File: ProtocolConformance.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1961 lines) | stat: -rw-r--r-- 76,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/StringExtras.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Basic/Unreachable.h"
#include "llvm/ADT/DenseMap.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include "Tracing.h"

#include <new>
#include <vector>

#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#define DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION 1u

// Redeclare these functions as weak so we can build against a macOS 12 SDK and
// still test on macOS 11.
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance(const void *protocolDescriptor,
                                const void *metadataType,
                                const void *typeDescriptor);

LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance(const void *protocol,
                                             const char *foreignTypeIdentityStart,
                                             size_t foreignTypeIdentityLength);

LLVM_ATTRIBUTE_WEAK
uint32_t _dyld_swift_optimizations_version(void);

#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
// Redeclare these functions as weak as well.
LLVM_ATTRIBUTE_WEAK bool _dyld_has_preoptimized_swift_protocol_conformances(
    const struct mach_header *mh);

LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance_on_disk(const void *protocolDescriptor,
                                        const void *metadataType,
                                        const void *typeDescriptor,
                                        uint32_t flags);

LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance_on_disk(
    const void *protocol, const char *foreignTypeIdentityStart,
    size_t foreignTypeIdentityLength, uint32_t flags);
#endif // DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED

#endif // __has_include(<mach-o/dyld_priv.h>)

// Set this to 1 to enable logging of calls to the dyld shared cache conformance
// table
#if 0
#define DYLD_CONFORMANCES_LOG(fmt, ...)                                        \
  fprintf(stderr, "PROTOCOL CONFORMANCE: " fmt "\n", __VA_ARGS__)
#define SHARED_CACHE_LOG_ENABLED 1
#else
#define DYLD_CONFORMANCES_LOG(fmt, ...) (void)0
#endif

// Enable dyld shared cache acceleration only when it's available and we have
// ObjC interop.
#if DYLD_FIND_PROTOCOL_CONFORMANCE_DEFINED && SWIFT_OBJC_INTEROP
#define USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES 1
#endif

using namespace swift;

#ifndef NDEBUG
template <> SWIFT_USED void ProtocolDescriptor::dump() const {
  printf("TargetProtocolDescriptor.\n"
         "Name: \"%s\".\n",
         Name.get());
}

void ProtocolDescriptorFlags::dump() const {
  printf("ProtocolDescriptorFlags.\n");
  printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
  printf("Needs Witness Table: %s.\n",
         (needsWitnessTable() ? "true" : "false"));
  printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
  printf("Special Protocol: %s.\n",
         (bool(getSpecialProtocol()) ? "Error" : "None"));
  printf("Class Constraint: %s.\n",
         (bool(getClassConstraint()) ? "Class" : "Any"));
  printf("Dispatch Strategy: %s.\n",
         (bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}

#endif

#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>

static const char *class_getName(const ClassMetadata* type) {
  return class_getName(
    reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}

template<> void ProtocolConformanceDescriptor::dump() const {
  std::optional<SymbolInfo> info;
  auto symbolName = [&](const void *addr) -> const char * {
    info = SymbolInfo::lookup(addr);
    if (info.has_value() && info->getSymbolName()) {
      return info->getSymbolName();
    }
    return "<unknown addr>";
  };

  switch (auto kind = getTypeKind()) {
  case TypeReferenceKind::DirectObjCClassName:
    printf("direct Objective-C class name %s", getDirectObjCClassName());
    break;

  case TypeReferenceKind::IndirectObjCClass:
    printf("indirect Objective-C class %s",
           class_getName(*getIndirectObjCClass()));
    break;

  case TypeReferenceKind::DirectTypeDescriptor:
  case TypeReferenceKind::IndirectTypeDescriptor:
    printf("unique nominal type descriptor %s", symbolName(getTypeDescriptor()));
    break;
  }
  
  printf(" => ");
  
  printf("witness table pattern (%p) %s\n", getWitnessTablePattern(), symbolName(getWitnessTablePattern()));
}
#endif

#ifndef NDEBUG
template <> SWIFT_USED void ProtocolConformanceDescriptor::verify() const {
  auto typeKind = unsigned(getTypeKind());
  assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
          (unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
         "Corrupted type metadata record kind");
}
#endif

#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
  switch (kind) {
  case TypeReferenceKind::IndirectObjCClass:
    return *getIndirectObjCClass(kind);

  case TypeReferenceKind::DirectObjCClassName:
    return reinterpret_cast<const ClassMetadata *>(
              objc_lookUpClass(getDirectObjCClassName(kind)));

  case TypeReferenceKind::DirectTypeDescriptor:
  case TypeReferenceKind::IndirectTypeDescriptor:
    return nullptr;
  }

  swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif

static MetadataState
tryGetCompleteMetadataNonblocking(const Metadata *metadata) {
  return swift_checkMetadataState(
             MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true),
             metadata)
      .State;
}

/// Get the superclass of metadata, which may be incomplete. When the metadata
/// is not sufficiently complete, then we fall back to demangling the superclass
/// in the nominal type descriptor, which is slow but works. Return {NULL,
/// MetadataState::Complete} if the metadata is not a class, or has no
/// superclass.
///
/// If the metadata's current state is known, it may be passed in as
/// knownMetadataState. This saves the cost of retrieving that info separately.
///
/// When instantiateSuperclassMetadata is true, this function will instantiate
/// superclass metadata when necessary. When false, this will return {NULL,
/// MetadataState::Abstract} to indicate that there's an uninstantiated
/// superclass that was not returned.
static MetadataResponse getSuperclassForMaybeIncompleteMetadata(
    const Metadata *metadata, std::optional<MetadataState> knownMetadataState,
    bool instantiateSuperclassMetadata) {
  const ClassMetadata *classMetadata = dyn_cast<ClassMetadata>(metadata);
  if (!classMetadata)
    return {_swift_class_getSuperclass(metadata), MetadataState::Complete};

#if SWIFT_OBJC_INTEROP
    // Artificial subclasses are not valid type metadata and
    // tryGetCompleteMetadataNonblocking will crash on them. However, they're
    // always fully set up, so we can just skip it and fetch the Subclass field.
    if (classMetadata->isTypeMetadata() && classMetadata->isArtificialSubclass())
      return {classMetadata->Superclass, MetadataState::Complete};

    // Pure ObjC classes are already set up, and the code below will not be
    // happy with them.
    if (!classMetadata->isTypeMetadata())
      return {classMetadata->Superclass, MetadataState::Complete};
#endif

  MetadataState metadataState;
  if (knownMetadataState)
    metadataState = *knownMetadataState;
  else
    metadataState = tryGetCompleteMetadataNonblocking(classMetadata);

  if (metadataState == MetadataState::Complete) {
    // The subclass metadata is complete. Fetch and return the superclass.
    auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
    return {superMetadata, MetadataState::Complete};
  } else if (metadataState == MetadataState::NonTransitiveComplete) {
    // The subclass metadata is complete, but, unlike above, not transitively.
    // Its Superclass field is valid, so just read that field to get to the
    // superclass to proceed to the next step.
    auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
    auto superState = tryGetCompleteMetadataNonblocking(superMetadata);
    return {superMetadata, superState};
  } else if (instantiateSuperclassMetadata) {
    // The subclass metadata is either LayoutComplete or Abstract, so the
    // Superclass field is not valid.  To get to the superclass, make the
    // expensive call to getSuperclassMetadata which demangles the superclass
    // name from the nominal type descriptor to get the metadata for the
    // superclass.
    MetadataRequest request(MetadataState::Abstract,
                            /*non-blocking*/ true);
    return getSuperclassMetadata(request, classMetadata);
  } else {
    // The Superclass field is not valid and the caller did not request
    // instantiation. Return a NULL superclass and Abstract to indicate that a
    // superclass exists but is not yet instantiated.
    return {nullptr, MetadataState::Abstract};
  }
}

struct MaybeIncompleteSuperclassIterator {
  const Metadata *metadata;
  std::optional<MetadataState> state;
  bool instantiateSuperclassMetadata;

  MaybeIncompleteSuperclassIterator(const Metadata *metadata,
                                    bool instantiateSuperclassMetadata)
      : metadata(metadata), state(std::nullopt),
        instantiateSuperclassMetadata(instantiateSuperclassMetadata) {}

  MaybeIncompleteSuperclassIterator &operator++() {
    auto response = getSuperclassForMaybeIncompleteMetadata(
        metadata, state, instantiateSuperclassMetadata);
    metadata = response.Value;
    state = response.State;
    return *this;
  }

  const Metadata *operator*() const { return metadata; }

  bool operator!=(const MaybeIncompleteSuperclassIterator rhs) const {
    return metadata != rhs.metadata;
  }
};

/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
  switch (getTypeKind()) {
  case TypeReferenceKind::IndirectObjCClass:
  case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
    // The class may be ObjC, in which case we need to instantiate its Swift
    // metadata. The class additionally may be weak-linked, so we have to check
    // for null.
    if (auto cls = TypeRef.getObjCClass(getTypeKind()))
      return getMetadataForClass(cls);
#endif
    return nullptr;

  case TypeReferenceKind::DirectTypeDescriptor:
  case TypeReferenceKind::IndirectTypeDescriptor: {
    if (auto anyType = getTypeDescriptor()) {
      if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
        if (!type->isGeneric()) {
          if (auto accessFn = type->getAccessFunction())
            return accessFn(MetadataState::Abstract).Value;
        }
      } else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
        return _getSimpleProtocolTypeMetadata(protocol);
      }
    }

    return nullptr;
  }
  }

  swift_unreachable("Unhandled TypeReferenceKind in switch.");
}

template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
  // If needed, check the conditional requirements.
  llvm::SmallVector<const void *, 8> conditionalArgs;

  llvm::ArrayRef<GenericParamDescriptor> genericParams;
  if (auto typeDescriptor = type->getTypeContextDescriptor())
    genericParams = typeDescriptor->getGenericParams();

  if (hasConditionalRequirements() || !genericParams.empty()) {
    SubstGenericParametersFromMetadata substitutions(type);
    auto error = _checkGenericRequirements(
        genericParams, getConditionalRequirements(), conditionalArgs,
        [&substitutions](unsigned depth, unsigned index) {
          return substitutions.getMetadata(depth, index).Ptr;
        },
        [&substitutions](unsigned fullOrdinal, unsigned keyOrdinal) {
          return substitutions.getMetadataKeyArgOrdinal(keyOrdinal).Ptr;
        },
        [&substitutions](const Metadata *type, unsigned index) {
          return substitutions.getWitnessTable(type, index);
        });
    if (error)
      return nullptr;
  }
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
  return (const WitnessTable *)
    swift_getWitnessTableRelative(this, type, conditionalArgs.data());
#else
  return swift_getWitnessTable(this, type, conditionalArgs.data());
#endif
}

namespace {
  struct ConformanceSection {
    const ProtocolConformanceRecord *Begin, *End;

    ConformanceSection(const ProtocolConformanceRecord *begin,
                       const ProtocolConformanceRecord *end)
        : Begin(begin), End(end) {}

    ConformanceSection(const void *ptr, uintptr_t size) {
      auto bytes = reinterpret_cast<const char *>(ptr);
      Begin = reinterpret_cast<const ProtocolConformanceRecord *>(ptr);
      End = reinterpret_cast<const ProtocolConformanceRecord *>(bytes + size);
    }

    const ProtocolConformanceRecord *begin() const {
      return Begin;
    }
    const ProtocolConformanceRecord *end() const {
      return End;
    }
  };

  struct ConformanceCacheKey {
    const Metadata *Type;
    const ProtocolDescriptor *Proto;

    ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto)
        : Type(type), Proto(proto) {
      assert(type);
    }

    friend llvm::hash_code hash_value(const ConformanceCacheKey &key) {
      return llvm::hash_combine(key.Type, key.Proto);
    }
  };

  struct ConformanceCacheEntry {
  private:
    ConformanceCacheKey Key;
    const WitnessTable *Witness;

  public:
    ConformanceCacheEntry(ConformanceCacheKey key, const WitnessTable *witness)
        : Key(key), Witness(witness) {}

    bool matchesKey(const ConformanceCacheKey &key) const {
      return Key.Type == key.Type && Key.Proto == key.Proto;
    }

    friend llvm::hash_code hash_value(const ConformanceCacheEntry &entry) {
      return hash_value(entry.Key);
    }

    template <class... Args>
    static size_t getExtraAllocationSize(Args &&... ignored) {
      return 0;
    }

    /// Get the cached witness table, or null if we cached failure.
    const WitnessTable *getWitnessTable() const {
      return Witness;
    }
  };
} // end anonymous namespace

// Conformance Cache.
struct ConformanceState {
  ConcurrentReadableHashMap<ConformanceCacheEntry> Cache;
  ConcurrentReadableArray<ConformanceSection> SectionsToScan;
  bool scanSectionsBackwards;

#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
  uintptr_t dyldSharedCacheStart;
  uintptr_t dyldSharedCacheEnd;
  bool hasOverriddenImage;
  bool validateDyldResults;

  // Only populated when validateDyldResults is enabled.
  ConcurrentReadableArray<ConformanceSection> DyldOptimizedSections;

  bool inSharedCache(const void *ptr) {
    auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
    return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
  }

  bool dyldOptimizationsActive() { return dyldSharedCacheStart != 0; }
#else
  bool dyldOptimizationsActive() { return false; }

#endif

  ConformanceState() {
    scanSectionsBackwards =
        runtime::bincompat::useLegacyProtocolConformanceReverseIteration();

#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
    if (__builtin_available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, *)) {
      if (runtime::environment::SWIFT_DEBUG_ENABLE_SHARED_CACHE_PROTOCOL_CONFORMANCES()) {
        if (&_dyld_swift_optimizations_version) {
          if (_dyld_swift_optimizations_version() ==
              DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION) {
            size_t length;
            dyldSharedCacheStart =
                (uintptr_t)_dyld_get_shared_cache_range(&length);
            dyldSharedCacheEnd =
                dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
            validateDyldResults = runtime::environment::
                SWIFT_DEBUG_VALIDATE_SHARED_CACHE_PROTOCOL_CONFORMANCES();
            DYLD_CONFORMANCES_LOG("Shared cache range is %#lx-%#lx",
                                  dyldSharedCacheStart, dyldSharedCacheEnd);
          } else {
            DYLD_CONFORMANCES_LOG("Disabling dyld protocol conformance "
                                  "optimizations due to unknown "
                                  "optimizations version %u",
                                  _dyld_swift_optimizations_version());
            dyldSharedCacheStart = 0;
            dyldSharedCacheEnd = 0;
          }
        }
      }
    }
#endif

    // This must run last, as it triggers callbacks that require
    // ConformanceState to be set up.
    initializeProtocolConformanceLookup();
  }

  void cacheResult(const Metadata *type, const ProtocolDescriptor *proto,
                   const WitnessTable *witness, size_t sectionsCount) {
    Cache.getOrInsert(ConformanceCacheKey(type, proto),
                      [&](ConformanceCacheEntry *entry, bool created) {
                        // Create the entry if needed. If it already exists,
                        // we're done.
                        if (!created)
                          return false;

                        // Check the current sections count against what was
                        // passed in. If a section count was passed in and they
                        // don't match, then this is not an authoritative entry
                        // and it may have been obsoleted, because the new
                        // sections could contain a conformance in a more
                        // specific type.
                        //
                        // If they DO match, then we can safely add. Another
                        // thread might be adding new sections at this point,
                        // but we will not race with them. That other thread
                        // will add the new sections, then clear the cache. When
                        // it clears the cache, it will block waiting for this
                        // code to complete and relinquish Cache's writer lock.
                        // If we cache a stale entry, it will be immediately
                        // cleared.
                        if (sectionsCount > 0 &&
                            SectionsToScan.snapshot().count() != sectionsCount)
                          return false; // abandon the new entry

                        ::new (entry) ConformanceCacheEntry(
                            ConformanceCacheKey(type, proto), witness);
                        return true; // keep the new entry
                      });
  }

#ifndef NDEBUG
  void verify() const SWIFT_USED;
#endif
};

#ifndef NDEBUG
void ConformanceState::verify() const {
  // Iterate over all of the sections and verify all of the protocol
  // descriptors.
  auto &Self = const_cast<ConformanceState &>(*this);
  for (const auto &Section : Self.SectionsToScan.snapshot()) {
    for (const auto &Record : Section) {
      Record.get()->verify();
    }
  }
}
#endif

static Lazy<ConformanceState> Conformances;

const void * const swift::_swift_debug_protocolConformanceStatePointer =
  &Conformances;

static void _registerProtocolConformances(ConformanceState &C,
                                          ConformanceSection section) {
  C.SectionsToScan.push_back(section);

  // Blow away the conformances cache to get rid of any negative entries that
  // may now be obsolete.
  C.Cache.clear();
}

void swift::addImageProtocolConformanceBlockCallbackUnsafe(
    const void *baseAddress,
    const void *conformances, uintptr_t conformancesSize) {
  assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
         "conformances section not a multiple of ProtocolConformanceRecord");

  // Conformance cache should always be sufficiently initialized by this point.
  auto &C = Conformances.unsafeGetAlreadyInitialized();

#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
  // If any image in the shared cache is overridden, we need to scan all
  // conformance sections in the shared cache. The pre-built table does NOT work
  // if the protocol, type, or descriptor are in overridden images. Example:
  //
  // libX.dylib: struct S {}
  // libY.dylib: protocol P {}
  // libZ.dylib: extension S: P {}
  //
  // If libX or libY are overridden, then dyld will not return the S: P
  // conformance from libZ. But that conformance still exists and we must still
  // return it! Therefore we must scan libZ (and all other dylibs) even though
  // it is not overridden.
  if (!dyld_shared_cache_some_image_overridden()) {
    // Sections in the shared cache are ignored in favor of the shared cache's
    // pre-built tables.
    if (C.inSharedCache(conformances)) {
      DYLD_CONFORMANCES_LOG(
          "Skipping conformances section %p in the shared cache", conformances);
      if (C.validateDyldResults)
        C.DyldOptimizedSections.push_back(
            ConformanceSection{conformances, conformancesSize});
      return;
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
    } else if (&_dyld_has_preoptimized_swift_protocol_conformances &&
               _dyld_has_preoptimized_swift_protocol_conformances(
                   reinterpret_cast<const mach_header *>(baseAddress))) {
      // dyld may optimize images outside the shared cache. Skip those too.
      DYLD_CONFORMANCES_LOG(
          "Skipping conformances section %p optimized by dyld", conformances);
      if (C.validateDyldResults)
        C.DyldOptimizedSections.push_back(
            ConformanceSection{conformances, conformancesSize});
      return;
#endif
    } else {
      DYLD_CONFORMANCES_LOG(
          "Adding conformances section %p outside the shared cache",
          conformances);
    }
  }
#endif

  // If we have a section, enqueue the conformances for lookup.
  _registerProtocolConformances(
      C, ConformanceSection{conformances, conformancesSize});
}

void swift::addImageProtocolConformanceBlockCallback(
    const void *baseAddress,
    const void *conformances, uintptr_t conformancesSize) {
  Conformances.get();
  addImageProtocolConformanceBlockCallbackUnsafe(baseAddress,
                                                 conformances,
                                                 conformancesSize);
}

void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
                                          const ProtocolConformanceRecord *end){
  auto &C = Conformances.get();
  _registerProtocolConformances(C, ConformanceSection{begin, end});
}

/// Search for a conformance descriptor in the ConformanceCache.
/// First element of the return value is `true` if the result is authoritative
/// i.e. the result is for the type itself and not a superclass. If `false`
/// then we cached a conformance on a superclass, but that may be overridden.
/// A return value of `{ false, nullptr }` indicates nothing was cached.
static std::pair<bool, const WitnessTable *>
searchInConformanceCache(const Metadata *type,
                         const ProtocolDescriptor *protocol,
                         bool instantiateSuperclassMetadata) {
  auto &C = Conformances.get();
  auto origType = type;
  auto snapshot = C.Cache.snapshot();

  MaybeIncompleteSuperclassIterator superclassIterator{
      type, instantiateSuperclassMetadata};
  for (; auto type = superclassIterator.metadata; ++superclassIterator) {
    if (auto *Value = snapshot.find(ConformanceCacheKey(type, protocol))) {
      return {type == origType, Value->getWitnessTable()};
    }
  }

  // We did not find a cache entry.
  return {false, nullptr};
}

/// Get the appropriate context descriptor for a type. If the descriptor is a
/// foreign type descriptor, also return its identity string.
static std::pair<const ContextDescriptor *, llvm::StringRef>
getContextDescriptor(const Metadata *conformingType) {
  const auto *description = conformingType->getTypeContextDescriptor();
  if (description) {
    if (description->hasForeignMetadataInitialization()) {
      auto identity = ParsedTypeIdentity::parse(description).FullIdentity;
      return {description, identity};
    }
    return {description, {}};
  }

  // Handle single-protocol existential types for self-conformance.
  auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
  if (existentialType == nullptr ||
      existentialType->getProtocols().size() != 1 ||
      existentialType->getSuperclassConstraint() != nullptr)
    return {nullptr, {}};

  auto proto = existentialType->getProtocols()[0];

#if SWIFT_OBJC_INTEROP
  if (proto.isObjC())
    return {nullptr, {}};
#endif

  return {proto.getSwiftProtocol(), {}};
}

namespace {
  /// Describes a protocol conformance "candidate" that can be checked
  /// against a type metadata.
  class ConformanceCandidate {
    const void *candidate;
    bool candidateIsMetadata;

  public:
    ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }

    ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
      : ConformanceCandidate()
    {
      if (auto description = conformance.getTypeDescriptor()) {
        candidate = description;
        candidateIsMetadata = false;
        return;
      }

      if (auto metadata = conformance.getCanonicalTypeMetadata()) {
        candidate = metadata;
        candidateIsMetadata = true;
        return;
      }
    }

    /// Whether the conforming type exactly matches the conformance candidate.
    bool matches(const Metadata *conformingType) const {
      // Check whether the types match.
      if (candidateIsMetadata && conformingType == candidate)
        return true;

      // Check whether the nominal type descriptors match.
      if (!candidateIsMetadata) {
        const auto *description = std::get<const ContextDescriptor *>(
            getContextDescriptor(conformingType));
        auto candidateDescription =
          static_cast<const ContextDescriptor *>(candidate);
        if (description && equalContexts(description, candidateDescription))
          return true;
      }

      return false;
    }

    /// Retrieve the type that matches the conformance candidate, which may
    /// be a superclass of the given type. Returns null if this type does not
    /// match this conformance, along with the final metadata state of the
    /// superclass iterator.
    std::pair<const Metadata *, std::optional<MetadataState>>
    getMatchingType(const Metadata *conformingType,
                    bool instantiateSuperclassMetadata) const {
      MaybeIncompleteSuperclassIterator superclassIterator{
          conformingType, instantiateSuperclassMetadata};
      for (; auto conformingType = superclassIterator.metadata;
           ++superclassIterator) {
        if (matches(conformingType))
          return {conformingType, std::nullopt};
      }

      return {nullptr, superclassIterator.state};
    }
  };
}

static void validateDyldResults(
    ConformanceState &C, const Metadata *type,
    const ProtocolDescriptor *protocol,
    const WitnessTable *dyldCachedWitnessTable,
    const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor,
    bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
  if (!C.dyldOptimizationsActive() || !C.validateDyldResults)
    return;

  llvm::SmallVector<const ProtocolConformanceDescriptor *, 8> conformances;
  for (auto &section : C.DyldOptimizedSections.snapshot()) {
    for (const auto &record : section) {
      auto &descriptor = *record.get();
      if (descriptor.getProtocol() != protocol)
        continue;

      ConformanceCandidate candidate(descriptor);
      if (std::get<const Metadata *>(
              candidate.getMatchingType(type, instantiateSuperclassMetadata)))
        conformances.push_back(&descriptor);
    }
  }

  auto conformancesString = [&]() -> std::string {
    std::string result = "";
    for (auto *conformance : conformances) {
      if (!result.empty())
        result += ", ";
      result += "0x";
      result += llvm::utohexstr(reinterpret_cast<uint64_t>(conformance));
    }
    return result;
  };

  if (dyldCachedConformanceDescriptor) {
    if (std::find(conformances.begin(), conformances.end(),
                  dyldCachedConformanceDescriptor) == conformances.end()) {
      auto typeName = swift_getTypeName(type, true);
      swift::fatalError(
          0,
          "Checking conformance of %.*s %p to %s %p - dyld cached conformance "
          "descriptor %p not found in conformance records: (%s)\n",
          (int)typeName.length, typeName.data, type, protocol->Name.get(),
          protocol, dyldCachedConformanceDescriptor,
          conformancesString().c_str());
    }
  } else {
    if (!conformances.empty()) {
      auto typeName = swift_getTypeName(type, true);
      swift::fatalError(
          0,
          "Checking conformance of %.*s %p to %s %p - dyld found no "
          "conformance descriptor, but matching descriptors exist: (%s)\n",
          (int)typeName.length, typeName.data, type, protocol->Name.get(),
          protocol, conformancesString().c_str());
    }
  }
#endif
}

#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
static _dyld_protocol_conformance_result getDyldSharedCacheConformance(
    ConformanceState &C, const ProtocolDescriptor *protocol,
    const ClassMetadata *objcClassMetadata,
    const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
  // Protocols that aren't in the shared cache will never be found in the shared
  // cache conformances, skip the call.
  if (!C.inSharedCache(protocol)) {
    DYLD_CONFORMANCES_LOG(
        "Skipping shared cache lookup, protocol %p is not in shared cache.",
        protocol);
    return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
  }

  if (!foreignTypeIdentity.empty()) {
    // Foreign types are non-unique so those can still be found in the shared
    // cache even if the identity string is outside.
    DYLD_CONFORMANCES_LOG(
        "_dyld_find_foreign_type_protocol_conformance(%p, %.*s, %zu)", protocol,
        (int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
        foreignTypeIdentity.size());
    return _dyld_find_foreign_type_protocol_conformance(
        protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size());
  } else {
    // If both the ObjC class metadata and description are outside the shared
    // cache, then we'll never find a shared cache conformance, skip the call.
    // We can still find a shared cache conformance if one is inside and one is
    // outside.
    if (!C.inSharedCache(objcClassMetadata) && !C.inSharedCache(description)) {
      DYLD_CONFORMANCES_LOG("Skipping shared cache lookup, class %p and "
                            "description %p are not in shared cache.",
                            objcClassMetadata, description);
      return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
    }

    DYLD_CONFORMANCES_LOG("_dyld_find_protocol_conformance(%p, %p, %p)",
                          protocol, objcClassMetadata, description);
    return _dyld_find_protocol_conformance(protocol, objcClassMetadata,
                                           description);
  }
}

static _dyld_protocol_conformance_result getDyldOnDiskConformance(
    ConformanceState &C, const ProtocolDescriptor *protocol,
    const ClassMetadata *objcClassMetadata,
    const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
  if (&_dyld_find_foreign_type_protocol_conformance_on_disk &&
      &_dyld_find_protocol_conformance_on_disk) {
    if (!foreignTypeIdentity.empty()) {
      DYLD_CONFORMANCES_LOG(
          "_dyld_find_foreign_type_protocol_conformance_on_disk(%"
          "p, %.*s, %zu, 0)",
          protocol, (int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
          foreignTypeIdentity.size());
      return _dyld_find_foreign_type_protocol_conformance_on_disk(
          protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size(), 0);
    } else {
      DYLD_CONFORMANCES_LOG(
          "_dyld_find_protocol_conformance_on_disk(%p, %p, %p, 0)", protocol,
          objcClassMetadata, description);
      return _dyld_find_protocol_conformance_on_disk(
          protocol, objcClassMetadata, description, 0);
    }
  }
#endif
  return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
#endif

/// Query dyld for a protocol conformance, if supported. The return
/// value is a tuple consisting of the found witness table (if any), the found
/// conformance descriptor (if any), and a bool that's true if a failure is
/// definitive.
static std::tuple<const WitnessTable *, const ProtocolConformanceDescriptor *,
                  bool>
findConformanceWithDyld(ConformanceState &C, const Metadata *type,
                        const ProtocolDescriptor *protocol,
                        bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
  const ContextDescriptor *description;
  llvm::StringRef foreignTypeIdentity;
  std::tie(description, foreignTypeIdentity) = getContextDescriptor(type);

  // dyld expects the ObjC class, if any, as the second parameter.
  auto objcClassMetadata = swift_getObjCClassFromMetadataConditional(type);
#if SHARED_CACHE_LOG_ENABLED
  auto typeName = swift_getTypeName(type, true);
  DYLD_CONFORMANCES_LOG("Looking up conformance of %.*s (type=%p, "
                        "objcClassMetadata=%p, description=%p) to %s (%p)",
                        (int)typeName.length, typeName.data, type,
                        objcClassMetadata, description, protocol->Name.get(),
                        protocol);
#endif
  _dyld_protocol_conformance_result dyldResult;
  if (C.scanSectionsBackwards) {
    // Search "on disk" first, then shared cache.
    dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
                                          description, foreignTypeIdentity);
    if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
      dyldResult = getDyldSharedCacheConformance(
          C, protocol, objcClassMetadata, description, foreignTypeIdentity);
  } else {
    // In normal operation, search the shared cache first.
    dyldResult = getDyldSharedCacheConformance(
        C, protocol, objcClassMetadata, description, foreignTypeIdentity);
    if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
      dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
                                            description, foreignTypeIdentity);
  }

  switch (dyldResult.kind) {
  case _dyld_protocol_conformance_result_kind_found_descriptor: {
    auto *conformanceDescriptor =
        reinterpret_cast<const ProtocolConformanceDescriptor *>(
            dyldResult.value);

    assert(conformanceDescriptor->getProtocol() == protocol);
    assert(std::get<const Metadata *>(
        ConformanceCandidate{*conformanceDescriptor}.getMatchingType(
            type, instantiateSuperclassMetadata)));

    if (conformanceDescriptor->getGenericWitnessTable()) {
      DYLD_CONFORMANCES_LOG(
          "DYLD found generic conformance descriptor %p for %s, continuing",
          conformanceDescriptor, protocol->Name.get());
      return std::make_tuple(nullptr, conformanceDescriptor, false);
    } else {
      // When there are no generics, we can retrieve the witness table cheaply,
      // so do it up front.
      DYLD_CONFORMANCES_LOG("DYLD Found conformance descriptor %p for %s",
                            conformanceDescriptor, protocol->Name.get());
      auto *witnessTable = conformanceDescriptor->getWitnessTable(type);
      return std::make_tuple(witnessTable, conformanceDescriptor, false);
    }
    break;
  }
  case _dyld_protocol_conformance_result_kind_found_witness_table:
    // If we found a witness table then we're done.
    DYLD_CONFORMANCES_LOG("DYLD found witness table %p for conformance to %s",
                          dyldResult.value, protocol->Name.get());
    return std::make_tuple(reinterpret_cast<const WitnessTable *>(dyldResult.value), nullptr,
            false);
  case _dyld_protocol_conformance_result_kind_not_found:
    // If nothing is found, then we'll proceed with checking the runtime's
    // caches and scanning conformance records.
    DYLD_CONFORMANCES_LOG("DYLD did not find conformance to %s",
                          protocol->Name.get());
    return std::make_tuple(nullptr, nullptr, false);
    break;
  case _dyld_protocol_conformance_result_kind_definitive_failure:
    // This type is known not to conform to this protocol. Return failure
    // without any further checks.
    DYLD_CONFORMANCES_LOG("DYLD found definitive failure for %s",
                          protocol->Name.get());
    return std::make_tuple(nullptr, nullptr, true);
  default:
    // Other values may be added. Consider them equivalent to not_found until
    // we implement code to handle them.
    DYLD_CONFORMANCES_LOG(
        "Unknown result kind %lu from _dyld_find_protocol_conformance()",
        (unsigned long)dyldResult.kind);
    return std::make_tuple(nullptr, nullptr, false);
  }
#else
  return std::make_tuple(nullptr, nullptr, false);
#endif
}

/// Check if a type conforms to a protocol, possibly instantiating superclasses
/// that have not yet been instantiated. The return value is a pair consisting
/// of the witness table for the conformance (or NULL if no conformance was
/// found), and a boolean indicating whether there are uninstantiated
/// superclasses that were not searched.
static std::pair<const WitnessTable *, bool>
swift_conformsToProtocolMaybeInstantiateSuperclasses(
    const Metadata *const type, const ProtocolDescriptor *protocol,
    bool instantiateSuperclassMetadata) {
  auto &C = Conformances.get();

  const WitnessTable *dyldCachedWitnessTable = nullptr;
  const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor =
      nullptr;

  // Track whether we have uninstantiated superclasses. Each time we iterate
  // over our superclasses, we check the final state to see if there are more
  // superclasses we haven't instantiated by calling noteFinalMetadataState.
  // If we ever see Abstract, that means there are more superclasses we can't
  // check yet, and we might get a false negative. We have to do this after each
  // iteration (really, just the first iteration, but it's hard to keep track of
  // which iteration is the first time), because another thread might
  // instantiate the superclass while we're in the middle of searching. If we
  // only look at the state after the last iteration, we might have hit a false
  // negative before that no longer shows up.
  bool hasUninstantiatedSuperclass = false;
  auto noteFinalMetadataState = [&](std::optional<MetadataState> state) {
    hasUninstantiatedSuperclass =
        hasUninstantiatedSuperclass || state == MetadataState::Abstract;
  };

  // Search the shared cache tables for a conformance for this type, and for
  // superclasses (if it's a class).
  if (C.dyldOptimizationsActive()) {
    MaybeIncompleteSuperclassIterator superclassIterator{
        type, instantiateSuperclassMetadata};
    for (; auto dyldSearchType = superclassIterator.metadata;
         ++superclassIterator) {
      bool definitiveFailure;
      std::tie(dyldCachedWitnessTable, dyldCachedConformanceDescriptor,
               definitiveFailure) =
          findConformanceWithDyld(C, dyldSearchType, protocol,
                                  instantiateSuperclassMetadata);

      if (definitiveFailure)
        return {nullptr, false};

      if (dyldCachedWitnessTable || dyldCachedConformanceDescriptor)
        break;
    }
    noteFinalMetadataState(superclassIterator.state);

    validateDyldResults(C, type, protocol, dyldCachedWitnessTable,
                        dyldCachedConformanceDescriptor,
                        instantiateSuperclassMetadata);
    // Return a cached result if we got a witness table. We can't do this if
    // scanSectionsBackwards is set, since a scanned conformance can override a
    // cached result in that case.
    if (!C.scanSectionsBackwards)
      if (dyldCachedWitnessTable)
        return {dyldCachedWitnessTable, false};
  }

  // See if we have an authoritative cached conformance. The
  // ConcurrentReadableHashMap data structure allows us to search the map
  // concurrently without locking.
  auto found =
      searchInConformanceCache(type, protocol, instantiateSuperclassMetadata);
  if (found.first) {
    // An authoritative negative result can be overridden by a result from dyld.
    if (!found.second) {
      if (dyldCachedWitnessTable)
        return {dyldCachedWitnessTable, false};
    }
    return {found.second, false};
  }

  if (dyldCachedConformanceDescriptor) {
    ConformanceCandidate candidate(*dyldCachedConformanceDescriptor);
    auto *matchingType = std::get<const Metadata *>(
        candidate.getMatchingType(type, instantiateSuperclassMetadata));
    assert(matchingType);
    auto witness = dyldCachedConformanceDescriptor->getWitnessTable(matchingType);
    C.cacheResult(type, protocol, witness, /*always cache*/ 0);
    DYLD_CONFORMANCES_LOG("Caching generic conformance to %s found by DYLD",
                          protocol->Name.get());
    return {witness, false};
  }

  // Scan conformance records.
  llvm::SmallDenseMap<const Metadata *, const WitnessTable *> foundWitnesses;
  auto processSection = [&](const ConformanceSection &section) {
    // Eagerly pull records for nondependent witnesses into our cache.
    auto processDescriptor = [&](const ProtocolConformanceDescriptor &descriptor) {
      // We only care about conformances for this protocol.
      if (descriptor.getProtocol() != protocol)
        return;

      // If there's a matching type, record the positive result and return it.
      // The matching type is exact, so they can't go stale, and we should
      // always cache them.
      ConformanceCandidate candidate(descriptor);
      const Metadata *matchingType;
      std::optional<MetadataState> finalState;
      std::tie(matchingType, finalState) =
          candidate.getMatchingType(type, instantiateSuperclassMetadata);
      noteFinalMetadataState(finalState);
      if (matchingType) {
        auto witness = descriptor.getWitnessTable(matchingType);
        C.cacheResult(matchingType, protocol, witness, /*always cache*/ 0);
        foundWitnesses.insert({matchingType, witness});
      }
    };

    if (C.scanSectionsBackwards) {
      for (const auto &record : llvm::reverse(section))
        processDescriptor(*record.get());
    } else {
      for (const auto &record : section)
        processDescriptor(*record.get());
    }
  };

  auto traceState =
      runtime::trace::protocol_conformance_scan_begin(type, protocol);

  auto snapshot = C.SectionsToScan.snapshot();
  if (C.scanSectionsBackwards) {
    for (auto &section : llvm::reverse(snapshot))
      processSection(section);
  } else {
    for (auto &section : snapshot)
      processSection(section);
  }

  // Find the most specific conformance that was scanned.
  const WitnessTable *foundWitness = nullptr;
  const Metadata *foundType = nullptr;

  MaybeIncompleteSuperclassIterator superclassIterator{
      type, instantiateSuperclassMetadata};
  for (; auto searchType = superclassIterator.metadata; ++superclassIterator) {
    const WitnessTable *witness = foundWitnesses.lookup(searchType);
    if (witness) {
      if (!foundType) {
        foundWitness = witness;
        foundType = searchType;
      } else {
        auto foundName = swift_getTypeName(foundType, true);
        auto searchName = swift_getTypeName(searchType, true);
        swift::warning(RuntimeErrorFlagNone,
                       "Warning: '%.*s' conforms to protocol '%s', but it also "
                       "inherits conformance from '%.*s'.  Relying on a "
                       "particular conformance is undefined behaviour.\n",
                       (int)foundName.length, foundName.data,
                       protocol->Name.get(),
                       (int)searchName.length, searchName.data);
      }
    }
  }
  noteFinalMetadataState(superclassIterator.state);

  traceState.end(foundWitness);

  // If it's for a superclass or if we didn't find anything, then add an
  // authoritative entry for this type.
  if (foundType != type)
    // Do not cache negative results if there were uninstantiated superclasses
    // we didn't search. They might have a conformance that will be found later.
    if (foundWitness || !hasUninstantiatedSuperclass)
      C.cacheResult(type, protocol, foundWitness, snapshot.count());

  // A negative result can be overridden by a result from dyld.
  if (!foundWitness) {
    if (dyldCachedWitnessTable)
      return {dyldCachedWitnessTable, false};
  }
  return {foundWitness, hasUninstantiatedSuperclass};
}

static const WitnessTable *
swift_conformsToProtocolCommonImpl(const Metadata *const type,
                                   const ProtocolDescriptor *protocol) {
  const WitnessTable *table;
  bool hasUninstantiatedSuperclass;

  // First, try without instantiating any new superclasses. This avoids
  // an infinite loop for cases like `class Sub: Super<Sub>`. In cases like
  // that, the conformance must exist on the subclass (or at least somewhere
  // in the chain before we get to an uninstantiated superclass) so this search
  // will succeed without trying to instantiate Super while it's already being
  // instantiated.=
  std::tie(table, hasUninstantiatedSuperclass) =
      swift_conformsToProtocolMaybeInstantiateSuperclasses(
          type, protocol, false /*instantiateSuperclassMetadata*/);

  // If no conformance was found, and there is an uninstantiated superclass that
  // was not searched, then try the search again and instantiate all
  // superclasses.
  if (!table && hasUninstantiatedSuperclass)
    std::tie(table, hasUninstantiatedSuperclass) =
        swift_conformsToProtocolMaybeInstantiateSuperclasses(
            type, protocol, true /*instantiateSuperclassMetadata*/);

  return table;
}

static const WitnessTable *
swift_conformsToProtocol2Impl(const Metadata *const type,
                              const ProtocolDescriptor *protocol) {
  protocol = swift_auth_data_non_address(
      protocol, SpecialPointerAuthDiscriminators::ProtocolDescriptor);
  return swift_conformsToProtocolCommonImpl(type, protocol);
}

static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata *const type,
                             const void *protocol) {
  // This call takes `protocol` without a ptrauth signature. We declare
  // it as `void *` to avoid the implicit ptrauth we get from the
  // ptrauth_struct attribute. The static_cast implicitly signs the
  // pointer when we call through to the implementation in
  // swift_conformsToProtocolCommon.
  return swift_conformsToProtocolCommonImpl(
      type, static_cast<const ProtocolDescriptor *>(protocol));
}

const ContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
  auto traceState = runtime::trace::protocol_conformance_scan_begin(node);

  auto &C = Conformances.get();

  for (auto &section : C.SectionsToScan.snapshot()) {
    for (const auto &record : section) {
      if (auto ntd = record->getTypeDescriptor()) {
        if (_contextDescriptorMatchesMangling(ntd, node))
          return traceState.end(ntd);
      }
    }
  }
  return nullptr;
}

template <typename HandleObjc>
bool isSwiftClassMetadataSubclass(const ClassMetadata *subclass,
                                  const ClassMetadata *superclass,
                                  HandleObjc handleObjc) {
  assert(subclass);
  assert(superclass);

  std::optional<MetadataState> subclassState = std::nullopt;
  while (true) {
    auto response = getSuperclassForMaybeIncompleteMetadata(
        subclass, subclassState, true /*instantiateSuperclassMetadata*/);
    if (response.Value == superclass)
      return true;
    if (!response.Value)
      return false;

    subclass = dyn_cast<ClassMetadata>(response.Value);
    if (!subclass || subclass->isPureObjC())
      return handleObjc(response.Value, superclass);
  }
}

// Whether the provided `subclass` is metadata for a subclass* of the superclass
// whose metadata is specified.
//
// The function is robust against incomplete metadata for both subclass and
// superclass.  In the worst case, each intervening class between subclass and
// superclass is demangled.  Besides that slow path, there are a number of fast
// paths:
// - both classes are ObjC: swift_dynamicCastMetatype
// - Complete subclass metadata: loop over Superclass fields
// - NonTransitiveComplete: read the Superclass field once
//
// * A non-strict subclass; that is, given a class X, isSubclass(X.self, X.self)
//   is true.
static bool isSubclass(const Metadata *subclass, const Metadata *superclass) {
  assert(subclass);
  assert(superclass);
  assert(subclass->isAnyClass());
  assert(superclass->isAnyClass());

  if (subclass == superclass)
    return true;
  if (!isa<ClassMetadata>(subclass)) {
    if (!isa<ClassMetadata>(superclass)) {
      // Only ClassMetadata can be incomplete; when the class metadata is not
      // ClassMetadata, just use swift_dynamicCastMetatype.
      return swift_dynamicCastMetatype(subclass, superclass);
    } else {
      // subclass is ObjC, but superclass is not; since it is not possible for
      // any ObjC class to be a subclass of any Swift class, this subclass is
      // not a subclass of this superclass.
      return false;
    }
  }
  const ClassMetadata *swiftSubclass = cast<ClassMetadata>(subclass);
#if SWIFT_OBJC_INTEROP
  if (auto *objcSuperclass = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
    // Walk up swiftSubclass's ancestors until we get to an ObjC class, then
    // kick over to swift_dynamicCastMetatype.
    return isSwiftClassMetadataSubclass(
        swiftSubclass, objcSuperclass->Class,
        [](const Metadata *intermediate, const Metadata *superclass) {
          // Intermediate is an ObjC class, and superclass is an ObjC class;
          // as above, just use swift_dynamicCastMetatype.
          return swift_dynamicCastMetatype(intermediate, superclass);
        });
    return false;
  }
#endif
  if (isa<ForeignClassMetadata>(superclass)) {
    // superclass is foreign, but subclass is not (if it were, the above
    // !isa<ClassMetadata> condition would have been entered).  Since it is not
    // possible for any Swift class to be a subclass of any foreign superclass,
    // this subclass is not a subclass of this superclass.
    return false;
  }
  auto swiftSuperclass = cast<ClassMetadata>(superclass);
  return isSwiftClassMetadataSubclass(swiftSubclass, swiftSuperclass,
                                      [](const Metadata *, const Metadata *) {
                                        // Because (1) no ObjC classes inherit
                                        // from Swift classes and (2)
                                        // `superclass` is not ObjC, if some
                                        // ancestor of `subclass` is ObjC, then
                                        // `subclass` cannot descend from
                                        // `superclass` (otherwise at some point
                                        // some ObjC class would have to inherit
                                        // from a Swift class).
                                        return false;
                                      });
}

static bool isSubclassOrExistential(const Metadata *subclass,
                                    const Metadata *superclass) {
  // If the type which is constrained to a base class is an existential
  // type, and if that existential type includes a superclass constraint,
  // just require that the superclass by which the existential is
  // constrained is a subclass of the base class.
  if (auto *existential = dyn_cast<ExistentialTypeMetadata>(subclass)) {
    if (auto *superclassConstraint = existential->getSuperclassConstraint())
      subclass = superclassConstraint;
  }

  return isSubclass(subclass, superclass);
}

static std::optional<TypeLookupError>
satisfiesLayoutConstraint(const GenericRequirementDescriptor &req,
                          const Metadata *subjectType) {
  switch (req.getLayout()) {
  case GenericRequirementLayoutKind::Class:
    if (!subjectType->satisfiesClassConstraint()) {
      return TYPE_LOOKUP_ERROR_FMT(
          "subject type %.*s does not satisfy class constraint",
          (int)req.getParam().size(), req.getParam().data());
    }
    return std::nullopt;
  }

  // Unknown layout.
  return TYPE_LOOKUP_ERROR_FMT("unknown layout kind %u",
                               static_cast<uint32_t>(req.getLayout()));
}

SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
bool swift::_swift_class_isSubclass(const Metadata *subclass,
                                    const Metadata *superclass) {
  return isSubclass(subclass, superclass);
}

static std::optional<TypeLookupError>
checkInvertibleRequirements(const Metadata *type,
                              InvertibleProtocolSet ignored);

static std::optional<TypeLookupError>
checkGenericRequirement(
    const GenericRequirementDescriptor &req,
    llvm::SmallVectorImpl<const void *> &extraArguments,
    SubstGenericParameterFn substGenericParam,
    SubstDependentWitnessTableFn substWitnessTable,
    llvm::SmallVectorImpl<InvertibleProtocolSet> &suppressed) {
  assert(!req.getFlags().isPackRequirement());

  // Make sure we understand the requirement we're dealing with.
  if (!req.hasKnownKind())
    return TypeLookupError("unknown kind");

  // Resolve the subject generic parameter.
  auto result = swift_getTypeByMangledName(
      MetadataState::Abstract, req.getParam(), extraArguments.data(),
      substGenericParam, substWitnessTable);
  if (result.getError())
    return *result.getError();
  const Metadata *subjectType = result.getType().getMetadata();

  // Check the requirement.
  switch (req.getKind()) {
  case GenericRequirementKind::Protocol: {
    const WitnessTable *witnessTable = nullptr;
    if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
                             &witnessTable)) {
      const char *protoName =
          req.getProtocol() ? req.getProtocol().getName() : "<null>";
      return TYPE_LOOKUP_ERROR_FMT(
          "subject type %.*s does not conform to protocol %s",
          (int)req.getParam().size(), req.getParam().data(), protoName);
    }

    // If we need a witness table, add it.
    if (req.getProtocol().needsWitnessTable()) {
      assert(witnessTable);
      extraArguments.push_back(witnessTable);
    }

    return std::nullopt;
  }

  case GenericRequirementKind::SameType: {
    // Demangle the second type under the given substitutions.
    auto result = swift_getTypeByMangledName(
        MetadataState::Abstract, req.getMangledTypeName(),
        extraArguments.data(), substGenericParam, substWitnessTable);
    if (result.getError())
      return *result.getError();
    auto otherType = result.getType().getMetadata();

    // Check that the types are equivalent.
    if (subjectType != otherType) {
      return TYPE_LOOKUP_ERROR_FMT(
          "subject type %.*s does not match %.*s", (int)req.getParam().size(),
          req.getParam().data(), (int)req.getMangledTypeName().size(),
          req.getMangledTypeName().data());
    }

    return std::nullopt;
  }

  case GenericRequirementKind::Layout: {
    return satisfiesLayoutConstraint(req, subjectType);
  }

  case GenericRequirementKind::BaseClass: {
    // Demangle the base type under the given substitutions.
    auto result = swift_getTypeByMangledName(
        MetadataState::Abstract, req.getMangledTypeName(),
        extraArguments.data(), substGenericParam, substWitnessTable);
    if (result.getError())
      return *result.getError();
    auto baseType = result.getType().getMetadata();

    if (!isSubclassOrExistential(subjectType, baseType))
      return TYPE_LOOKUP_ERROR_FMT(
          "%.*s is not subclass of %.*s", (int)req.getParam().size(),
          req.getParam().data(), (int)req.getMangledTypeName().size(),
          req.getMangledTypeName().data());

    return std::nullopt;
  }

  case GenericRequirementKind::SameConformance: {
    // FIXME: Implement this check.
    return std::nullopt;
  }

  case GenericRequirementKind::SameShape: {
    return TYPE_LOOKUP_ERROR_FMT("can't have same-shape requirement where "
                                 "subject type is not a pack");
  }
  case GenericRequirementKind::InvertedProtocols: {
    uint16_t index = req.getInvertedProtocolsGenericParamIndex();
    if (index == 0xFFFF) {
      return checkInvertibleRequirements(subjectType,
                                         req.getInvertedProtocols());
    }

    // Expand the suppression set so we can record these protocols.
    if (index >= suppressed.size()) {
      suppressed.resize(index + 1, InvertibleProtocolSet());
    }

    // Record these suppressed protocols for this generic parameter.
    suppressed[index] |= req.getInvertedProtocols();
    return std::nullopt;
  }
  }

  // Unknown generic requirement kind.
  return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
                               (unsigned)req.getKind());
}

static std::optional<TypeLookupError>
checkGenericPackRequirement(
    const GenericRequirementDescriptor &req,
    llvm::SmallVectorImpl<const void *> &extraArguments,
    SubstGenericParameterFn substGenericParam,
    SubstDependentWitnessTableFn substWitnessTable,
    llvm::SmallVectorImpl<InvertibleProtocolSet> &suppressed) {
  assert(req.getFlags().isPackRequirement());

  // Make sure we understand the requirement we're dealing with.
  if (!req.hasKnownKind())
    return TypeLookupError("unknown kind");

  // Resolve the subject generic parameter.
  auto result = swift::getTypePackByMangledName(
      req.getParam(), extraArguments.data(),
      substGenericParam, substWitnessTable);
  if (result.getError())
    return *result.getError();
  MetadataPackPointer subjectType = result.getType();
  assert(subjectType.getLifetime() == PackLifetime::OnHeap);

  // Check the requirement.
  switch (req.getKind()) {
  case GenericRequirementKind::Protocol: {
    llvm::SmallVector<const WitnessTable *, 4> witnessTables;

    // Look up the conformance of each pack element to the protocol.
    for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
      const Metadata *elt = subjectType.getElements()[i];

      const WitnessTable *witnessTable = nullptr;
      if (!_conformsToProtocol(nullptr, elt, req.getProtocol(),
                               &witnessTable)) {
        const char *protoName =
            req.getProtocol() ? req.getProtocol().getName() : "<null>";
        return TYPE_LOOKUP_ERROR_FMT(
            "subject type %.*s does not conform to protocol %s at pack index %zu",
            (int)req.getParam().size(), req.getParam().data(), protoName, i);
      }

      if (req.getProtocol().needsWitnessTable())
        witnessTables.push_back(witnessTable);
    }

    // If we need a witness table, add it.
    if (req.getProtocol().needsWitnessTable()) {
      assert(witnessTables.size() == subjectType.getNumElements());
      auto *pack = swift_allocateWitnessTablePack(witnessTables.data(),
                                                  witnessTables.size());
      extraArguments.push_back(pack);
    }

    return std::nullopt;
  }

  case GenericRequirementKind::SameType: {
    // Resolve the constraint generic parameter.
    auto result = swift::getTypePackByMangledName(
        req.getMangledTypeName(), extraArguments.data(),
        substGenericParam, substWitnessTable);
    if (result.getError())
      return *result.getError();
    MetadataPackPointer constraintType = result.getType();
    assert(constraintType.getLifetime() == PackLifetime::OnHeap);

    if (subjectType.getNumElements() != constraintType.getNumElements()) {
      return TYPE_LOOKUP_ERROR_FMT(
            "mismatched pack lengths in same-type pack requirement %.*s: %zu vs %zu",
            (int)req.getParam().size(), req.getParam().data(),
            subjectType.getNumElements(), constraintType.getNumElements());
    }

    for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
      auto *subjectElt = subjectType.getElements()[i];
      auto *constraintElt = constraintType.getElements()[i];

      if (subjectElt != constraintElt) {
        return TYPE_LOOKUP_ERROR_FMT(
            "subject type %.*s does not match %.*s at pack index %zu",
            (int)req.getParam().size(),
            req.getParam().data(), (int)req.getMangledTypeName().size(),
            req.getMangledTypeName().data(), i);
      }
    }

    return std::nullopt;
  }

  case GenericRequirementKind::Layout: {
    for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
      const Metadata *elt = subjectType.getElements()[i];
      if (auto result = satisfiesLayoutConstraint(req, elt))
        return result;
    }

    return std::nullopt;
  }

  case GenericRequirementKind::BaseClass: {
    // Demangle the base type under the given substitutions.
    auto result = swift_getTypeByMangledName(
        MetadataState::Abstract, req.getMangledTypeName(),
        extraArguments.data(), substGenericParam, substWitnessTable);
    if (result.getError())
      return *result.getError();
    auto baseType = result.getType().getMetadata();

    // Check that each pack element inherits from the base class.
    for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
      const Metadata *elt = subjectType.getElements()[i];

      if (!isSubclassOrExistential(elt, baseType))
      return TYPE_LOOKUP_ERROR_FMT(
          "%.*s is not subclass of %.*s at pack index %zu",
          (int)req.getParam().size(),
          req.getParam().data(), (int)req.getMangledTypeName().size(),
          req.getMangledTypeName().data(), i);
    }

    return std::nullopt;
  }

  case GenericRequirementKind::SameConformance: {
    // FIXME: Implement this check.
    return std::nullopt;
  }

  case GenericRequirementKind::SameShape: {
    auto result = swift::getTypePackByMangledName(
        req.getMangledTypeName(), extraArguments.data(),
        substGenericParam, substWitnessTable);
    if (result.getError())
      return *result.getError();
    MetadataPackPointer otherType = result.getType();
    assert(otherType.getLifetime() == PackLifetime::OnHeap);

    if (subjectType.getNumElements() != otherType.getNumElements()) {
      return TYPE_LOOKUP_ERROR_FMT("same-shape requirement unsatisfied; "
                                   "%zu != %zu",
                                   subjectType.getNumElements(),
                                   otherType.getNumElements() );
    }

    return std::nullopt;
  }

  case GenericRequirementKind::InvertedProtocols: {
    uint16_t index = req.getInvertedProtocolsGenericParamIndex();
    if (index == 0xFFFF) {
      // Check that each pack element meets the invertible requirements.
      for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
        const Metadata *elt = subjectType.getElements()[i];

        if (auto error = checkInvertibleRequirements(
                elt, req.getInvertedProtocols()))
          return error;
      }

      return std::nullopt;
    }

    // Expand the suppression set so we can record these protocols.
    if (index >= suppressed.size()) {
      suppressed.resize(index + 1, InvertibleProtocolSet());
    }

    // Record these suppressed protocols for this generic parameter.
    suppressed[index] |= req.getInvertedProtocols();
    return std::nullopt;
  }
  }

  // Unknown generic requirement kind.
  return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
                               (unsigned)req.getKind());
}

static std::optional<TypeLookupError>
checkInvertibleRequirementsStructural(const Metadata *type,
                                        InvertibleProtocolSet ignored) {
  switch (type->getKind()) {
  case MetadataKind::Class:
  case MetadataKind::Struct:
  case MetadataKind::Enum:
  case MetadataKind::Optional:
  case MetadataKind::ForeignClass:
  case MetadataKind::ForeignReferenceType:
  case MetadataKind::ObjCClassWrapper:
    // All handled via context descriptor in the caller.
    return std::nullopt;

  case MetadataKind::HeapLocalVariable:
  case MetadataKind::Opaque:
  case MetadataKind::HeapGenericLocalVariable:
  case MetadataKind::ErrorObject:
  case MetadataKind::Task:
  case MetadataKind::Job:
    // Not part of the user-visible type system; assumed to handle all
    // invertible requirements.
    return std::nullopt;

  case MetadataKind::Tuple: {
    // Check every element type in the tuple.
    auto tupleMetadata = cast<TupleTypeMetadata>(type);
    for (unsigned i = 0, n = tupleMetadata->NumElements; i != n; ++i) {
      if (auto error =
              checkInvertibleRequirements(&*tupleMetadata->getElement(i).Type,
                                            ignored))
        return error;
    }
    return std::nullopt;
  }

  case MetadataKind::Function: {
    auto functionMetadata = cast<FunctionTypeMetadata>(type);

    // Determine the set of protocols that are suppressed by the function
    // type.
    InvertibleProtocolSet suppressed;
    if (functionMetadata->hasExtendedFlags()) {
      suppressed = functionMetadata->getExtendedFlags()
          .getInvertedProtocols();
    }

    // Map the existing "noescape" bit as a suppressed protocol, when
    // appropriate.
    switch (functionMetadata->getConvention()) {
    case FunctionMetadataConvention::Swift:
      // Swift function types can be non-escaping, so honor the bit.
      if (!functionMetadata->isEscaping())
        suppressed.insert(InvertibleProtocolKind::Escapable);
      break;

    case FunctionMetadataConvention::Block:
      // Objective-C block types don't encode non-escaping-ness in metadata,
      // so we assume that they are always escaping.
      break;

    case FunctionMetadataConvention::Thin:
    case FunctionMetadataConvention::CFunctionPointer:
      // Thin and C function pointers have no captures, so whether they
      // escape is irrelevant.
      break;
    }

    auto missing = suppressed - ignored;
    if (!missing.empty()) {
      return TYPE_LOOKUP_ERROR_FMT(
          "function type missing invertible protocols %x", missing.rawBits());
    }

    return std::nullopt;
  }

  case MetadataKind::ExtendedExistential: {
    auto existential = cast<ExtendedExistentialTypeMetadata>(type);
    auto &shape = *existential->Shape;
    llvm::ArrayRef<GenericRequirementDescriptor> reqs(
        shape.getReqSigRequirements(), shape.getNumReqSigRequirements());
    // Look for any suppressed protocol requirements. If the existential
    // has suppressed a protocol that is not ignored, then the existential
    // does not meet the specified requirements.
    for (const auto& req : reqs) {
      if (req.getKind() != GenericRequirementKind::InvertedProtocols)
        continue;

      auto suppressed = req.getInvertedProtocols();
      auto missing = suppressed - ignored;
      if (!missing.empty()) {
        return TYPE_LOOKUP_ERROR_FMT(
            "existential type missing invertible protocols %x",
            missing.rawBits());
      }
    }

    return std::nullopt;
  }

  case MetadataKind::Metatype:
  case MetadataKind::ExistentialMetatype:
    // Metatypes themselves can't have invertible protocols.
    return std::nullopt;

  case MetadataKind::Existential:
    // The existential representation has no room for specifying any
    // suppressed requirements, so it always succeeds.
    return std::nullopt;

  case MetadataKind::LastEnumerated:
    break;
  }

  // Just accept any unknown types.
  return std::nullopt;
}

/// Check that the given `type` meets all invertible protocol requirements
/// that haven't been explicitly suppressed by `ignored`.
std::optional<TypeLookupError>
checkInvertibleRequirements(const Metadata *type, 
                              InvertibleProtocolSet ignored) {
  auto contextDescriptor = type->getTypeContextDescriptor();
  if (!contextDescriptor)
    return checkInvertibleRequirementsStructural(type, ignored);

  // If no conformances are suppressed, then it conforms to everything.
  if (!contextDescriptor->hasInvertibleProtocols()) {
    return std::nullopt;
  }

  // If this type has suppressed conformances, but we can't find them...
  // bail out.
  auto InvertedProtocols = contextDescriptor->getInvertedProtocols();
  if (!InvertedProtocols) {
    return TYPE_LOOKUP_ERROR_FMT("unable to find suppressed protocols");
  }

  // Determine the set of invertible conformances that the type has
  // suppressed but aren't being ignored. These are missing conformances
  // based on the primary definition of the type.
  InvertibleProtocolSet missingConformances = *InvertedProtocols - ignored;
  if (missingConformances.empty())
    return std::nullopt;

  // If the context descriptor is not generic, there are no conditional
  // conformances: fail.
  if (!contextDescriptor->isGeneric()) {
    return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
                                 missingConformances.rawBits());
  }

  auto genericContext = contextDescriptor->getGenericContext();
  if (!genericContext ||
      !genericContext->hasConditionalInvertedProtocols()) {
    return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
                                 missingConformances.rawBits());
  }

  // If there are missing conformances that do not have corresponding
  // conditional conformances, then the nominal type does not satisfy these
  // suppressed conformances. We're done.
  auto conditionalSuppressed =
      genericContext->getConditionalInvertedProtocols();
  auto alwaysMissingConformances = missingConformances - conditionalSuppressed;
  if (!alwaysMissingConformances.empty()) {
    return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
                                 alwaysMissingConformances.rawBits());
  }

  // Now we need to check the conditional conformances for each of the
  // missing conformances.
  for (auto invertibleKind : missingConformances) {
    // Get the conditional requirements.
    // Note: This will end up being quadratic in the number of invertible
    // protocols. That number is small (currently 2) and cannot be more than 16,
    // but if it's a problem we can switch to a different strategy.
    auto condReqs =
        genericContext->getConditionalInvertibleProtocolRequirementsFor(
                                                             invertibleKind);

    // Check the conditional requirements.
    llvm::ArrayRef<GenericRequirementDescriptor> requirements(
        reinterpret_cast<const GenericRequirementDescriptor *>(condReqs.data()),
        condReqs.size());
    SubstGenericParametersFromMetadata substFn(type);
    llvm::SmallVector<const void *, 1> extraArguments;
    auto error = _checkGenericRequirements(
        genericContext->getGenericParams(),
        requirements, extraArguments,
        [&substFn](unsigned depth, unsigned index) {
          return substFn.getMetadata(depth, index).Ptr;
        },
        [&substFn](unsigned fullOrdinal, unsigned keyOrdinal) {
          return substFn.getMetadataKeyArgOrdinal(keyOrdinal).Ptr;
        },
        [&substFn](const Metadata *type, unsigned index) {
          return substFn.getWitnessTable(type, index);
        });
    if (error)
      return error;
  }

  return std::nullopt;
}

std::optional<TypeLookupError> swift::_checkGenericRequirements(
    llvm::ArrayRef<GenericParamDescriptor> genericParams,
    llvm::ArrayRef<GenericRequirementDescriptor> requirements,
    llvm::SmallVectorImpl<const void *> &extraArguments,
    SubstGenericParameterFn substGenericParam,
    SubstGenericParameterOrdinalFn substGenericParamOrdinal,
    SubstDependentWitnessTableFn substWitnessTable) {
  // The suppressed conformances for each generic parameter.
  llvm::SmallVector<InvertibleProtocolSet, 4> allSuppressed;

  for (const auto &req : requirements) {
    if (req.getFlags().isPackRequirement()) {
      auto error = checkGenericPackRequirement(req, extraArguments,
                                               substGenericParam,
                                               substWitnessTable,
                                               allSuppressed);
      if (error)
        return error;
    } else {
      auto error = checkGenericRequirement(req, extraArguments,
                                           substGenericParam,
                                           substWitnessTable,
                                           allSuppressed);
      if (error)
        return error;
    }
  }

  // Now, check all of the generic arguments for invertible protocols.
  unsigned numGenericParams = genericParams.size();
  unsigned keyIndex = 0;
  for (unsigned index = 0; index != numGenericParams; ++index) {
    // Non-key arguments don't need to be checked, because they are
    // aliased to another type.
    if (!genericParams[index].hasKeyArgument())
      continue;

    InvertibleProtocolSet suppressed;
    if (index < allSuppressed.size())
      suppressed = allSuppressed[index];

    MetadataOrPack metadataOrPack(substGenericParamOrdinal(index, keyIndex));
    switch (genericParams[index].getKind()) {
    case GenericParamKind::Type: {
      if (!metadataOrPack || metadataOrPack.isMetadataPack()) {
        return TYPE_LOOKUP_ERROR_FMT(
            "unexpected pack for generic parameter %u", index);
      }

      auto metadata = metadataOrPack.getMetadata();
      if (auto error = checkInvertibleRequirements(metadata, suppressed))
        return error;

      break;
    }

    case GenericParamKind::TypePack: {
      // NULL can be used to indicate an empty pack.
      if (!metadataOrPack)
        break;

      if (metadataOrPack.isMetadata()) {
        return TYPE_LOOKUP_ERROR_FMT(
            "unexpected metadata for generic pack parameter %u", index);
      }

      auto pack = metadataOrPack.getMetadataPack();
      if (pack.getElements() != 0) {
        llvm::ArrayRef<const Metadata *> elements(
            pack.getElements(), pack.getNumElements());
        for (auto element : elements) {
          if (auto error = checkInvertibleRequirements(element, suppressed))
            return error;
        }
      }
      break;
    }

    default:
      return TYPE_LOOKUP_ERROR_FMT("unknown generic parameter kind %u",
                                   index);
    }
    keyIndex++;
  }

  // Success!
  return std::nullopt;
}

const Metadata *swift::findConformingSuperclass(
                            const Metadata *type,
                            const ProtocolConformanceDescriptor *conformance) {
  // Figure out which type we're looking for.
  ConformanceCandidate candidate(*conformance);

  const Metadata *conformingType = std::get<const Metadata *>(
      candidate.getMatchingType(type, true /*instantiateSuperclassMetadata*/));
  assert(conformingType);
  return conformingType;
}

#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH