operator bool() const { return Ptr != nullptr; }
bool isNull() const {
return !Ptr;
}
bool isMetadataOrNull() const {
return (reinterpret_cast<uintptr_t>(Ptr) & 1) == 0;
}
bool isMetadata() const {
return Ptr && isMetadataOrNull();
}
bool isMetadataPack() const {
return Ptr && (reinterpret_cast<uintptr_t>(Ptr) & 1) == 1;
}
const Metadata *getMetadata() const {
if (isMetadata())
return reinterpret_cast<const Metadata *>(Ptr);
fatalError(0, "Expected metadata but got a metadata pack\n");
}
const Metadata *getMetadataOrNull() const {
if (isMetadataOrNull())
return reinterpret_cast<const Metadata *>(Ptr);
fatalError(0, "Expected metadata but got a metadata pack\n");
}
MetadataPackPointer getMetadataPack() const {
if (isMetadataPack())
return MetadataPackPointer(Ptr);
fatalError(0, "Expected a metadata pack but got metadata\n");
}
std::string nameForMetadata() const;
};
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the generic arguments from
/// the given metadata.
///
/// Use with \c _getTypeByMangledName to decode potentially-generic
/// types.
class SWIFT_RUNTIME_LIBRARY_VISIBILITY SubstGenericParametersFromMetadata {
/// Whether the source is metadata (vs. a generic environment);
enum class SourceKind {
Metadata,
Environment,
Shape,
};
const SourceKind sourceKind;
union {
const TargetContextDescriptor<InProcess> *baseContext;
const TargetGenericEnvironment<InProcess> *environment;
const TargetExtendedExistentialTypeShape<InProcess> *shape;
};
/// The generic arguments.
const void * const *genericArgs;
/// An element in the descriptor path.
struct PathElement {
/// The generic parameters local to this element.
llvm::ArrayRef<GenericParamDescriptor> localGenericParams;
/// The total number of generic parameters.
unsigned numTotalGenericParams;
/// The number of key parameters in the parent.
unsigned numKeyGenericParamsInParent;
/// The number of key parameters locally introduced here.
unsigned numKeyGenericParamsHere;
/// Whether this context has any non-key generic parameters.
bool hasNonKeyGenericParams;
};
/// Information about the generic context descriptors that make up \c
/// descriptor, from the outermost to the innermost.
mutable llvm::SmallVector<PathElement, 8> descriptorPath;
/// The number of key generic parameters.
mutable unsigned numKeyGenericParameters = 0;
/// The number of pack shape classes.
mutable unsigned numShapeClasses = 0;
/// Builds the descriptor path.
///
/// \returns a pair containing the number of key generic parameters in
/// the path up to this point.
unsigned buildDescriptorPath(const ContextDescriptor *context,
Demangler &demangler) const;
/// Builds a path from the generic environment.
unsigned buildEnvironmentPath(
const TargetGenericEnvironment<InProcess> *environment) const;
unsigned buildShapePath(
const TargetExtendedExistentialTypeShape<InProcess> *shape) const;
// Set up the state we need to compute substitutions.
void setup() const;
public:
/// Produce substitutions entirely from the given metadata.
explicit SubstGenericParametersFromMetadata(const Metadata *base)
: sourceKind(SourceKind::Metadata),
baseContext(base->getTypeContextDescriptor()),
genericArgs(base ? (const void *const *)base->getGenericArgs()
: nullptr) {}
/// Produce substitutions from the given instantiation arguments for the
/// given context.
explicit SubstGenericParametersFromMetadata(const ContextDescriptor *base,
const void *const *args)
: sourceKind(SourceKind::Metadata), baseContext(base),
genericArgs(args) {}
/// Produce substitutions from the given instantiation arguments for the
/// given generic environment.
explicit SubstGenericParametersFromMetadata(
const TargetGenericEnvironment<InProcess> *environment,
const void *const *arguments)
: sourceKind(SourceKind::Environment), environment(environment),
genericArgs(arguments) {}
explicit SubstGenericParametersFromMetadata(
const TargetExtendedExistentialTypeShape<InProcess> *shape,
const void *const *arguments)
: sourceKind(SourceKind::Shape), shape(shape), genericArgs(arguments) {}
const void * const *getGenericArgs() const { return genericArgs; }
MetadataOrPack getMetadata(unsigned depth, unsigned index) const;
MetadataOrPack getMetadataKeyArgOrdinal(unsigned ordinal) const;
const WitnessTable *getWitnessTable(const Metadata *type,
unsigned index) const;
};
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
/// Retrieve the type metadata described by the given demangled type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
TypeLookupErrorOr<TypeInfo> swift_getTypeByMangledNode(
MetadataRequest request,
Demangler &demangler,
Demangle::NodePointer node,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
TypeLookupErrorOr<TypeInfo> swift_getTypeByMangledName(
MetadataRequest request,
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata pack described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
TypeLookupErrorOr<MetadataPackPointer> getTypePackByMangledName(
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
#pragma clang diagnostic pop
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool _gatherGenericParameterCounts(const ContextDescriptor *descriptor,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
Demangler &BorrowFrom);
/// Map depth/index to a flat index.
std::optional<unsigned>
_depthIndexToFlatIndex(unsigned depth, unsigned index,
llvm::ArrayRef<unsigned> paramCounts);
/// Gathers all of the written generic parameters needed for
/// '_gatherGenericParameters'. This takes a list of key arguments and fills
/// in the generic arguments with all generic arguments.
///
/// \returns true if the operation succeeded.
bool _gatherWrittenGenericParameters(
const TypeContextDescriptor *descriptor,
llvm::ArrayRef<const void *> keyArgs,
llvm::SmallVectorImpl<MetadataOrPack> &genericArgs,
Demangle::Demangler &Dem);
/// Check the given generic requirements using the given set of generic
/// arguments, collecting the key arguments (e.g., witness tables) for
/// the caller.
///
/// \param genericParams The generic parameters corresponding to the
/// arguments.
///
/// \param requirements The set of requirements to evaluate.
///
/// \param extraArguments The extra arguments determined while checking
/// generic requirements (e.g., those that need to be
/// passed to an instantiation function) will be added to this vector.
///
/// \returns the error if an error occurred, None otherwise.
std::optional<TypeLookupError> _checkGenericRequirements(
llvm::ArrayRef<GenericParamDescriptor> genericParams,
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstGenericParameterOrdinalFn substGenericParamOrdinal,
SubstDependentWitnessTableFn substWitnessTable);
/// A helper function which avoids performing a store if the destination
/// address already contains the source value. This is useful when
/// "initializing" memory that might have been initialized to the correct
/// value statically. In such a case, the compiler might have gone so far
/// as to map the entire object readonly, or we might just want to avoid
/// dirtying memory unnecessarily.
template <class T>
static void assignUnlessEqual(T &dest, T newValue) {
if (dest != newValue)
dest = newValue;
}
#if defined(__CYGWIN__)
void _swift_once_f(uintptr_t *predicate, void *context,
void (*function)(void *));
#endif
static inline const Metadata *getMetadataForClass(const ClassMetadata *c) {
#if SWIFT_OBJC_INTEROP
return swift_getObjCClassMetadata(c);
#else
return c;
#endif
}
template <>
inline const ClassMetadata *Metadata::getClassObject() const {
switch (getKind()) {
case MetadataKind::Class: {
// Native Swift class metadata is also the class object.
return static_cast<const ClassMetadata *>(this);
}
#if SWIFT_OBJC_INTEROP
case MetadataKind::ObjCClassWrapper: {
// Objective-C class objects are referenced by their Swift metadata wrapper.
auto wrapper = static_cast<const ObjCClassWrapperMetadata *>(this);
return wrapper->Class;
}
#endif
// Other kinds of types don't have class objects.
default:
return nullptr;
}
}
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
void *allocateMetadata(size_t size, size_t align);
// Compare two pieces of metadata that should be identical. Returns true if
// they are, false if they are not equal. Dumps the metadata contents to
// stderr if they are not equal.
bool compareGenericMetadata(const Metadata *original,
const Metadata *newMetadata);
void validateExternalGenericMetadataBuilder(
const Metadata *original, const TypeContextDescriptor *description,
const void * const *arguments);
Demangle::NodePointer
_buildDemanglingForContext(const ContextDescriptor *context,
llvm::ArrayRef<NodePointer> demangledGenerics,
Demangle::Demangler &Dem);
/// Symbolic reference resolver that produces the demangling tree for the
/// referenced context.
class ResolveToDemanglingForContext {
Demangle::Demangler &Dem;
public:
explicit ResolveToDemanglingForContext(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Symbolic reference resolver that resolves the absolute addresses of
/// symbolic references but leaves them as references.
class ResolveAsSymbolicReference {
Demangle::Demangler &Dem;
public:
explicit ResolveAsSymbolicReference(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Demangler resolver that turns resolved symbolic references into their
/// demangling trees.
class ExpandResolvedSymbolicReferences {
Demangle::Demangler &Dem;
public:
explicit ExpandResolvedSymbolicReferences(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
const void *resolvedReference);
};
/// Is the given type imported from a C tag type?
bool _isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity);
/// Check whether a type conforms to a protocol.
///
/// \param value - can be null, in which case the question should
/// be answered abstractly if possible
/// \param conformance - if non-null, and the protocol requires a
/// witness table, and the type implements the protocol, the witness
/// table will be placed here
bool _conformsToProtocol(const OpaqueValue *value,
const Metadata *type,
ProtocolDescriptorRef protocol,
const WitnessTable **conformance);
/// Construct type metadata for the given protocol.
const Metadata *
_getSimpleProtocolTypeMetadata(const ProtocolDescriptor *protocol);
/// Given a type that we know can be used with the given conformance, find
/// the superclass that introduced the conformance.
const Metadata *findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance);
/// Determine whether the given type conforms to the given Swift protocol,
/// returning the appropriate protocol conformance descriptor when it does.
const ProtocolConformanceDescriptor *
swift_conformsToSwiftProtocol(const Metadata * const type,
const ProtocolDescriptor *protocol,
StringRef module);
/// Retrieve an associated type witness from the given witness table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocType Associated type descriptor.
///
/// \returns metadata for the associated type witness.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
MetadataResponse swift_getAssociatedTypeWitnessSlow(
MetadataRequest request,
WitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType);
/// Retrieve an associated conformance witness table from the given witness
/// table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param assocType Metadata for the associated type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocConformance Associated conformance descriptor.
///
/// \returns corresponding witness table.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const WitnessTable *swift_getAssociatedConformanceWitnessSlow(
WitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance);
RelativeWitnessTable *
lookThroughOptionalConditionalWitnessTable(const RelativeWitnessTable *wtable);
#if SWIFT_OBJC_INTEROP
/// Returns a retained Quick Look representation object an Obj-C object.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
id _quickLookObjectForPointer(void *value);
#endif
} // end namespace swift
#endif /* SWIFT_RUNTIME_PRIVATE_H */
|