1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
//===--- StackAllocator.h - A stack allocator -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A bump-pointer allocator that obeys a stack discipline.
//
//===----------------------------------------------------------------------===//
// Define __STDC_WANT_LIB_EXT1__ to get memset_s on platforms that have it.
// Other files may have included string.h without it already, so we also set
// this with a -D flag when building, but this allows tests to build without
// additional trouble.
#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
#include "swift/ABI/MetadataValues.h"
#include "swift/Runtime/Debug.h"
#include "llvm/Support/Alignment.h"
#include <cstddef>
#include <new>
// Notes: swift::fatalError is not shared between libswiftCore and libswift_Concurrency
// and libswift_Concurrency uses swift_Concurrency_fatalError instead.
#ifndef SWIFT_FATAL_ERROR
#define SWIFT_FATAL_ERROR swift::fatalError
#endif
namespace swift {
/// A bump-pointer allocator that obeys a stack discipline.
///
/// StackAllocator performs fast allocation and deallocation of memory by
/// implementing a bump-pointer allocation strategy.
///
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
/// memory rather than relying on a boundless contiguous heap. However, it has
/// bump-pointer semantics in that it is a monotonically growing pool of memory
/// where every allocation is found by merely allocating the next N bytes in
/// the slab, or the next N bytes in the next slab.
///
/// In contrast to a pure bump-pointer allocator, it's possible to free memory.
/// Allocations and deallocations must follow a strict stack discipline. In
/// general, slabs which become unused are _not_ freed, but reused for
/// subsequent allocations.
///
/// It's possible to place the first slab into pre-allocated memory.
///
/// The SlabCapacity specifies the capacity for newly allocated slabs.
///
/// SlabMetadataPtr specifies a fake metadata pointer to place at the beginning
/// of slab allocations, so analysis tools can identify them.
template <size_t SlabCapacity, Metadata *SlabMetadataPtr>
class StackAllocator {
private:
struct Allocation;
struct Slab;
/// The last active allocation.
///
/// A deallocate() must free this allocation.
Allocation *lastAllocation = nullptr;
/// The first slab.
Slab *firstSlab;
/// True if the first slab is pre-allocated.
uint32_t firstSlabIsPreallocated:1;
/// Used for unit testing.
uint32_t numAllocatedSlabs:31;
/// The minimal alignment of allocated memory.
static constexpr size_t alignment = MaximumAlignment;
/// If set to true, memory allocations are checked for buffer overflows and
/// use-after-free, similar to guard-malloc.
static constexpr bool guardAllocations =
#ifdef NDEBUG
false;
#else
true;
#endif
static constexpr uintptr_t magicUninitialized = (uintptr_t)0xcdcdcdcdcdcdcdcdull;
static constexpr uintptr_t magicEndOfAllocation = (uintptr_t)0xdeadbeafdeadbeafull;
/// A memory slab holding multiple allocations.
///
/// This struct is actually just the slab header. The slab buffer is tail
/// allocated after Slab.
struct Slab {
/// A fake metadata pointer that analysis tools can use to identify slab
/// allocations.
const void *metadata;
/// A single linked list of all allocated slabs.
Slab *next = nullptr;
// Capacity and offset do not include these header fields.
uint32_t capacity;
uint32_t currentOffset = 0;
// Here starts the tail allocated memory buffer of the slab.
Slab(size_t newCapacity)
: metadata(SlabMetadataPtr), capacity(newCapacity) {
assert((size_t)capacity == newCapacity && "capacity overflow");
}
/// The size of the slab header.
static constexpr size_t headerSize() {
return (sizeof(Slab) + alignment - 1) & ~(alignment - 1);
}
/// Return \p size with the added overhead of the slab header.
static size_t includingHeader(size_t size) {
return headerSize() + size;
}
/// Clear the fake metadata pointer. Call before freeing so that leftover
/// heap garbage doesn't have slab metadata pointers in it.
void clearMetadata() {
// Use memset_s on Apple platforms. Fall back to a plain
// assignment on other platforms. This is not necessary for
// correctness, just as an aid to analysis tools, so it's OK if
// the fallback gets optimized out.
#if defined(__APPLE__)
memset_s(&metadata, sizeof(metadata), 0, sizeof(metadata));
#else
metadata = 0;
#endif
}
/// Return the payload buffer address at \p atOffset.
///
/// Note: it's valid to call this function on a not-yet-constructed slab.
char *getAddr(size_t atOffset) {
return (char *)this + headerSize() + atOffset;
}
/// Return true if this slab can fit an allocation of \p size.
///
/// \p size does not include the allocation header, but must include the
/// overhead for guardAllocations (if enabled).
inline bool canAllocate(size_t size) const {
return currentOffset + Allocation::includingHeader(size) <= capacity;
}
/// Return true, if no memory is allocated in this slab.
bool isEmpty() const { return currentOffset == 0; }
/// Allocate \p alignedSize of bytes in this slab.
///
/// \p alignedSize does not include the allocation header, but must include
/// the overhead for guardAllocations (if enabled).
///
/// Precondition: \p alignedSize must be aligned up to
/// StackAllocator::alignment.
/// Precondition: there must be enough space in this slab to fit the
/// allocation.
Allocation *allocate(size_t alignedSize, Allocation *lastAllocation) {
assert(llvm::isAligned(llvm::Align(alignment), alignedSize));
assert(canAllocate(alignedSize));
void *buffer = getAddr(currentOffset);
auto *allocation = ::new (buffer) Allocation(lastAllocation, this);
currentOffset += Allocation::includingHeader(alignedSize);
if (guardAllocations) {
uintptr_t *endOfCurrentAllocation = (uintptr_t *)getAddr(currentOffset);
endOfCurrentAllocation[-1] = magicEndOfAllocation;
}
return allocation;
}
/// Deallocate \p allocation.
///
/// Precondition: \p allocation must be an allocation in this slab.
void deallocate(Allocation *allocation) {
assert(allocation->slab == this);
if (guardAllocations) {
auto *endOfAllocation = (uintptr_t *)getAddr(currentOffset);
if (endOfAllocation[-1] != magicEndOfAllocation)
SWIFT_FATAL_ERROR(0, "Buffer overflow in StackAllocator");
for (auto *p = (uintptr_t *)allocation; p < endOfAllocation; ++p)
*p = magicUninitialized;
}
currentOffset = (char *)allocation - getAddr(0);
}
};
/// A single memory allocation.
///
/// This struct is actually just the allocation header. The allocated
/// memory buffer is located after Allocation.
struct Allocation {
/// A single linked list of previous allocations.
Allocation *previous;
/// The containing slab.
Slab *slab;
// Here starts the tail allocated memory.
Allocation(Allocation *previous, Slab *slab) :
previous(previous), slab(slab) {}
void *getAllocatedMemory() {
return (char *)this + headerSize();
}
/// The size of the allocation header.
static size_t headerSize() {
return llvm::alignTo(sizeof(Allocation), llvm::Align(alignment));
}
/// Return \p size with the added overhead of the allocation header.
static size_t includingHeader(size_t size) {
return headerSize() + size;
}
};
// Return a slab which is suitable to allocate \p size memory.
Slab *getSlabForAllocation(size_t size) {
Slab *slab = (lastAllocation ? lastAllocation->slab : firstSlab);
if (slab) {
// Is there enough space in the current slab?
if (slab->canAllocate(size))
return slab;
// Is there a successor slab, which we allocated before (and became free
// in the meantime)?
if (Slab *nextSlab = slab->next) {
assert(nextSlab->isEmpty());
if (nextSlab->canAllocate(size))
return nextSlab;
// No space in the next slab. Although it's empty, the size exceeds its
// capacity.
// As we have to allocate a new slab anyway, free all successor slabs
// and allocate a new one with the accumulated capacity.
size_t alreadyAllocatedCapacity = freeAllSlabs(slab->next);
size = std::max(size, alreadyAllocatedCapacity);
}
}
size_t capacity = std::max(SlabCapacity,
Allocation::includingHeader(size));
void *slabBuffer = malloc(Slab::includingHeader(capacity));
Slab *newSlab = ::new (slabBuffer) Slab(capacity);
if (slab)
slab->next = newSlab;
else
firstSlab = newSlab;
numAllocatedSlabs++;
return newSlab;
}
/// Deallocate all slabs after \p first and set \p first to null.
size_t freeAllSlabs(Slab *&first) {
size_t freedCapacity = 0;
Slab *slab = first;
first = nullptr;
while (slab) {
Slab *next = slab->next;
freedCapacity += slab->capacity;
slab->clearMetadata();
free(slab);
numAllocatedSlabs--;
slab = next;
}
return freedCapacity;
}
public:
/// Construct a StackAllocator without a pre-allocated first slab.
StackAllocator()
: firstSlab(nullptr), firstSlabIsPreallocated(false),
numAllocatedSlabs(0) {}
/// Construct a StackAllocator with a pre-allocated first slab.
StackAllocator(void *firstSlabBuffer, size_t bufferCapacity) : StackAllocator() {
// If the pre-allocated buffer can't hold a slab header, ignore it.
if (bufferCapacity <= Slab::headerSize())
return;
char *start = (char *)llvm::alignAddr(firstSlabBuffer,
llvm::Align(alignment));
char *end = (char *)firstSlabBuffer + bufferCapacity;
assert(start + Slab::headerSize() <= end &&
"buffer for first slab too small");
firstSlab = ::new (start) Slab(end - start - Slab::headerSize());
firstSlabIsPreallocated = true;
numAllocatedSlabs = 0;
}
~StackAllocator() {
if (lastAllocation)
SWIFT_FATAL_ERROR(0, "not all allocations are deallocated");
if (firstSlabIsPreallocated)
firstSlab->clearMetadata();
(void)freeAllSlabs(firstSlabIsPreallocated ? firstSlab->next : firstSlab);
assert(getNumAllocatedSlabs() == 0);
}
static constexpr size_t slabHeaderSize() {
return Slab::headerSize();
}
/// Allocate a memory buffer of \p size.
void *alloc(size_t size) {
if (guardAllocations)
size += sizeof(uintptr_t);
size_t alignedSize = llvm::alignTo(size, llvm::Align(alignment));
Slab *slab = getSlabForAllocation(alignedSize);
Allocation *allocation = slab->allocate(alignedSize, lastAllocation);
lastAllocation = allocation;
assert(llvm::isAddrAligned(llvm::Align(alignment),
allocation->getAllocatedMemory()));
return allocation->getAllocatedMemory();
}
/// Deallocate memory \p ptr.
void dealloc(void *ptr) {
if (!lastAllocation || lastAllocation->getAllocatedMemory() != ptr) {
SWIFT_FATAL_ERROR(0, "freed pointer was not the last allocation");
}
Allocation *prev = lastAllocation->previous;
lastAllocation->slab->deallocate(lastAllocation);
lastAllocation = prev;
}
/// For unit testing.
int getNumAllocatedSlabs() { return numAllocatedSlabs; }
};
} // namespace swift
|