1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
|
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringExtras.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Basic/Unreachable.h"
#include "llvm/ADT/DenseMap.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include "Tracing.h"
#include <new>
#include <vector>
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#define DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION 1u
// Redeclare these functions as weak so we can build against a macOS 12 SDK and
// still test on macOS 11.
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance(const void *protocolDescriptor,
const void *metadataType,
const void *typeDescriptor);
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance(const void *protocol,
const char *foreignTypeIdentityStart,
size_t foreignTypeIdentityLength);
LLVM_ATTRIBUTE_WEAK
uint32_t _dyld_swift_optimizations_version(void);
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
// Redeclare these functions as weak as well.
LLVM_ATTRIBUTE_WEAK bool _dyld_has_preoptimized_swift_protocol_conformances(
const struct mach_header *mh);
LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance_on_disk(const void *protocolDescriptor,
const void *metadataType,
const void *typeDescriptor,
uint32_t flags);
LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance_on_disk(
const void *protocol, const char *foreignTypeIdentityStart,
size_t foreignTypeIdentityLength, uint32_t flags);
#endif // DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
#endif // __has_include(<mach-o/dyld_priv.h>)
// Set this to 1 to enable logging of calls to the dyld shared cache conformance
// table
#if 0
#define DYLD_CONFORMANCES_LOG(fmt, ...) \
fprintf(stderr, "PROTOCOL CONFORMANCE: " fmt "\n", __VA_ARGS__)
#define SHARED_CACHE_LOG_ENABLED 1
#else
#define DYLD_CONFORMANCES_LOG(fmt, ...) (void)0
#endif
// Enable dyld shared cache acceleration only when it's available and we have
// ObjC interop.
#if DYLD_FIND_PROTOCOL_CONFORMANCE_DEFINED && SWIFT_OBJC_INTEROP
#define USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES 1
#endif
using namespace swift;
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolDescriptor::dump() const {
printf("TargetProtocolDescriptor.\n"
"Name: \"%s\".\n",
Name.get());
}
void ProtocolDescriptorFlags::dump() const {
printf("ProtocolDescriptorFlags.\n");
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
printf("Needs Witness Table: %s.\n",
(needsWitnessTable() ? "true" : "false"));
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
printf("Special Protocol: %s.\n",
(bool(getSpecialProtocol()) ? "Error" : "None"));
printf("Class Constraint: %s.\n",
(bool(getClassConstraint()) ? "Class" : "Any"));
printf("Dispatch Strategy: %s.\n",
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}
#endif
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceDescriptor::dump() const {
std::optional<SymbolInfo> info;
auto symbolName = [&](const void *addr) -> const char * {
info = SymbolInfo::lookup(addr);
if (info.has_value() && info->getSymbolName()) {
return info->getSymbolName();
}
return "<unknown addr>";
};
switch (auto kind = getTypeKind()) {
case TypeReferenceKind::DirectObjCClassName:
printf("direct Objective-C class name %s", getDirectObjCClassName());
break;
case TypeReferenceKind::IndirectObjCClass:
printf("indirect Objective-C class %s",
class_getName(*getIndirectObjCClass()));
break;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getTypeDescriptor()));
break;
}
printf(" => ");
printf("witness table pattern (%p) %s\n", getWitnessTablePattern(), symbolName(getWitnessTablePattern()));
}
#endif
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolConformanceDescriptor::verify() const {
auto typeKind = unsigned(getTypeKind());
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
"Corrupted type metadata record kind");
}
#endif
#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
switch (kind) {
case TypeReferenceKind::IndirectObjCClass:
return *getIndirectObjCClass(kind);
case TypeReferenceKind::DirectObjCClassName:
return reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(getDirectObjCClassName(kind)));
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
return nullptr;
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif
static MetadataState
tryGetCompleteMetadataNonblocking(const Metadata *metadata) {
return swift_checkMetadataState(
MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true),
metadata)
.State;
}
/// Get the superclass of metadata, which may be incomplete. When the metadata
/// is not sufficiently complete, then we fall back to demangling the superclass
/// in the nominal type descriptor, which is slow but works. Return {NULL,
/// MetadataState::Complete} if the metadata is not a class, or has no
/// superclass.
///
/// If the metadata's current state is known, it may be passed in as
/// knownMetadataState. This saves the cost of retrieving that info separately.
///
/// When instantiateSuperclassMetadata is true, this function will instantiate
/// superclass metadata when necessary. When false, this will return {NULL,
/// MetadataState::Abstract} to indicate that there's an uninstantiated
/// superclass that was not returned.
static MetadataResponse getSuperclassForMaybeIncompleteMetadata(
const Metadata *metadata, std::optional<MetadataState> knownMetadataState,
bool instantiateSuperclassMetadata) {
const ClassMetadata *classMetadata = dyn_cast<ClassMetadata>(metadata);
if (!classMetadata)
return {_swift_class_getSuperclass(metadata), MetadataState::Complete};
#if SWIFT_OBJC_INTEROP
// Artificial subclasses are not valid type metadata and
// tryGetCompleteMetadataNonblocking will crash on them. However, they're
// always fully set up, so we can just skip it and fetch the Subclass field.
if (classMetadata->isTypeMetadata() && classMetadata->isArtificialSubclass())
return {classMetadata->Superclass, MetadataState::Complete};
// Pure ObjC classes are already set up, and the code below will not be
// happy with them.
if (!classMetadata->isTypeMetadata())
return {classMetadata->Superclass, MetadataState::Complete};
#endif
MetadataState metadataState;
if (knownMetadataState)
metadataState = *knownMetadataState;
else
metadataState = tryGetCompleteMetadataNonblocking(classMetadata);
if (metadataState == MetadataState::Complete) {
// The subclass metadata is complete. Fetch and return the superclass.
auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
return {superMetadata, MetadataState::Complete};
} else if (metadataState == MetadataState::NonTransitiveComplete) {
// The subclass metadata is complete, but, unlike above, not transitively.
// Its Superclass field is valid, so just read that field to get to the
// superclass to proceed to the next step.
auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
auto superState = tryGetCompleteMetadataNonblocking(superMetadata);
return {superMetadata, superState};
} else if (instantiateSuperclassMetadata) {
// The subclass metadata is either LayoutComplete or Abstract, so the
// Superclass field is not valid. To get to the superclass, make the
// expensive call to getSuperclassMetadata which demangles the superclass
// name from the nominal type descriptor to get the metadata for the
// superclass.
MetadataRequest request(MetadataState::Abstract,
/*non-blocking*/ true);
return getSuperclassMetadata(request, classMetadata);
} else {
// The Superclass field is not valid and the caller did not request
// instantiation. Return a NULL superclass and Abstract to indicate that a
// superclass exists but is not yet instantiated.
return {nullptr, MetadataState::Abstract};
}
}
struct MaybeIncompleteSuperclassIterator {
const Metadata *metadata;
std::optional<MetadataState> state;
bool instantiateSuperclassMetadata;
MaybeIncompleteSuperclassIterator(const Metadata *metadata,
bool instantiateSuperclassMetadata)
: metadata(metadata), state(std::nullopt),
instantiateSuperclassMetadata(instantiateSuperclassMetadata) {}
MaybeIncompleteSuperclassIterator &operator++() {
auto response = getSuperclassForMaybeIncompleteMetadata(
metadata, state, instantiateSuperclassMetadata);
metadata = response.Value;
state = response.State;
return *this;
}
const Metadata *operator*() const { return metadata; }
bool operator!=(const MaybeIncompleteSuperclassIterator rhs) const {
return metadata != rhs.metadata;
}
};
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeReferenceKind::IndirectObjCClass:
case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
return getMetadataForClass(cls);
#endif
return nullptr;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor: {
if (auto anyType = getTypeDescriptor()) {
if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
if (!type->isGeneric()) {
if (auto accessFn = type->getAccessFunction())
return accessFn(MetadataState::Abstract).Value;
}
} else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
return _getSimpleProtocolTypeMetadata(protocol);
}
}
return nullptr;
}
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
// If needed, check the conditional requirements.
llvm::SmallVector<const void *, 8> conditionalArgs;
llvm::ArrayRef<GenericParamDescriptor> genericParams;
if (auto typeDescriptor = type->getTypeContextDescriptor())
genericParams = typeDescriptor->getGenericParams();
if (hasConditionalRequirements() || !genericParams.empty()) {
SubstGenericParametersFromMetadata substitutions(type);
auto error = _checkGenericRequirements(
genericParams, getConditionalRequirements(), conditionalArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](unsigned fullOrdinal, unsigned keyOrdinal) {
return substitutions.getMetadataKeyArgOrdinal(keyOrdinal).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (error)
return nullptr;
}
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
return (const WitnessTable *)
swift_getWitnessTableRelative(this, type, conditionalArgs.data());
#else
return swift_getWitnessTable(this, type, conditionalArgs.data());
#endif
}
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
ConformanceSection(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end)
: Begin(begin), End(end) {}
ConformanceSection(const void *ptr, uintptr_t size) {
auto bytes = reinterpret_cast<const char *>(ptr);
Begin = reinterpret_cast<const ProtocolConformanceRecord *>(ptr);
End = reinterpret_cast<const ProtocolConformanceRecord *>(bytes + size);
}
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
const Metadata *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
friend llvm::hash_code hash_value(const ConformanceCacheKey &key) {
return llvm::hash_combine(key.Type, key.Proto);
}
};
struct ConformanceCacheEntry {
private:
ConformanceCacheKey Key;
const WitnessTable *Witness;
public:
ConformanceCacheEntry(ConformanceCacheKey key, const WitnessTable *witness)
: Key(key), Witness(witness) {}
bool matchesKey(const ConformanceCacheKey &key) const {
return Key.Type == key.Type && Key.Proto == key.Proto;
}
friend llvm::hash_code hash_value(const ConformanceCacheEntry &entry) {
return hash_value(entry.Key);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
/// Get the cached witness table, or null if we cached failure.
const WitnessTable *getWitnessTable() const {
return Witness;
}
};
} // end anonymous namespace
// Conformance Cache.
struct ConformanceState {
ConcurrentReadableHashMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
bool scanSectionsBackwards;
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
uintptr_t dyldSharedCacheStart;
uintptr_t dyldSharedCacheEnd;
bool hasOverriddenImage;
bool validateDyldResults;
// Only populated when validateDyldResults is enabled.
ConcurrentReadableArray<ConformanceSection> DyldOptimizedSections;
bool inSharedCache(const void *ptr) {
auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
}
bool dyldOptimizationsActive() { return dyldSharedCacheStart != 0; }
#else
bool dyldOptimizationsActive() { return false; }
#endif
ConformanceState() {
scanSectionsBackwards =
runtime::bincompat::useLegacyProtocolConformanceReverseIteration();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (__builtin_available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, *)) {
if (runtime::environment::SWIFT_DEBUG_ENABLE_SHARED_CACHE_PROTOCOL_CONFORMANCES()) {
if (&_dyld_swift_optimizations_version) {
if (_dyld_swift_optimizations_version() ==
DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION) {
size_t length;
dyldSharedCacheStart =
(uintptr_t)_dyld_get_shared_cache_range(&length);
dyldSharedCacheEnd =
dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
validateDyldResults = runtime::environment::
SWIFT_DEBUG_VALIDATE_SHARED_CACHE_PROTOCOL_CONFORMANCES();
DYLD_CONFORMANCES_LOG("Shared cache range is %#lx-%#lx",
dyldSharedCacheStart, dyldSharedCacheEnd);
} else {
DYLD_CONFORMANCES_LOG("Disabling dyld protocol conformance "
"optimizations due to unknown "
"optimizations version %u",
_dyld_swift_optimizations_version());
dyldSharedCacheStart = 0;
dyldSharedCacheEnd = 0;
}
}
}
}
#endif
// This must run last, as it triggers callbacks that require
// ConformanceState to be set up.
initializeProtocolConformanceLookup();
}
void cacheResult(const Metadata *type, const ProtocolDescriptor *proto,
const WitnessTable *witness, size_t sectionsCount) {
Cache.getOrInsert(ConformanceCacheKey(type, proto),
[&](ConformanceCacheEntry *entry, bool created) {
// Create the entry if needed. If it already exists,
// we're done.
if (!created)
return false;
// Check the current sections count against what was
// passed in. If a section count was passed in and they
// don't match, then this is not an authoritative entry
// and it may have been obsoleted, because the new
// sections could contain a conformance in a more
// specific type.
//
// If they DO match, then we can safely add. Another
// thread might be adding new sections at this point,
// but we will not race with them. That other thread
// will add the new sections, then clear the cache. When
// it clears the cache, it will block waiting for this
// code to complete and relinquish Cache's writer lock.
// If we cache a stale entry, it will be immediately
// cleared.
if (sectionsCount > 0 &&
SectionsToScan.snapshot().count() != sectionsCount)
return false; // abandon the new entry
::new (entry) ConformanceCacheEntry(
ConformanceCacheKey(type, proto), witness);
return true; // keep the new entry
});
}
#ifndef NDEBUG
void verify() const SWIFT_USED;
#endif
};
#ifndef NDEBUG
void ConformanceState::verify() const {
// Iterate over all of the sections and verify all of the protocol
// descriptors.
auto &Self = const_cast<ConformanceState &>(*this);
for (const auto &Section : Self.SectionsToScan.snapshot()) {
for (const auto &Record : Section) {
Record.get()->verify();
}
}
}
#endif
static Lazy<ConformanceState> Conformances;
const void * const swift::_swift_debug_protocolConformanceStatePointer =
&Conformances;
static void _registerProtocolConformances(ConformanceState &C,
ConformanceSection section) {
C.SectionsToScan.push_back(section);
// Blow away the conformances cache to get rid of any negative entries that
// may now be obsolete.
C.Cache.clear();
}
void swift::addImageProtocolConformanceBlockCallbackUnsafe(
const void *baseAddress,
const void *conformances, uintptr_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// Conformance cache should always be sufficiently initialized by this point.
auto &C = Conformances.unsafeGetAlreadyInitialized();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
// If any image in the shared cache is overridden, we need to scan all
// conformance sections in the shared cache. The pre-built table does NOT work
// if the protocol, type, or descriptor are in overridden images. Example:
//
// libX.dylib: struct S {}
// libY.dylib: protocol P {}
// libZ.dylib: extension S: P {}
//
// If libX or libY are overridden, then dyld will not return the S: P
// conformance from libZ. But that conformance still exists and we must still
// return it! Therefore we must scan libZ (and all other dylibs) even though
// it is not overridden.
if (!dyld_shared_cache_some_image_overridden()) {
// Sections in the shared cache are ignored in favor of the shared cache's
// pre-built tables.
if (C.inSharedCache(conformances)) {
DYLD_CONFORMANCES_LOG(
"Skipping conformances section %p in the shared cache", conformances);
if (C.validateDyldResults)
C.DyldOptimizedSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
} else if (&_dyld_has_preoptimized_swift_protocol_conformances &&
_dyld_has_preoptimized_swift_protocol_conformances(
reinterpret_cast<const mach_header *>(baseAddress))) {
// dyld may optimize images outside the shared cache. Skip those too.
DYLD_CONFORMANCES_LOG(
"Skipping conformances section %p optimized by dyld", conformances);
if (C.validateDyldResults)
C.DyldOptimizedSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
#endif
} else {
DYLD_CONFORMANCES_LOG(
"Adding conformances section %p outside the shared cache",
conformances);
}
}
#endif
// If we have a section, enqueue the conformances for lookup.
_registerProtocolConformances(
C, ConformanceSection{conformances, conformancesSize});
}
void swift::addImageProtocolConformanceBlockCallback(
const void *baseAddress,
const void *conformances, uintptr_t conformancesSize) {
Conformances.get();
addImageProtocolConformanceBlockCallbackUnsafe(baseAddress,
conformances,
conformancesSize);
}
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, ConformanceSection{begin, end});
}
/// Search for a conformance descriptor in the ConformanceCache.
/// First element of the return value is `true` if the result is authoritative
/// i.e. the result is for the type itself and not a superclass. If `false`
/// then we cached a conformance on a superclass, but that may be overridden.
/// A return value of `{ false, nullptr }` indicates nothing was cached.
static std::pair<bool, const WitnessTable *>
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
auto &C = Conformances.get();
auto origType = type;
auto snapshot = C.Cache.snapshot();
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto type = superclassIterator.metadata; ++superclassIterator) {
if (auto *Value = snapshot.find(ConformanceCacheKey(type, protocol))) {
return {type == origType, Value->getWitnessTable()};
}
}
// We did not find a cache entry.
return {false, nullptr};
}
/// Get the appropriate context descriptor for a type. If the descriptor is a
/// foreign type descriptor, also return its identity string.
static std::pair<const ContextDescriptor *, llvm::StringRef>
getContextDescriptor(const Metadata *conformingType) {
const auto *description = conformingType->getTypeContextDescriptor();
if (description) {
if (description->hasForeignMetadataInitialization()) {
auto identity = ParsedTypeIdentity::parse(description).FullIdentity;
return {description, identity};
}
return {description, {}};
}
// Handle single-protocol existential types for self-conformance.
auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
if (existentialType == nullptr ||
existentialType->getProtocols().size() != 1 ||
existentialType->getSuperclassConstraint() != nullptr)
return {nullptr, {}};
auto proto = existentialType->getProtocols()[0];
#if SWIFT_OBJC_INTEROP
if (proto.isObjC())
return {nullptr, {}};
#endif
return {proto.getSwiftProtocol(), {}};
}
namespace {
/// Describes a protocol conformance "candidate" that can be checked
/// against a type metadata.
class ConformanceCandidate {
const void *candidate;
bool candidateIsMetadata;
public:
ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }
ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
: ConformanceCandidate()
{
if (auto description = conformance.getTypeDescriptor()) {
candidate = description;
candidateIsMetadata = false;
return;
}
if (auto metadata = conformance.getCanonicalTypeMetadata()) {
candidate = metadata;
candidateIsMetadata = true;
return;
}
}
/// Whether the conforming type exactly matches the conformance candidate.
bool matches(const Metadata *conformingType) const {
// Check whether the types match.
if (candidateIsMetadata && conformingType == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = std::get<const ContextDescriptor *>(
getContextDescriptor(conformingType));
auto candidateDescription =
static_cast<const ContextDescriptor *>(candidate);
if (description && equalContexts(description, candidateDescription))
return true;
}
return false;
}
/// Retrieve the type that matches the conformance candidate, which may
/// be a superclass of the given type. Returns null if this type does not
/// match this conformance, along with the final metadata state of the
/// superclass iterator.
std::pair<const Metadata *, std::optional<MetadataState>>
getMatchingType(const Metadata *conformingType,
bool instantiateSuperclassMetadata) const {
MaybeIncompleteSuperclassIterator superclassIterator{
conformingType, instantiateSuperclassMetadata};
for (; auto conformingType = superclassIterator.metadata;
++superclassIterator) {
if (matches(conformingType))
return {conformingType, std::nullopt};
}
return {nullptr, superclassIterator.state};
}
};
}
static void validateDyldResults(
ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
const WitnessTable *dyldCachedWitnessTable,
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor,
bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (!C.dyldOptimizationsActive() || !C.validateDyldResults)
return;
llvm::SmallVector<const ProtocolConformanceDescriptor *, 8> conformances;
for (auto §ion : C.DyldOptimizedSections.snapshot()) {
for (const auto &record : section) {
auto &descriptor = *record.get();
if (descriptor.getProtocol() != protocol)
continue;
ConformanceCandidate candidate(descriptor);
if (std::get<const Metadata *>(
candidate.getMatchingType(type, instantiateSuperclassMetadata)))
conformances.push_back(&descriptor);
}
}
auto conformancesString = [&]() -> std::string {
std::string result = "";
for (auto *conformance : conformances) {
if (!result.empty())
result += ", ";
result += "0x";
result += llvm::utohexstr(reinterpret_cast<uint64_t>(conformance));
}
return result;
};
if (dyldCachedConformanceDescriptor) {
if (std::find(conformances.begin(), conformances.end(),
dyldCachedConformanceDescriptor) == conformances.end()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld cached conformance "
"descriptor %p not found in conformance records: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, dyldCachedConformanceDescriptor,
conformancesString().c_str());
}
} else {
if (!conformances.empty()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld found no "
"conformance descriptor, but matching descriptors exist: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, conformancesString().c_str());
}
}
#endif
}
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
static _dyld_protocol_conformance_result getDyldSharedCacheConformance(
ConformanceState &C, const ProtocolDescriptor *protocol,
const ClassMetadata *objcClassMetadata,
const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
// Protocols that aren't in the shared cache will never be found in the shared
// cache conformances, skip the call.
if (!C.inSharedCache(protocol)) {
DYLD_CONFORMANCES_LOG(
"Skipping shared cache lookup, protocol %p is not in shared cache.",
protocol);
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
if (!foreignTypeIdentity.empty()) {
// Foreign types are non-unique so those can still be found in the shared
// cache even if the identity string is outside.
DYLD_CONFORMANCES_LOG(
"_dyld_find_foreign_type_protocol_conformance(%p, %.*s, %zu)", protocol,
(int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
return _dyld_find_foreign_type_protocol_conformance(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size());
} else {
// If both the ObjC class metadata and description are outside the shared
// cache, then we'll never find a shared cache conformance, skip the call.
// We can still find a shared cache conformance if one is inside and one is
// outside.
if (!C.inSharedCache(objcClassMetadata) && !C.inSharedCache(description)) {
DYLD_CONFORMANCES_LOG("Skipping shared cache lookup, class %p and "
"description %p are not in shared cache.",
objcClassMetadata, description);
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
DYLD_CONFORMANCES_LOG("_dyld_find_protocol_conformance(%p, %p, %p)",
protocol, objcClassMetadata, description);
return _dyld_find_protocol_conformance(protocol, objcClassMetadata,
description);
}
}
static _dyld_protocol_conformance_result getDyldOnDiskConformance(
ConformanceState &C, const ProtocolDescriptor *protocol,
const ClassMetadata *objcClassMetadata,
const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
if (&_dyld_find_foreign_type_protocol_conformance_on_disk &&
&_dyld_find_protocol_conformance_on_disk) {
if (!foreignTypeIdentity.empty()) {
DYLD_CONFORMANCES_LOG(
"_dyld_find_foreign_type_protocol_conformance_on_disk(%"
"p, %.*s, %zu, 0)",
protocol, (int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
return _dyld_find_foreign_type_protocol_conformance_on_disk(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size(), 0);
} else {
DYLD_CONFORMANCES_LOG(
"_dyld_find_protocol_conformance_on_disk(%p, %p, %p, 0)", protocol,
objcClassMetadata, description);
return _dyld_find_protocol_conformance_on_disk(
protocol, objcClassMetadata, description, 0);
}
}
#endif
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
#endif
/// Query dyld for a protocol conformance, if supported. The return
/// value is a tuple consisting of the found witness table (if any), the found
/// conformance descriptor (if any), and a bool that's true if a failure is
/// definitive.
static std::tuple<const WitnessTable *, const ProtocolConformanceDescriptor *,
bool>
findConformanceWithDyld(ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
const ContextDescriptor *description;
llvm::StringRef foreignTypeIdentity;
std::tie(description, foreignTypeIdentity) = getContextDescriptor(type);
// dyld expects the ObjC class, if any, as the second parameter.
auto objcClassMetadata = swift_getObjCClassFromMetadataConditional(type);
#if SHARED_CACHE_LOG_ENABLED
auto typeName = swift_getTypeName(type, true);
DYLD_CONFORMANCES_LOG("Looking up conformance of %.*s (type=%p, "
"objcClassMetadata=%p, description=%p) to %s (%p)",
(int)typeName.length, typeName.data, type,
objcClassMetadata, description, protocol->Name.get(),
protocol);
#endif
_dyld_protocol_conformance_result dyldResult;
if (C.scanSectionsBackwards) {
// Search "on disk" first, then shared cache.
dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
description, foreignTypeIdentity);
if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
dyldResult = getDyldSharedCacheConformance(
C, protocol, objcClassMetadata, description, foreignTypeIdentity);
} else {
// In normal operation, search the shared cache first.
dyldResult = getDyldSharedCacheConformance(
C, protocol, objcClassMetadata, description, foreignTypeIdentity);
if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
description, foreignTypeIdentity);
}
switch (dyldResult.kind) {
case _dyld_protocol_conformance_result_kind_found_descriptor: {
auto *conformanceDescriptor =
reinterpret_cast<const ProtocolConformanceDescriptor *>(
dyldResult.value);
assert(conformanceDescriptor->getProtocol() == protocol);
assert(std::get<const Metadata *>(
ConformanceCandidate{*conformanceDescriptor}.getMatchingType(
type, instantiateSuperclassMetadata)));
if (conformanceDescriptor->getGenericWitnessTable()) {
DYLD_CONFORMANCES_LOG(
"DYLD found generic conformance descriptor %p for %s, continuing",
conformanceDescriptor, protocol->Name.get());
return std::make_tuple(nullptr, conformanceDescriptor, false);
} else {
// When there are no generics, we can retrieve the witness table cheaply,
// so do it up front.
DYLD_CONFORMANCES_LOG("DYLD Found conformance descriptor %p for %s",
conformanceDescriptor, protocol->Name.get());
auto *witnessTable = conformanceDescriptor->getWitnessTable(type);
return std::make_tuple(witnessTable, conformanceDescriptor, false);
}
break;
}
case _dyld_protocol_conformance_result_kind_found_witness_table:
// If we found a witness table then we're done.
DYLD_CONFORMANCES_LOG("DYLD found witness table %p for conformance to %s",
dyldResult.value, protocol->Name.get());
return std::make_tuple(reinterpret_cast<const WitnessTable *>(dyldResult.value), nullptr,
false);
case _dyld_protocol_conformance_result_kind_not_found:
// If nothing is found, then we'll proceed with checking the runtime's
// caches and scanning conformance records.
DYLD_CONFORMANCES_LOG("DYLD did not find conformance to %s",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, false);
break;
case _dyld_protocol_conformance_result_kind_definitive_failure:
// This type is known not to conform to this protocol. Return failure
// without any further checks.
DYLD_CONFORMANCES_LOG("DYLD found definitive failure for %s",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, true);
default:
// Other values may be added. Consider them equivalent to not_found until
// we implement code to handle them.
DYLD_CONFORMANCES_LOG(
"Unknown result kind %lu from _dyld_find_protocol_conformance()",
(unsigned long)dyldResult.kind);
return std::make_tuple(nullptr, nullptr, false);
}
#else
return std::make_tuple(nullptr, nullptr, false);
#endif
}
/// Check if a type conforms to a protocol, possibly instantiating superclasses
/// that have not yet been instantiated. The return value is a pair consisting
/// of the witness table for the conformance (or NULL if no conformance was
/// found), and a boolean indicating whether there are uninstantiated
/// superclasses that were not searched.
static std::pair<const WitnessTable *, bool>
swift_conformsToProtocolMaybeInstantiateSuperclasses(
const Metadata *const type, const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
auto &C = Conformances.get();
const WitnessTable *dyldCachedWitnessTable = nullptr;
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor =
nullptr;
// Track whether we have uninstantiated superclasses. Each time we iterate
// over our superclasses, we check the final state to see if there are more
// superclasses we haven't instantiated by calling noteFinalMetadataState.
// If we ever see Abstract, that means there are more superclasses we can't
// check yet, and we might get a false negative. We have to do this after each
// iteration (really, just the first iteration, but it's hard to keep track of
// which iteration is the first time), because another thread might
// instantiate the superclass while we're in the middle of searching. If we
// only look at the state after the last iteration, we might have hit a false
// negative before that no longer shows up.
bool hasUninstantiatedSuperclass = false;
auto noteFinalMetadataState = [&](std::optional<MetadataState> state) {
hasUninstantiatedSuperclass =
hasUninstantiatedSuperclass || state == MetadataState::Abstract;
};
// Search the shared cache tables for a conformance for this type, and for
// superclasses (if it's a class).
if (C.dyldOptimizationsActive()) {
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto dyldSearchType = superclassIterator.metadata;
++superclassIterator) {
bool definitiveFailure;
std::tie(dyldCachedWitnessTable, dyldCachedConformanceDescriptor,
definitiveFailure) =
findConformanceWithDyld(C, dyldSearchType, protocol,
instantiateSuperclassMetadata);
if (definitiveFailure)
return {nullptr, false};
if (dyldCachedWitnessTable || dyldCachedConformanceDescriptor)
break;
}
noteFinalMetadataState(superclassIterator.state);
validateDyldResults(C, type, protocol, dyldCachedWitnessTable,
dyldCachedConformanceDescriptor,
instantiateSuperclassMetadata);
// Return a cached result if we got a witness table. We can't do this if
// scanSectionsBackwards is set, since a scanned conformance can override a
// cached result in that case.
if (!C.scanSectionsBackwards)
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
// See if we have an authoritative cached conformance. The
// ConcurrentReadableHashMap data structure allows us to search the map
// concurrently without locking.
auto found =
searchInConformanceCache(type, protocol, instantiateSuperclassMetadata);
if (found.first) {
// An authoritative negative result can be overridden by a result from dyld.
if (!found.second) {
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
return {found.second, false};
}
if (dyldCachedConformanceDescriptor) {
ConformanceCandidate candidate(*dyldCachedConformanceDescriptor);
auto *matchingType = std::get<const Metadata *>(
candidate.getMatchingType(type, instantiateSuperclassMetadata));
assert(matchingType);
auto witness = dyldCachedConformanceDescriptor->getWitnessTable(matchingType);
C.cacheResult(type, protocol, witness, /*always cache*/ 0);
DYLD_CONFORMANCES_LOG("Caching generic conformance to %s found by DYLD",
protocol->Name.get());
return {witness, false};
}
// Scan conformance records.
llvm::SmallDenseMap<const Metadata *, const WitnessTable *> foundWitnesses;
auto processSection = [&](const ConformanceSection §ion) {
// Eagerly pull records for nondependent witnesses into our cache.
auto processDescriptor = [&](const ProtocolConformanceDescriptor &descriptor) {
// We only care about conformances for this protocol.
if (descriptor.getProtocol() != protocol)
return;
// If there's a matching type, record the positive result and return it.
// The matching type is exact, so they can't go stale, and we should
// always cache them.
ConformanceCandidate candidate(descriptor);
const Metadata *matchingType;
std::optional<MetadataState> finalState;
std::tie(matchingType, finalState) =
candidate.getMatchingType(type, instantiateSuperclassMetadata);
noteFinalMetadataState(finalState);
if (matchingType) {
auto witness = descriptor.getWitnessTable(matchingType);
C.cacheResult(matchingType, protocol, witness, /*always cache*/ 0);
foundWitnesses.insert({matchingType, witness});
}
};
if (C.scanSectionsBackwards) {
for (const auto &record : llvm::reverse(section))
processDescriptor(*record.get());
} else {
for (const auto &record : section)
processDescriptor(*record.get());
}
};
auto traceState =
runtime::trace::protocol_conformance_scan_begin(type, protocol);
auto snapshot = C.SectionsToScan.snapshot();
if (C.scanSectionsBackwards) {
for (auto §ion : llvm::reverse(snapshot))
processSection(section);
} else {
for (auto §ion : snapshot)
processSection(section);
}
// Find the most specific conformance that was scanned.
const WitnessTable *foundWitness = nullptr;
const Metadata *foundType = nullptr;
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto searchType = superclassIterator.metadata; ++superclassIterator) {
const WitnessTable *witness = foundWitnesses.lookup(searchType);
if (witness) {
if (!foundType) {
foundWitness = witness;
foundType = searchType;
} else {
auto foundName = swift_getTypeName(foundType, true);
auto searchName = swift_getTypeName(searchType, true);
swift::warning(RuntimeErrorFlagNone,
"Warning: '%.*s' conforms to protocol '%s', but it also "
"inherits conformance from '%.*s'. Relying on a "
"particular conformance is undefined behaviour.\n",
(int)foundName.length, foundName.data,
protocol->Name.get(),
(int)searchName.length, searchName.data);
}
}
}
noteFinalMetadataState(superclassIterator.state);
traceState.end(foundWitness);
// If it's for a superclass or if we didn't find anything, then add an
// authoritative entry for this type.
if (foundType != type)
// Do not cache negative results if there were uninstantiated superclasses
// we didn't search. They might have a conformance that will be found later.
if (foundWitness || !hasUninstantiatedSuperclass)
C.cacheResult(type, protocol, foundWitness, snapshot.count());
// A negative result can be overridden by a result from dyld.
if (!foundWitness) {
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
return {foundWitness, hasUninstantiatedSuperclass};
}
static const WitnessTable *
swift_conformsToProtocolCommonImpl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
const WitnessTable *table;
bool hasUninstantiatedSuperclass;
// First, try without instantiating any new superclasses. This avoids
// an infinite loop for cases like `class Sub: Super<Sub>`. In cases like
// that, the conformance must exist on the subclass (or at least somewhere
// in the chain before we get to an uninstantiated superclass) so this search
// will succeed without trying to instantiate Super while it's already being
// instantiated.=
std::tie(table, hasUninstantiatedSuperclass) =
swift_conformsToProtocolMaybeInstantiateSuperclasses(
type, protocol, false /*instantiateSuperclassMetadata*/);
// If no conformance was found, and there is an uninstantiated superclass that
// was not searched, then try the search again and instantiate all
// superclasses.
if (!table && hasUninstantiatedSuperclass)
std::tie(table, hasUninstantiatedSuperclass) =
swift_conformsToProtocolMaybeInstantiateSuperclasses(
type, protocol, true /*instantiateSuperclassMetadata*/);
return table;
}
static const WitnessTable *
swift_conformsToProtocol2Impl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
protocol = swift_auth_data_non_address(
protocol, SpecialPointerAuthDiscriminators::ProtocolDescriptor);
return swift_conformsToProtocolCommonImpl(type, protocol);
}
static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata *const type,
const void *protocol) {
// This call takes `protocol` without a ptrauth signature. We declare
// it as `void *` to avoid the implicit ptrauth we get from the
// ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_conformsToProtocolCommon.
return swift_conformsToProtocolCommonImpl(
type, static_cast<const ProtocolDescriptor *>(protocol));
}
const ContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
auto traceState = runtime::trace::protocol_conformance_scan_begin(node);
auto &C = Conformances.get();
for (auto §ion : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record->getTypeDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node))
return traceState.end(ntd);
}
}
}
return nullptr;
}
template <typename HandleObjc>
bool isSwiftClassMetadataSubclass(const ClassMetadata *subclass,
const ClassMetadata *superclass,
HandleObjc handleObjc) {
assert(subclass);
assert(superclass);
std::optional<MetadataState> subclassState = std::nullopt;
while (true) {
auto response = getSuperclassForMaybeIncompleteMetadata(
subclass, subclassState, true /*instantiateSuperclassMetadata*/);
if (response.Value == superclass)
return true;
if (!response.Value)
return false;
subclass = dyn_cast<ClassMetadata>(response.Value);
if (!subclass || subclass->isPureObjC())
return handleObjc(response.Value, superclass);
}
}
// Whether the provided `subclass` is metadata for a subclass* of the superclass
// whose metadata is specified.
//
// The function is robust against incomplete metadata for both subclass and
// superclass. In the worst case, each intervening class between subclass and
// superclass is demangled. Besides that slow path, there are a number of fast
// paths:
// - both classes are ObjC: swift_dynamicCastMetatype
// - Complete subclass metadata: loop over Superclass fields
// - NonTransitiveComplete: read the Superclass field once
//
// * A non-strict subclass; that is, given a class X, isSubclass(X.self, X.self)
// is true.
static bool isSubclass(const Metadata *subclass, const Metadata *superclass) {
assert(subclass);
assert(superclass);
assert(subclass->isAnyClass());
assert(superclass->isAnyClass());
if (subclass == superclass)
return true;
if (!isa<ClassMetadata>(subclass)) {
if (!isa<ClassMetadata>(superclass)) {
// Only ClassMetadata can be incomplete; when the class metadata is not
// ClassMetadata, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(subclass, superclass);
} else {
// subclass is ObjC, but superclass is not; since it is not possible for
// any ObjC class to be a subclass of any Swift class, this subclass is
// not a subclass of this superclass.
return false;
}
}
const ClassMetadata *swiftSubclass = cast<ClassMetadata>(subclass);
#if SWIFT_OBJC_INTEROP
if (auto *objcSuperclass = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
// Walk up swiftSubclass's ancestors until we get to an ObjC class, then
// kick over to swift_dynamicCastMetatype.
return isSwiftClassMetadataSubclass(
swiftSubclass, objcSuperclass->Class,
[](const Metadata *intermediate, const Metadata *superclass) {
// Intermediate is an ObjC class, and superclass is an ObjC class;
// as above, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(intermediate, superclass);
});
return false;
}
#endif
if (isa<ForeignClassMetadata>(superclass)) {
// superclass is foreign, but subclass is not (if it were, the above
// !isa<ClassMetadata> condition would have been entered). Since it is not
// possible for any Swift class to be a subclass of any foreign superclass,
// this subclass is not a subclass of this superclass.
return false;
}
auto swiftSuperclass = cast<ClassMetadata>(superclass);
return isSwiftClassMetadataSubclass(swiftSubclass, swiftSuperclass,
[](const Metadata *, const Metadata *) {
// Because (1) no ObjC classes inherit
// from Swift classes and (2)
// `superclass` is not ObjC, if some
// ancestor of `subclass` is ObjC, then
// `subclass` cannot descend from
// `superclass` (otherwise at some point
// some ObjC class would have to inherit
// from a Swift class).
return false;
});
}
static bool isSubclassOrExistential(const Metadata *subclass,
const Metadata *superclass) {
// If the type which is constrained to a base class is an existential
// type, and if that existential type includes a superclass constraint,
// just require that the superclass by which the existential is
// constrained is a subclass of the base class.
if (auto *existential = dyn_cast<ExistentialTypeMetadata>(subclass)) {
if (auto *superclassConstraint = existential->getSuperclassConstraint())
subclass = superclassConstraint;
}
return isSubclass(subclass, superclass);
}
static std::optional<TypeLookupError>
satisfiesLayoutConstraint(const GenericRequirementDescriptor &req,
const Metadata *subjectType) {
switch (req.getLayout()) {
case GenericRequirementLayoutKind::Class:
if (!subjectType->satisfiesClassConstraint()) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not satisfy class constraint",
(int)req.getParam().size(), req.getParam().data());
}
return std::nullopt;
}
// Unknown layout.
return TYPE_LOOKUP_ERROR_FMT("unknown layout kind %u",
static_cast<uint32_t>(req.getLayout()));
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
bool swift::_swift_class_isSubclass(const Metadata *subclass,
const Metadata *superclass) {
return isSubclass(subclass, superclass);
}
static std::optional<TypeLookupError>
checkInvertibleRequirements(const Metadata *type,
InvertibleProtocolSet ignored);
static std::optional<TypeLookupError>
checkGenericRequirement(
const GenericRequirementDescriptor &req,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable,
llvm::SmallVectorImpl<InvertibleProtocolSet> &suppressed) {
assert(!req.getFlags().isPackRequirement());
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind())
return TypeLookupError("unknown kind");
// Resolve the subject generic parameter.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getParam(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
const Metadata *subjectType = result.getType().getMetadata();
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
&witnessTable)) {
const char *protoName =
req.getProtocol() ? req.getProtocol().getName() : "<null>";
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not conform to protocol %s",
(int)req.getParam().size(), req.getParam().data(), protoName);
}
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTable);
extraArguments.push_back(witnessTable);
}
return std::nullopt;
}
case GenericRequirementKind::SameType: {
// Demangle the second type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto otherType = result.getType().getMetadata();
// Check that the types are equivalent.
if (subjectType != otherType) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not match %.*s", (int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data());
}
return std::nullopt;
}
case GenericRequirementKind::Layout: {
return satisfiesLayoutConstraint(req, subjectType);
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto baseType = result.getType().getMetadata();
if (!isSubclassOrExistential(subjectType, baseType))
return TYPE_LOOKUP_ERROR_FMT(
"%.*s is not subclass of %.*s", (int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data());
return std::nullopt;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
return std::nullopt;
}
case GenericRequirementKind::SameShape: {
return TYPE_LOOKUP_ERROR_FMT("can't have same-shape requirement where "
"subject type is not a pack");
}
case GenericRequirementKind::InvertedProtocols: {
uint16_t index = req.getInvertedProtocolsGenericParamIndex();
if (index == 0xFFFF) {
return checkInvertibleRequirements(subjectType,
req.getInvertedProtocols());
}
// Expand the suppression set so we can record these protocols.
if (index >= suppressed.size()) {
suppressed.resize(index + 1, InvertibleProtocolSet());
}
// Record these suppressed protocols for this generic parameter.
suppressed[index] |= req.getInvertedProtocols();
return std::nullopt;
}
}
// Unknown generic requirement kind.
return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
(unsigned)req.getKind());
}
static std::optional<TypeLookupError>
checkGenericPackRequirement(
const GenericRequirementDescriptor &req,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable,
llvm::SmallVectorImpl<InvertibleProtocolSet> &suppressed) {
assert(req.getFlags().isPackRequirement());
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind())
return TypeLookupError("unknown kind");
// Resolve the subject generic parameter.
auto result = swift::getTypePackByMangledName(
req.getParam(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer subjectType = result.getType();
assert(subjectType.getLifetime() == PackLifetime::OnHeap);
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
llvm::SmallVector<const WitnessTable *, 4> witnessTables;
// Look up the conformance of each pack element to the protocol.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, elt, req.getProtocol(),
&witnessTable)) {
const char *protoName =
req.getProtocol() ? req.getProtocol().getName() : "<null>";
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not conform to protocol %s at pack index %zu",
(int)req.getParam().size(), req.getParam().data(), protoName, i);
}
if (req.getProtocol().needsWitnessTable())
witnessTables.push_back(witnessTable);
}
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTables.size() == subjectType.getNumElements());
auto *pack = swift_allocateWitnessTablePack(witnessTables.data(),
witnessTables.size());
extraArguments.push_back(pack);
}
return std::nullopt;
}
case GenericRequirementKind::SameType: {
// Resolve the constraint generic parameter.
auto result = swift::getTypePackByMangledName(
req.getMangledTypeName(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer constraintType = result.getType();
assert(constraintType.getLifetime() == PackLifetime::OnHeap);
if (subjectType.getNumElements() != constraintType.getNumElements()) {
return TYPE_LOOKUP_ERROR_FMT(
"mismatched pack lengths in same-type pack requirement %.*s: %zu vs %zu",
(int)req.getParam().size(), req.getParam().data(),
subjectType.getNumElements(), constraintType.getNumElements());
}
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
auto *subjectElt = subjectType.getElements()[i];
auto *constraintElt = constraintType.getElements()[i];
if (subjectElt != constraintElt) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not match %.*s at pack index %zu",
(int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data(), i);
}
}
return std::nullopt;
}
case GenericRequirementKind::Layout: {
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (auto result = satisfiesLayoutConstraint(req, elt))
return result;
}
return std::nullopt;
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto baseType = result.getType().getMetadata();
// Check that each pack element inherits from the base class.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (!isSubclassOrExistential(elt, baseType))
return TYPE_LOOKUP_ERROR_FMT(
"%.*s is not subclass of %.*s at pack index %zu",
(int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data(), i);
}
return std::nullopt;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
return std::nullopt;
}
case GenericRequirementKind::SameShape: {
auto result = swift::getTypePackByMangledName(
req.getMangledTypeName(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer otherType = result.getType();
assert(otherType.getLifetime() == PackLifetime::OnHeap);
if (subjectType.getNumElements() != otherType.getNumElements()) {
return TYPE_LOOKUP_ERROR_FMT("same-shape requirement unsatisfied; "
"%zu != %zu",
subjectType.getNumElements(),
otherType.getNumElements() );
}
return std::nullopt;
}
case GenericRequirementKind::InvertedProtocols: {
uint16_t index = req.getInvertedProtocolsGenericParamIndex();
if (index == 0xFFFF) {
// Check that each pack element meets the invertible requirements.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (auto error = checkInvertibleRequirements(
elt, req.getInvertedProtocols()))
return error;
}
return std::nullopt;
}
// Expand the suppression set so we can record these protocols.
if (index >= suppressed.size()) {
suppressed.resize(index + 1, InvertibleProtocolSet());
}
// Record these suppressed protocols for this generic parameter.
suppressed[index] |= req.getInvertedProtocols();
return std::nullopt;
}
}
// Unknown generic requirement kind.
return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
(unsigned)req.getKind());
}
static std::optional<TypeLookupError>
checkInvertibleRequirementsStructural(const Metadata *type,
InvertibleProtocolSet ignored) {
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::ForeignClass:
case MetadataKind::ForeignReferenceType:
case MetadataKind::ObjCClassWrapper:
// All handled via context descriptor in the caller.
return std::nullopt;
case MetadataKind::HeapLocalVariable:
case MetadataKind::Opaque:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Task:
case MetadataKind::Job:
// Not part of the user-visible type system; assumed to handle all
// invertible requirements.
return std::nullopt;
case MetadataKind::Tuple: {
// Check every element type in the tuple.
auto tupleMetadata = cast<TupleTypeMetadata>(type);
for (unsigned i = 0, n = tupleMetadata->NumElements; i != n; ++i) {
if (auto error =
checkInvertibleRequirements(&*tupleMetadata->getElement(i).Type,
ignored))
return error;
}
return std::nullopt;
}
case MetadataKind::Function: {
auto functionMetadata = cast<FunctionTypeMetadata>(type);
// Determine the set of protocols that are suppressed by the function
// type.
InvertibleProtocolSet suppressed;
if (functionMetadata->hasExtendedFlags()) {
suppressed = functionMetadata->getExtendedFlags()
.getInvertedProtocols();
}
// Map the existing "noescape" bit as a suppressed protocol, when
// appropriate.
switch (functionMetadata->getConvention()) {
case FunctionMetadataConvention::Swift:
// Swift function types can be non-escaping, so honor the bit.
if (!functionMetadata->isEscaping())
suppressed.insert(InvertibleProtocolKind::Escapable);
break;
case FunctionMetadataConvention::Block:
// Objective-C block types don't encode non-escaping-ness in metadata,
// so we assume that they are always escaping.
break;
case FunctionMetadataConvention::Thin:
case FunctionMetadataConvention::CFunctionPointer:
// Thin and C function pointers have no captures, so whether they
// escape is irrelevant.
break;
}
auto missing = suppressed - ignored;
if (!missing.empty()) {
return TYPE_LOOKUP_ERROR_FMT(
"function type missing invertible protocols %x", missing.rawBits());
}
return std::nullopt;
}
case MetadataKind::ExtendedExistential: {
auto existential = cast<ExtendedExistentialTypeMetadata>(type);
auto &shape = *existential->Shape;
llvm::ArrayRef<GenericRequirementDescriptor> reqs(
shape.getReqSigRequirements(), shape.getNumReqSigRequirements());
// Look for any suppressed protocol requirements. If the existential
// has suppressed a protocol that is not ignored, then the existential
// does not meet the specified requirements.
for (const auto& req : reqs) {
if (req.getKind() != GenericRequirementKind::InvertedProtocols)
continue;
auto suppressed = req.getInvertedProtocols();
auto missing = suppressed - ignored;
if (!missing.empty()) {
return TYPE_LOOKUP_ERROR_FMT(
"existential type missing invertible protocols %x",
missing.rawBits());
}
}
return std::nullopt;
}
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
// Metatypes themselves can't have invertible protocols.
return std::nullopt;
case MetadataKind::Existential:
// The existential representation has no room for specifying any
// suppressed requirements, so it always succeeds.
return std::nullopt;
case MetadataKind::LastEnumerated:
break;
}
// Just accept any unknown types.
return std::nullopt;
}
/// Check that the given `type` meets all invertible protocol requirements
/// that haven't been explicitly suppressed by `ignored`.
std::optional<TypeLookupError>
checkInvertibleRequirements(const Metadata *type,
InvertibleProtocolSet ignored) {
auto contextDescriptor = type->getTypeContextDescriptor();
if (!contextDescriptor)
return checkInvertibleRequirementsStructural(type, ignored);
// If no conformances are suppressed, then it conforms to everything.
if (!contextDescriptor->hasInvertibleProtocols()) {
return std::nullopt;
}
// If this type has suppressed conformances, but we can't find them...
// bail out.
auto InvertedProtocols = contextDescriptor->getInvertedProtocols();
if (!InvertedProtocols) {
return TYPE_LOOKUP_ERROR_FMT("unable to find suppressed protocols");
}
// Determine the set of invertible conformances that the type has
// suppressed but aren't being ignored. These are missing conformances
// based on the primary definition of the type.
InvertibleProtocolSet missingConformances = *InvertedProtocols - ignored;
if (missingConformances.empty())
return std::nullopt;
// If the context descriptor is not generic, there are no conditional
// conformances: fail.
if (!contextDescriptor->isGeneric()) {
return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
missingConformances.rawBits());
}
auto genericContext = contextDescriptor->getGenericContext();
if (!genericContext ||
!genericContext->hasConditionalInvertedProtocols()) {
return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
missingConformances.rawBits());
}
// If there are missing conformances that do not have corresponding
// conditional conformances, then the nominal type does not satisfy these
// suppressed conformances. We're done.
auto conditionalSuppressed =
genericContext->getConditionalInvertedProtocols();
auto alwaysMissingConformances = missingConformances - conditionalSuppressed;
if (!alwaysMissingConformances.empty()) {
return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
alwaysMissingConformances.rawBits());
}
// Now we need to check the conditional conformances for each of the
// missing conformances.
for (auto invertibleKind : missingConformances) {
// Get the conditional requirements.
// Note: This will end up being quadratic in the number of invertible
// protocols. That number is small (currently 2) and cannot be more than 16,
// but if it's a problem we can switch to a different strategy.
auto condReqs =
genericContext->getConditionalInvertibleProtocolRequirementsFor(
invertibleKind);
// Check the conditional requirements.
llvm::ArrayRef<GenericRequirementDescriptor> requirements(
reinterpret_cast<const GenericRequirementDescriptor *>(condReqs.data()),
condReqs.size());
SubstGenericParametersFromMetadata substFn(type);
llvm::SmallVector<const void *, 1> extraArguments;
auto error = _checkGenericRequirements(
genericContext->getGenericParams(),
requirements, extraArguments,
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
[&substFn](unsigned fullOrdinal, unsigned keyOrdinal) {
return substFn.getMetadataKeyArgOrdinal(keyOrdinal).Ptr;
},
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
if (error)
return error;
}
return std::nullopt;
}
std::optional<TypeLookupError> swift::_checkGenericRequirements(
llvm::ArrayRef<GenericParamDescriptor> genericParams,
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstGenericParameterOrdinalFn substGenericParamOrdinal,
SubstDependentWitnessTableFn substWitnessTable) {
// The suppressed conformances for each generic parameter.
llvm::SmallVector<InvertibleProtocolSet, 4> allSuppressed;
for (const auto &req : requirements) {
if (req.getFlags().isPackRequirement()) {
auto error = checkGenericPackRequirement(req, extraArguments,
substGenericParam,
substWitnessTable,
allSuppressed);
if (error)
return error;
} else {
auto error = checkGenericRequirement(req, extraArguments,
substGenericParam,
substWitnessTable,
allSuppressed);
if (error)
return error;
}
}
// Now, check all of the generic arguments for invertible protocols.
unsigned numGenericParams = genericParams.size();
unsigned keyIndex = 0;
for (unsigned index = 0; index != numGenericParams; ++index) {
// Non-key arguments don't need to be checked, because they are
// aliased to another type.
if (!genericParams[index].hasKeyArgument())
continue;
InvertibleProtocolSet suppressed;
if (index < allSuppressed.size())
suppressed = allSuppressed[index];
MetadataOrPack metadataOrPack(substGenericParamOrdinal(index, keyIndex));
switch (genericParams[index].getKind()) {
case GenericParamKind::Type: {
if (!metadataOrPack || metadataOrPack.isMetadataPack()) {
return TYPE_LOOKUP_ERROR_FMT(
"unexpected pack for generic parameter %u", index);
}
auto metadata = metadataOrPack.getMetadata();
if (auto error = checkInvertibleRequirements(metadata, suppressed))
return error;
break;
}
case GenericParamKind::TypePack: {
// NULL can be used to indicate an empty pack.
if (!metadataOrPack)
break;
if (metadataOrPack.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT(
"unexpected metadata for generic pack parameter %u", index);
}
auto pack = metadataOrPack.getMetadataPack();
if (pack.getElements() != 0) {
llvm::ArrayRef<const Metadata *> elements(
pack.getElements(), pack.getNumElements());
for (auto element : elements) {
if (auto error = checkInvertibleRequirements(element, suppressed))
return error;
}
}
break;
}
default:
return TYPE_LOOKUP_ERROR_FMT("unknown generic parameter kind %u",
index);
}
keyIndex++;
}
// Success!
return std::nullopt;
}
const Metadata *swift::findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance) {
// Figure out which type we're looking for.
ConformanceCandidate candidate(*conformance);
const Metadata *conformingType = std::get<const Metadata *>(
candidate.getMatchingType(type, true /*instantiateSuperclassMetadata*/));
assert(conformingType);
return conformingType;
}
#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH
|