1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
|
//===--- SwiftDtoa.cpp ---------------------------------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2018-2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===---------------------------------------------------------------------===//
//
// Note: This source file is used in different projects where it gets
// compiled variously as ".c" or ".cpp". Please keep the code clean
// portable C so others can share your improvements.
//
/// For binary16, this uses a simple approach that is normally
/// implemented with variable-length arithmetic. However, due to
/// the limited range of binary16, this can be implemented simply
/// with only 32-bit integer arithmetic.
///
/// For other formats, SwiftDtoa uses a modified form of the Grisu2
/// algorithm from Florian Loitsch; "Printing Floating-Point Numbers
/// Quickly and Accurately with Integers", 2010.
/// https://doi.org/10.1145/1806596.1806623
///
/// Some of the Grisu2 modifications were suggested by the "Errol
/// paper": Marc Andrysco, Ranjit Jhala, Sorin Lerner; "Printing
/// Floating-Point Numbers: A Faster, Always Correct Method", 2016.
/// https://doi.org/10.1145/2837614.2837654
/// In particular, the Errol paper explored the impact of higher-precision
/// fixed-width arithmetic on Grisu2 and showed a way to rapidly test
/// the correctness of such algorithms.
///
/// A few further improvements were inspired by the Ryu algorithm
/// from Ulf Anders; "Ryū: fast float-to-string conversion", 2018.
/// https://doi.org/10.1145/3296979.3192369
///
/// In summary, this implementation is:
///
/// * Fast. It uses only fixed-width integer arithmetic and has
/// constant memory requirements. For double-precision values on
/// 64-bit processors, it is competitive with Ryu. For double-precision
/// values on 32-bit processors, and higher-precision values on all
/// processors, it is considerably faster.
///
/// * Always Accurate. Converting the decimal form back to binary
/// will always yield exactly the same value. For the IEEE 754
/// formats, the round-trip will produce exactly the same bit
/// pattern in memory.
///
/// * Always Short. This always selects an accurate result with the
/// minimum number of significant digits.
///
/// * Always Close. Among all accurate, short results, this always
/// chooses the result that is closest to the exact floating-point
/// value. (In case of an exact tie, it rounds the last digit even.)
///
/// * Portable. The code is written in portable C99. The core
/// implementations utilize only fixed-size integer arithmetic.
/// 128-bit integer support is utilized if present but is not
/// necessary. There are thin wrappers that accept platform-native
/// floating point types and delegate to the portable core
/// functions.
///
// ----------------------------------------------------------------------------
#include <inttypes.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "swift/Runtime/SwiftDtoa.h"
#if defined(__SIZEOF_INT128__)
// We get a significant speed boost if we can use the __uint128_t
// type that's present in GCC and Clang on 64-bit architectures. In
// particular, we can do 128-bit arithmetic directly and can
// represent 256-bit integers as collections of 64-bit elements.
#define HAVE_UINT128_T 1
#else
// On 32-bit, we use slower code that manipulates 128-bit
// and 256-bit integers as collections of 32-bit elements.
#define HAVE_UINT128_T 0
#endif
//
// Predefine various arithmetic helpers. Most implementations and extensive
// comments are at the bottom of this file.
//
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
// The power-of-10 tables do not directly store the associated binary
// exponent. That's because the binary exponent is a simple linear
// function of the decimal power (and vice versa), so it's just as
// fast (and uses much less memory) to compute it:
// The binary exponent corresponding to a particular power of 10.
// This matches the power-of-10 tables across the full range of binary128.
#define binaryExponentFor10ToThe(p) ((int)(((((int64_t)(p)) * 55732705) >> 24) + 1))
// A decimal exponent that approximates a particular binary power.
#define decimalExponentFor2ToThe(e) ((int)(((int64_t)e * 20201781) >> 26))
#endif
//
// Helper functions used only by the single-precision binary32 formatter
//
#if SWIFT_DTOA_BINARY32_SUPPORT
static uint64_t multiply64x32RoundingDown(uint64_t lhs, uint32_t rhs) {
static const uint64_t mask32 = UINT32_MAX;
uint64_t t = ((lhs & mask32) * rhs) >> 32;
return t + (lhs >> 32) * rhs;
}
static uint64_t multiply64x32RoundingUp(uint64_t lhs, uint32_t rhs) {
static const uint64_t mask32 = UINT32_MAX;
uint64_t t = (((lhs & mask32) * rhs) + mask32) >> 32;
return t + (lhs >> 32) * rhs;
}
static void intervalContainingPowerOf10_Binary32(int p, uint64_t *lower, uint64_t *upper, int *exponent);
#endif
//
// Helpers used by binary32, binary64, float80, and binary128.
//
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
#if HAVE_UINT128_T
typedef __uint128_t swift_uint128_t;
#define initialize128WithHighLow64(dest, high64, low64) ((dest) = ((__uint128_t)(high64) << 64) | (low64))
#define shiftLeft128(u128, shift) (*(u128) <<= shift)
#else
typedef struct {
uint32_t low, b, c, high;
} swift_uint128_t;
#define initialize128WithHighLow64(dest, high64, low64) \
((dest).low = (uint32_t)(low64), \
(dest).b = (uint32_t)((low64) >> 32), \
(dest).c = (uint32_t)(high64), \
(dest).high = (uint32_t)((high64) >> 32))
static void shiftLeft128(swift_uint128_t *, int shift);
#endif
inline static int finishFormatting(char *, size_t, char *, char *, int, int);
#endif
//
// Helper functions needed by the binary64 formatter.
//
#if SWIFT_DTOA_BINARY64_SUPPORT
#if HAVE_UINT128_T
#define isLessThan128x128(lhs, rhs) ((lhs) < (rhs))
#define subtract128x128(lhs, rhs) (*(lhs) -= (rhs))
#define multiply128xu32(lhs, rhs) (*(lhs) *= (rhs))
#define initialize128WithHigh64(dest, value) ((dest) = (__uint128_t)(value) << 64)
#define extractHigh64From128(arg) ((uint64_t)((arg) >> 64))
#define is128bitZero(arg) ((arg) == 0)
static int extractIntegerPart128(__uint128_t *fixed128, int integerBits) {
const int fractionBits = 128 - integerBits;
int integerPart = (int)(*fixed128 >> fractionBits);
const swift_uint128_t fixedPointMask = (((__uint128_t)1 << fractionBits) - 1);
*fixed128 &= fixedPointMask;
return integerPart;
}
#define shiftRightRoundingDown128(val, shift) ((val) >> (shift))
#define shiftRightRoundingUp128(val, shift) (((val) + (((uint64_t)1 << (shift)) - 1)) >> (shift))
#else
static int isLessThan128x128(swift_uint128_t lhs, swift_uint128_t rhs);
static void subtract128x128(swift_uint128_t *lhs, swift_uint128_t rhs);
static void multiply128xu32(swift_uint128_t *lhs, uint32_t rhs);
#define initialize128WithHigh64(dest, value) \
((dest).low = (dest).b = 0, \
(dest).c = (uint32_t)(value), \
(dest).high = (uint32_t)((value) >> 32))
#define extractHigh64From128(arg) (((uint64_t)(arg).high << 32)|((arg).c))
#define is128bitZero(dest) \
(((dest).low | (dest).b | (dest).c | (dest).high) == 0)
// Treat a uint128_t as a fixed-point value with `integerBits` bits in
// the integer portion. Return the integer portion and zero it out.
static int extractIntegerPart128(swift_uint128_t *fixed128, int integerBits) {
const int highFractionBits = 32 - integerBits;
int integerPart = (int)(fixed128->high >> highFractionBits);
fixed128->high &= ((uint32_t)1 << highFractionBits) - 1;
return integerPart;
}
static swift_uint128_t shiftRightRoundingDown128(swift_uint128_t lhs, int shift);
static swift_uint128_t shiftRightRoundingUp128(swift_uint128_t lhs, int shift);
#endif
static swift_uint128_t multiply128x64RoundingDown(swift_uint128_t lhs, uint64_t rhs);
static swift_uint128_t multiply128x64RoundingUp(swift_uint128_t lhs, uint64_t rhs);
static void intervalContainingPowerOf10_Binary64(int p, swift_uint128_t *lower, swift_uint128_t *upper, int *exponent);
#endif
//
// Helper functions used by the 256-bit backend needed for
// float80 and binary128
//
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
#if HAVE_UINT128_T
// A 256-bit unsigned integer type stored as 3 64-bit words
typedef struct {uint64_t low, midlow, midhigh, high;} swift_uint256_t;
#define initialize256WithHighMidLow64(dest, high64, midhigh64, midlow64, low64) \
((dest).low = (low64), \
(dest).midlow = (midlow64), \
(dest).midhigh = (midhigh64), \
(dest).high = (high64))
#define is256bitZero(dest) \
(((dest).low | (dest).midlow | (dest).midhigh | (dest).high) == 0)
static int extractIntegerPart256(swift_uint256_t *fixed256, int integerBits) {
int integerPart = (int)(fixed256->high >> (64 - integerBits));
const uint64_t fixedPointMask = (((uint64_t)1 << (64 - integerBits)) - 1);
fixed256->high &= fixedPointMask;
return integerPart;
}
#else
// A 256-bit unsigned integer type stored as 8 32-bit words
typedef struct { uint32_t elt[8]; } swift_uint256_t; // [0]=low, [7]=high
#define initialize256WithHighMidLow64(dest, high64, midhigh64, midlow64, low64) \
((dest).elt[0] = (uint64_t)(low64), \
(dest).elt[1] = (uint64_t)(low64) >> 32, \
(dest).elt[2] = (uint64_t)(midlow64), \
(dest).elt[3] = (uint64_t)(midlow64) >> 32, \
(dest).elt[4] = (uint64_t)(midhigh64), \
(dest).elt[5] = (uint64_t)(midhigh64) >> 32, \
(dest).elt[6] = (uint64_t)(high64), \
(dest).elt[7] = (uint64_t)(high64) >> 32)
#define is256bitZero(dest) \
(((dest).elt[0] | (dest).elt[1] | (dest).elt[2] | (dest).elt[3] \
| (dest).elt[4] | (dest).elt[5] | (dest).elt[6] | (dest).elt[7]) == 0)
static int extractIntegerPart256(swift_uint256_t *fixed256, int integerBits) {
int integerPart = (int)(fixed256->elt[7] >> (32 - integerBits));
const uint64_t fixedPointMask = (((uint64_t)1 << (32 - integerBits)) - 1);
fixed256->elt[7] &= fixedPointMask;
return integerPart;
}
#endif
static void multiply256xu32(swift_uint256_t *lhs, uint32_t rhs);
// Multiply a 256-bit fraction times a 128-bit fraction, with controlled rounding
static void multiply256x128RoundingDown(swift_uint256_t *lhs, swift_uint128_t rhs);
static void multiply256x128RoundingUp(swift_uint256_t *lhs, swift_uint128_t rhs);
static void subtract256x256(swift_uint256_t *lhs, swift_uint256_t rhs);
static int isLessThan256x256(swift_uint256_t lhs, swift_uint256_t rhs);
static void shiftRightRoundingDown256(swift_uint256_t *lhs, int shift);
static void shiftRightRoundingUp256(swift_uint256_t *lhs, int shift);
static void intervalContainingPowerOf10_Binary128(int p, swift_uint256_t *lower, swift_uint256_t *upper, int *exponent);
static size_t _swift_dtoa_256bit_backend(char *, size_t, swift_uint128_t, swift_uint128_t, int, int, int, int, bool);
#endif
// A table of all two-digit decimal numbers
#if SWIFT_DTOA_BINARY16_SUPPORT || SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
static const char asciiDigitTable[] =
"0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
#endif
// ================================================================
//
// Helpers to output formatted results for infinity, zero, and NaN
//
// ================================================================
static size_t infinity(char *dest, size_t len, int negative) {
if (negative) {
if (len >= 5) {
memcpy(dest, "-inf", 5);
return 4;
}
} else {
if (len >= 4) {
memcpy(dest, "inf", 4);
return 3;
}
}
if (len > 0) {
dest[0] = '\0';
}
return 0;
}
static size_t zero(char *dest, size_t len, int negative) {
if (negative) {
if (len >= 5) {
memcpy(dest, "-0.0", 5);
return 4;
}
} else {
if (len >= 4) {
memcpy(dest, "0.0", 4);
return 3;
}
}
if (len > 0) {
dest[0] = '\0';
}
return 0;
}
static size_t nan_details(char *dest, size_t len, int negative, int quiet, uint64_t payloadHigh, uint64_t payloadLow) {
const char *sign = negative ? "-" : "";
const char *signalingChar = quiet ? "" : "s";
char buff[64];
if (payloadLow != 0) {
if (payloadHigh != 0) {
snprintf(buff, sizeof(buff), "%s%snan(0x%" PRIx64 "%016" PRIx64 ")",
sign, signalingChar, payloadHigh, payloadLow);
} else {
snprintf(buff, sizeof(buff), "%s%snan(0x%" PRIx64 ")",
sign, signalingChar, payloadLow);
}
} else {
snprintf(buff, sizeof(buff), "%s%snan",
sign, signalingChar);
}
size_t nanlen = strlen(buff);
if (nanlen < len) {
memcpy(dest, buff, nanlen + 1);
return nanlen;
}
if (len > 0) {
dest[0] = '\0';
}
return 0;
}
// ================================================================
//
// BINARY16
//
// ================================================================
#if SWIFT_DTOA_BINARY16_SUPPORT
#if !SWIFT_DTOA_PASS_FLOAT16_AS_FLOAT
// Format a C `_Float16`
size_t swift_dtoa_optimal_binary16(_Float16 d, char *dest, size_t length) {
return swift_dtoa_optimal_binary16_p(&d, dest, length);
}
#endif
// Format an IEEE 754 binary16 half-precision floating point value
// into an optimal text form.
// This does not assume that the C environment has any support
// for binary16.
// Because binary16 has such a limited range, a simple exact
// implementation can fit in 32 bit arithmetic. Since we can easily
// verify every single binary16 value, this can be experimentally
// optimized.
size_t swift_dtoa_optimal_binary16_p(const void *f, char *dest, size_t length) {
static const int significandBitCount = 10;
static const uint32_t significandMask
= ((uint32_t)1 << significandBitCount) - 1;
static const int exponentBitCount = 5;
static const int exponentMask = (1 << exponentBitCount) - 1;
// See comments in swift_dtoa_optimal_binary64_p
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 14
if (length < 1) {
return 0;
}
// Step 0: Deconstruct IEEE 754 binary16 format
uint16_t raw = *(const uint16_t *)f;
int exponentBitPattern = (raw >> significandBitCount) & exponentMask;
uint16_t significandBitPattern = raw & significandMask;
int negative = raw >> 15;
// Step 1: Handle the various input cases:
int binaryExponent;
uint16_t significand;
int isBoundary = significandBitPattern == 0;
if (exponentBitPattern == exponentMask) { // NaN or Infinity
if (isBoundary) { // Infinity
return infinity(dest, length, negative);
} else {
const int quiet = (significandBitPattern >> (significandBitCount - 1)) & 1;
uint16_t payload = significandBitPattern & ((1U << (significandBitCount - 2)) - 1);
return nan_details(dest, length, negative, quiet, 0, payload);
}
} else if (exponentBitPattern == 0) {
if (isBoundary) { // Zero
return zero(dest, length, negative);
} else { // Subnormal
binaryExponent = 1 - exponentBias;
significand = significandBitPattern;
}
} else { // normal
binaryExponent = exponentBitPattern - exponentBias;
uint16_t hiddenBit = (uint32_t)1 << (uint32_t)significandBitCount;
uint16_t fullSignificand = significandBitPattern + hiddenBit;
significand = fullSignificand;
}
// Step 2: Determine the exact target interval
significand <<= 2;
static const uint16_t halfUlp = 2;
uint32_t upperMidpointExact = significand + halfUlp;
static const uint16_t quarterUlp = 1;
uint32_t lowerMidpointExact
= significand - (isBoundary ? quarterUlp : halfUlp);
// Shortest output from here is "1.0" plus null byte
if (length < 4) {
dest[0] = '\0';
return 0;
}
char *p = dest;
if (negative) {
*p++ = '-';
}
if (binaryExponent < -13 || (binaryExponent == -13 && significand < 0x1a38)) {
// Format values < 10^-5 as exponential form
// We know value < 10^-5, so we can do the first scaling step unconditionally
int decimalExponent = -5;
uint32_t u = (upperMidpointExact << (28 - 13 + binaryExponent)) * 100000;
uint32_t l = (lowerMidpointExact << (28 - 13 + binaryExponent)) * 100000;
uint32_t t = (significand << (28 - 13 + binaryExponent)) * 100000;
const uint32_t mask = (1 << 28) - 1;
if (t < ((1 << 28) / 10)) {
u *= 100; l *= 100; t *= 100;
decimalExponent -= 2;
}
if (t < (1 << 28)) {
u *= 10; l *= 10; t *= 10;
decimalExponent -= 1;
}
const int uDigit = u >> 28, lDigit = l >> 28;
if (uDigit == lDigit) {
// There's more than one digit, emit a '.' and the rest
if (p > dest + length - 6) {
dest[0] = '\0';
return 0;
}
*p++ = (t >> 28) + '0';
*p++ = '.';
while (true) {
u = (u & mask) * 10; l = (l & mask) * 10;
const int uDigit = u >> 28, lDigit = l >> 28;
if (uDigit != lDigit) {
t = (t & mask) * 10;
break;
}
t *= 10;
*p++ = uDigit + '0';
}
}
t = (t + (1 << 27)) >> 28; // Add 1/2 to round
if (p > dest + length - 6) { // Exactly 6 bytes written below
dest[0] = '\0';
return 0;
}
*p++ = t + '0';
memcpy(p, "e-", 2);
p += 2;
memcpy(p, asciiDigitTable + (-decimalExponent) * 2, 2);
p += 2;
*p = '\0';
return p - dest;
}
// Format the value using decimal format
// There's an integer portion of no more than 5 digits
int intportion;
if (binaryExponent < 13) {
intportion = significand >> (13 - binaryExponent);
significand -= intportion << (13 - binaryExponent);
} else {
intportion = significand << (binaryExponent - 13);
significand -= intportion >> (binaryExponent - 13);
}
if (intportion < 10) {
if (p > dest + length - 3) {
dest[0] = '\0';
return 0;
}
*p++ = intportion + '0'; // One digit is the most common case
} else if (intportion < 1000) {
// 2 or 3 digits
if (p > dest + length - 4) {
dest[0] = '\0';
return 0;
}
if (intportion > 99) {
*p++ = intportion / 100 + '0';
}
memcpy(p, asciiDigitTable + (intportion % 100) * 2, 2);
p += 2;
} else {
// 4 or 5 digits
if (p > dest + length - 6) {
dest[0] = '\0';
return 0;
}
if (intportion > 9999) {
*p++ = intportion / 10000 + '0';
intportion %= 10000;
}
memcpy(p, asciiDigitTable + (intportion / 100) * 2, 2);
memcpy(p + 2, asciiDigitTable + (intportion % 100) * 2, 2);
p += 4;
}
if (p > dest + length - 3) {
dest[0] = '\0';
return 0;
}
*p++ = '.';
if (significand == 0) { // No fraction, so we're done.
*p++ = '0';
*p = '\0';
return p - dest;
}
// Format the fractional part
uint32_t u = upperMidpointExact << (28 - 13 + binaryExponent);
uint32_t l = lowerMidpointExact << (28 - 13 + binaryExponent);
uint32_t t = significand << (28 - 13 + binaryExponent);
const uint32_t mask = (1 << 28) - 1;
unsigned uDigit, lDigit;
while (true) {
u = (u & mask) * 10; l = (l & mask) * 10;
uDigit = u >> 28; lDigit = l >> 28;
if (uDigit != lDigit) {
t = (t & mask) * 10;
break;
}
t *= 10;
if (p > dest + length - 3) {
dest[0] = '\0';
return 0;
}
*p++ = uDigit + '0';
}
t += 1 << 27; // Add 1/2
if ((t & mask) == 0) { // Was exactly 1/2 (now zero)
t = (t >> 28) & ~1; // Round even
} else {
t >>= 28;
}
if (t <= lDigit && l > 0)
t += 1;
*p++ = t + '0';
*p = '\0';
return p - dest;
}
#endif
// ================================================================
//
// BINARY32
//
// ================================================================
#if SWIFT_DTOA_BINARY32_SUPPORT
#if FLOAT_IS_BINARY32
// Format a C `float`
size_t swift_dtoa_optimal_float(float d, char *dest, size_t length) {
return swift_dtoa_optimal_binary32_p(&d, dest, length);
}
#endif
// Format an IEEE 754 single-precision binary32 format floating-point number.
size_t swift_dtoa_optimal_binary32_p(const void *f, char *dest, size_t length)
{
static const int significandBitCount = FLT_MANT_DIG - 1;
static const uint32_t significandMask
= ((uint32_t)1 << significandBitCount) - 1;
static const int exponentBitCount = 8;
static const int exponentMask = (1 << exponentBitCount) - 1;
// See comments in swift_dtoa_optimal_binary64_p
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 125
// Step 0: Deconstruct the target number
// Note: this strongly assumes IEEE 754 binary32 format
uint32_t raw = *(const uint32_t *)f;
int exponentBitPattern = (raw >> significandBitCount) & exponentMask;
uint32_t significandBitPattern = raw & significandMask;
int negative = raw >> 31;
// Step 1: Handle the various input cases:
int binaryExponent;
uint32_t significand;
if (length < 1) {
return 0;
} else if (exponentBitPattern == exponentMask) { // NaN or Infinity
if (significandBitPattern == 0) { // Infinity
return infinity(dest, length, negative);
} else { // NaN
const int quiet = (significandBitPattern >> (significandBitCount - 1)) & 1;
uint32_t payload = raw & ((1UL << (significandBitCount - 2)) - 1);
return nan_details(dest, length, negative, quiet != 0, 0, payload);
}
} else if (exponentBitPattern == 0) {
if (significandBitPattern == 0) { // Zero
return zero(dest, length, negative);
} else { // Subnormal
binaryExponent = 1 - exponentBias;
significand = significandBitPattern << (32 - significandBitCount - 1);
}
} else { // normal
binaryExponent = exponentBitPattern - exponentBias;
uint32_t hiddenBit = (uint32_t)1 << (uint32_t)significandBitCount;
uint32_t fullSignificand = significandBitPattern + hiddenBit;
significand = fullSignificand << (32 - significandBitCount - 1);
}
// Step 2: Determine the exact unscaled target interval
static const uint32_t halfUlp = (uint32_t)1 << (32 - significandBitCount - 2);
uint64_t upperMidpointExact = (uint64_t)(significand + halfUlp);
int isBoundary = significandBitPattern == 0;
static const uint32_t quarterUlp = halfUlp >> 1;
uint64_t lowerMidpointExact
= (uint64_t)(significand - (isBoundary ? quarterUlp : halfUlp));
// Step 3: Estimate the base 10 exponent
int base10Exponent = decimalExponentFor2ToThe(binaryExponent);
// Step 4: Compute a power-of-10 scale factor
uint64_t powerOfTenRoundedDown = 0;
uint64_t powerOfTenRoundedUp = 0;
int powerOfTenExponent = 0;
static const int bulkFirstDigits = 1;
intervalContainingPowerOf10_Binary32(-base10Exponent + bulkFirstDigits - 1,
&powerOfTenRoundedDown,
&powerOfTenRoundedUp,
&powerOfTenExponent);
const int extraBits = binaryExponent + powerOfTenExponent;
// Step 5: Scale the interval (with rounding)
static const int integerBits = 8;
const int shift = integerBits - extraBits;
const int roundUpBias = (1 << shift) - 1;
static const int fractionBits = 64 - integerBits;
static const uint64_t fractionMask = ((uint64_t)1 << fractionBits) - (uint64_t)1;
uint64_t u, l;
if (significandBitPattern & 1) {
// Narrow the interval (odd significand)
uint64_t u1 = multiply64x32RoundingDown(powerOfTenRoundedDown,
upperMidpointExact);
u = u1 >> shift; // Rounding down
uint64_t l1 = multiply64x32RoundingUp(powerOfTenRoundedUp,
lowerMidpointExact);
l = (l1 + roundUpBias) >> shift; // Rounding Up
} else {
// Widen the interval (even significand)
uint64_t u1 = multiply64x32RoundingUp(powerOfTenRoundedUp,
upperMidpointExact);
u = (u1 + roundUpBias) >> shift; // Rounding Up
uint64_t l1 = multiply64x32RoundingDown(powerOfTenRoundedDown,
lowerMidpointExact);
l = l1 >> shift; // Rounding down
}
// Step 6: Align first digit, adjust exponent
// In particular, this prunes leading zeros from subnormals
uint64_t t = u;
uint64_t delta = u - l;
while (t < (uint64_t)1 << fractionBits) {
base10Exponent -= 1;
t *= 10;
delta *= 10;
}
// Step 7: Generate decimal digits into the destination buffer
char *p = dest;
if (p > dest + length - 3) {
dest[0] = '\0';
return 0;
}
if (negative) {
*p++ = '-';
}
char * const firstOutputChar = p;
// Format first digit as a 2-digit value to get a leading '0'
memcpy(p, asciiDigitTable + (t >> fractionBits) * 2, 2);
t &= fractionMask;
p += 2;
// Emit two digits at a time
while ((delta * 10) < ((t * 10) & fractionMask)) {
if (p > dest + length - 3) {
dest[0] = '\0';
return 0;
}
delta *= 100;
t *= 100;
memcpy(p, asciiDigitTable + (t >> fractionBits) * 2, 2);
t &= fractionMask;
p += 2;
}
// Emit any final digit
if (delta < t) {
if (p > dest + length - 2) {
dest[0] = '\0';
return 0;
}
delta *= 10;
t *= 10;
*p++ = '0' + (t >> fractionBits);
t &= fractionMask;
}
// Adjust the final digit to be closer to the original value
if (delta > t + ((uint64_t)1 << fractionBits)) {
uint64_t skew;
if (isBoundary) {
skew = delta - delta / 3 - t;
} else {
skew = delta / 2 - t;
}
uint64_t one = (uint64_t)(1) << (64 - integerBits);
uint64_t lastAccurateBit = 1ULL << 24;
uint64_t fractionMask = (one - 1) & ~(lastAccurateBit - 1);
uint64_t oneHalf = one >> 1;
if (((skew + (lastAccurateBit >> 1)) & fractionMask) == oneHalf) {
// If the skew is exactly integer + 1/2, round the last
// digit even after adjustment
int adjust = (int)(skew >> (64 - integerBits));
p[-1] -= adjust;
p[-1] &= ~1;
} else {
// Else round to nearest...
int adjust = (int)((skew + oneHalf) >> (64 - integerBits));
p[-1] -= adjust;
}
}
int forceExponential = binaryExponent > 25 || (binaryExponent == 25 && !isBoundary);
return finishFormatting(dest, length, p, firstOutputChar, forceExponential, base10Exponent);
}
#endif
// ================================================================
//
// BINARY64
//
// ================================================================
#if SWIFT_DTOA_BINARY64_SUPPORT
#if LONG_DOUBLE_IS_BINARY64
size_t swift_dtoa_optimal_long_double(long double d, char *dest, size_t length) {
return swift_dtoa_optimal_binary64_p(&d, dest, length);
}
#endif
#if DOUBLE_IS_BINARY64
size_t swift_dtoa_optimal_double(double d, char *dest, size_t length) {
return swift_dtoa_optimal_binary64_p(&d, dest, length);
}
#endif
// Format an IEEE 754 double-precision binary64 format floating-point number.
// The calling convention here assumes that C `double` is this format,
// but otherwise, this does not utilize any floating-point arithmetic
// or library routines.
size_t swift_dtoa_optimal_binary64_p(const void *d, char *dest, size_t length)
{
// Bits in raw significand (not including hidden bit, if present)
static const int significandBitCount = DBL_MANT_DIG - 1;
static const uint64_t significandMask
= ((uint64_t)1 << significandBitCount) - 1;
// Bits in raw exponent
static const int exponentBitCount = 11;
static const int exponentMask = (1 << exponentBitCount) - 1;
// Note: IEEE 754 conventionally uses 1023 as the exponent
// bias. That's because they treat the significand as a
// fixed-point number with one bit (the hidden bit) integer
// portion. The logic here reconstructs the significand as a
// pure fraction, so we need to accommodate that when
// reconstructing the binary exponent.
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 1022
// Step 0: Deconstruct an IEEE 754 binary64 double-precision value
uint64_t raw = *(const uint64_t *)d;
int exponentBitPattern = (raw >> significandBitCount) & exponentMask;
uint64_t significandBitPattern = raw & significandMask;
int negative = raw >> 63;
// Step 1: Handle the various input cases:
if (length < 1) {
return 0;
}
int binaryExponent;
int isBoundary = significandBitPattern == 0;
uint64_t significand;
if (exponentBitPattern == exponentMask) { // NaN or Infinity
if (isBoundary) { // Infinity
return infinity(dest, length, negative);
} else {
const int quiet = (raw >> (significandBitCount - 1)) & 1;
uint64_t payload = raw & ((1ull << (significandBitCount - 2)) - 1);
return nan_details(dest, length, negative, quiet, 0, payload);
}
} else if (exponentBitPattern == 0) {
if (isBoundary) { // Zero
return zero(dest, length, negative);
} else { // subnormal
binaryExponent = 1 - exponentBias;
significand = significandBitPattern
<< (64 - significandBitCount - 1);
}
} else { // normal
binaryExponent = exponentBitPattern - exponentBias;
uint64_t hiddenBit = (uint64_t)1 << significandBitCount;
uint64_t fullSignificand = significandBitPattern + hiddenBit;
significand = fullSignificand << (64 - significandBitCount - 1);
}
// Step 2: Determine the exact unscaled target interval
// Grisu-style algorithms construct the shortest decimal digit
// sequence within a specific interval. To build the appropriate
// interval, we start by computing the midpoints between this
// floating-point value and the adjacent ones. Note that this
// step is an exact computation.
uint64_t halfUlp = (uint64_t)1 << (64 - significandBitCount - 2);
uint64_t quarterUlp = halfUlp >> 1;
uint64_t upperMidpointExact = significand + halfUlp;
uint64_t lowerMidpointExact
= significand - (isBoundary ? quarterUlp : halfUlp);
int isOddSignificand = (significandBitPattern & 1) != 0;
// Step 3: Estimate the base 10 exponent
// Grisu algorithms are based in part on a simple technique for
// generating a base-10 form for a binary floating-point number.
// Start with a binary floating-point number `f * 2^e` and then
// estimate the decimal exponent `p`. You can then rewrite your
// original number as:
//
// ```
// f * 2^e * 10^-p * 10^p
// ```
//
// The last term is part of our output, and a good estimate for
// `p` will ensure that `2^e * 10^-p` is close to 1. Multiplying
// the first three terms then yields a fraction suitable for
// producing the decimal digits. Here we use a very fast estimate
// of `p` that is never off by more than 1; we'll have
// opportunities later to correct any error.
int base10Exponent = decimalExponentFor2ToThe(binaryExponent);
// Step 4: Compute a power-of-10 scale factor
// Compute `10^-p` to 128-bit precision. We generate
// both over- and under-estimates to ensure we can exactly
// bound the later use of these values.
swift_uint128_t powerOfTenRoundedDown;
swift_uint128_t powerOfTenRoundedUp;
int powerOfTenExponent = 0;
static const int bulkFirstDigits = 7;
static const int bulkFirstDigitFactor = 1000000; // 10^(bulkFirstDigits - 1)
// Note the extra factor of 10^bulkFirstDigits -- that will give
// us a headstart on digit generation later on. (In contrast, Ryu
// uses an extra factor of 10^17 here to get all the digits up
// front, but then has to back out any extra digits. Doing that
// with a 17-digit value requires 64-bit division, which is the
// root cause of Ryu's poor performance on 32-bit processors. We
// also might have to back out extra digits if 7 is too many, but
// will only need 32-bit division in that case.)
intervalContainingPowerOf10_Binary64(-base10Exponent + bulkFirstDigits - 1,
&powerOfTenRoundedDown,
&powerOfTenRoundedUp,
&powerOfTenExponent);
const int extraBits = binaryExponent + powerOfTenExponent;
// Step 5: Scale the interval (with rounding)
// As mentioned above, the final digit generation works
// with an interval, so we actually apply the scaling
// to the upper and lower midpoint values separately.
// As part of the scaling here, we'll switch from a pure
// fraction with zero bit integer portion and 128-bit fraction
// to a fixed-point form with 32 bits in the integer portion.
static const int integerBits = 32;
// We scale the interval in one of two different ways,
// depending on whether the significand is even or odd...
swift_uint128_t u, l;
if (isOddSignificand) {
// Case A: Narrow the interval (odd significand)
// Loitsch' original Grisu2 always rounds so as to narrow the
// interval. Since our digit generation will select a value
// within the scaled interval, narrowing the interval
// guarantees that we will find a digit sequence that converts
// back to the original value.
// This ensures accuracy but, as explained in Loitsch' paper,
// this carries a risk that there will be a shorter digit
// sequence outside of our narrowed interval that we will
// miss. This risk obviously gets lower with increased
// precision, but it wasn't until the Errol paper that anyone
// had a good way to test whether a particular implementation
// had sufficient precision. That paper shows a way to enumerate
// the worst-case numbers; those numbers that are extremely close
// to the mid-points between adjacent floating-point values.
// These are the values that might sit just outside of the
// narrowed interval. By testing these values, we can verify
// the correctness of our implementation.
// Multiply out the upper midpoint, rounding down...
swift_uint128_t u1 = multiply128x64RoundingDown(powerOfTenRoundedDown,
upperMidpointExact);
// Account for residual binary exponent and adjust
// to the fixed-point format
u = shiftRightRoundingDown128(u1, integerBits - extraBits);
// Conversely for the lower midpoint...
swift_uint128_t l1 = multiply128x64RoundingUp(powerOfTenRoundedUp,
lowerMidpointExact);
l = shiftRightRoundingUp128(l1, integerBits - extraBits);
} else {
// Case B: Widen the interval (even significand)
// As explained in Errol Theorem 6, in certain cases there is
// a short decimal representation at the exact boundary of the
// scaled interval. When such a number is converted back to
// binary, it will get rounded to the adjacent even
// significand.
// So when the significand is even, we round so as to widen
// the interval in order to ensure that the exact midpoints
// are considered. Of couse, this ensures that we find a
// short result but carries a risk of selecting a result
// outside of the exact scaled interval (which would be
// inaccurate).
// The same testing approach described above (based on results
// in the Errol paper) also applies
// to this case.
swift_uint128_t u1 = multiply128x64RoundingUp(powerOfTenRoundedUp,
upperMidpointExact);
u = shiftRightRoundingUp128(u1, integerBits - extraBits);
swift_uint128_t l1 = multiply128x64RoundingDown(powerOfTenRoundedDown,
lowerMidpointExact);
l = shiftRightRoundingDown128(l1, integerBits - extraBits);
}
// Step 6: Align first digit, adjust exponent
// Calculations above used an estimate for the power-of-ten scale.
// Here, we compensate for any error in that estimate by testing
// whether we have the expected number of digits in the integer
// portion and correcting as necessary. This also serves to
// prune leading zeros from subnormals.
// Except for subnormals, this loop should never run more than once.
// For subnormals, this might run as many as 16 + bulkFirstDigits
// times.
#if HAVE_UINT128_T
while (u < ((__uint128_t)bulkFirstDigitFactor << (128 - integerBits)))
#else
while (u.high < ((uint32_t)bulkFirstDigitFactor << (32 - integerBits)))
#endif
{
base10Exponent -= 1;
multiply128xu32(&l, 10);
multiply128xu32(&u, 10);
}
// Step 7: Produce decimal digits
// One standard approach generates digits for the scaled upper and
// lower boundaries and stops when at the first digit that
// differs. For example, note that 0.1234 is the shortest decimal
// between u = 0.123456 and l = 0.123345.
// Grisu optimizes this by generating digits for the upper bound
// (multiplying by 10 to isolate each digit) while simultaneously
// scaling the interval width `delta`. As we remove each digit
// from the upper bound, the remainder is the difference between
// the base-10 value generated so far and the true upper bound.
// When that remainder is less than the scaled width of the
// interval, we know the current digits specify a value within the
// target interval.
// The logic below actually blends three different digit-generation
// strategies:
// * The first digits are already in the integer portion of the
// fixed-point value, thanks to the `bulkFirstDigits` factor above.
// We can just break those down and write them out.
// * If we generated too many digits, we use a Ryu-inspired technique
// to backtrack.
// * If we generated too few digits (the usual case), we use an
// optimized form of the Grisu2 method to produce the remaining
// values.
// Generate digits for `t` with interval width `delta = u - l`
swift_uint128_t t = u;
swift_uint128_t delta = u;
subtract128x128(&delta, l);
char *p = dest;
if (negative) {
if (p >= dest + length) {
dest[0] = '\0';
return 0;
}
*p++ = '-';
}
char * const firstOutputChar = p;
// The `bulkFirstDigits` adjustment above already set up the first 7 digits
// Format as 8 digits (with a leading zero that we'll exploit later on).
uint32_t d12345678 = extractIntegerPart128(&t, integerBits);
if (!isLessThan128x128(delta, t)) {
// Oops! We have too many digits. Back out the extra ones to
// get the right answer. This is similar to Ryu, but since
// we've only produced seven digits, we only need 32-bit
// arithmetic here. A few notes:
// * Our target hardware always supports 32-bit hardware division,
// so this should be reasonably fast.
// * For small integers (like "2"), Ryu would have to back out 16
// digits; we only have to back out 6.
// * Very few double-precision values actually need fewer than 7
// digits. So this is rarely used except in workloads that
// specifically use double for small integers. This is more
// common for binary32, of course.
// TODO: Add benchmarking for "small integers" -1000...1000 to
// verify that this does not unduly penalize those values.
// Why this is critical for performance: In order to use the
// 8-digits-at-a-time optimization below, we need at least 30
// bits in the integer part of our fixed-point format above. If
// we only use bulkDigits = 1, that leaves only 128 - 30 = 98
// bit accuracy for our scaling step, which isn't enough
// (binary64 needs ~110 bits for correctness). So we have to
// use a large bulkDigits value to make full use of the 128-bit
// scaling above, which forces us to have some form of logic to
// handle the case of too many digits. The alternatives are to
// use >128 bit values (slower) or do some complex finessing of
// bit counts by working with powers of 5 instead of 10.
#if HAVE_UINT128_T
uint64_t uHigh = u >> 64;
uint64_t lHigh = l >> 64;
if (0 != (uint64_t)l) {
lHigh += 1;
}
#else
uint64_t uHigh = ((uint64_t)u.high << 32) + u.c;
uint64_t lHigh = ((uint64_t)l.high << 32) + l.c;
if (0 != (l.b | l.low)) {
lHigh += 1;
}
#endif
uint64_t tHigh;
if (isBoundary) {
tHigh = (uHigh + lHigh * 2) / 3;
} else {
tHigh = (uHigh + lHigh) / 2;
}
uint32_t u0 = uHigh >> (64 - integerBits);
uint32_t l0 = lHigh >> (64 - integerBits);
if ((lHigh & ((1ULL << (64 - integerBits)) - 1)) != 0) {
l0 += 1;
}
uint32_t t0 = tHigh >> (64 - integerBits);
int t0digits = 8;
uint32_t u1 = u0 / 10;
uint32_t l1 = (l0 + 9) / 10;
int trailingZeros = is128bitZero(t);
int droppedDigit = ((tHigh * 10) >> (64 - integerBits)) % 10;
while (u1 >= l1 && u1 != 0) {
u0 = u1;
l0 = l1;
trailingZeros &= droppedDigit == 0;
droppedDigit = t0 % 10;
t0 /= 10;
t0digits--;
u1 = u0 / 10;
l1 = (l0 + 9) / 10;
}
// Correct the final digit
if (droppedDigit > 5 || (droppedDigit == 5 && !trailingZeros)) {
t0 += 1;
} else if (droppedDigit == 5 && trailingZeros) {
t0 += 1;
t0 &= ~1;
}
// t0 has t0digits digits. Write them out
if (p > dest + length - t0digits - 1) { // Make sure we have space
dest[0] = '\0';
return 0;
}
int i = t0digits;
while (i > 1) { // Write out 2 digits at a time back-to-front
i -= 2;
memcpy(p + i, asciiDigitTable + (t0 % 100) * 2, 2);
t0 /= 100;
}
if (i > 0) { // Handle an odd number of digits
p[0] = t0 + '0';
}
p += t0digits; // Move the pointer past the digits we just wrote
} else {
//
// Our initial scaling did not produce too many digits.
// The `d12345678` value holds the first 7 digits (plus
// a leading zero that will be useful later). We write
// those out and then incrementally generate as many
// more digits as necessary. The remainder of this
// algorithm is basically just Grisu2.
//
if (p > dest + length - 9) {
dest[0] = '\0';
return 0;
}
// Write out the 7 digits we got earlier + leading zero
int d1234 = d12345678 / 10000;
int d5678 = d12345678 % 10000;
int d78 = d5678 % 100;
int d56 = d5678 / 100;
memcpy(p + 6, asciiDigitTable + d78 * 2, 2);
memcpy(p + 4, asciiDigitTable + d56 * 2, 2);
int d34 = d1234 % 100;
int d12 = d1234 / 100;
memcpy(p + 2, asciiDigitTable + d34 * 2, 2);
memcpy(p, asciiDigitTable + d12 * 2, 2);
p += 8;
// Seven digits wasn't enough, so let's get some more.
// Most binary64 values need >= 15 digits total. We already have seven,
// so try grabbing the next 8 digits all at once.
// (This is suboptimal for binary32, but the code savings
// from sharing this implementation are worth it.)
static const uint32_t bulkDigitFactor = 100000000; // 10^(15-bulkFirstDigits)
swift_uint128_t d0 = delta;
multiply128xu32(&d0, bulkDigitFactor);
swift_uint128_t t0 = t;
multiply128xu32(&t0, bulkDigitFactor);
int bulkDigits = extractIntegerPart128(&t0, integerBits); // 9 digits
if (isLessThan128x128(d0, t0)) {
if (p > dest + length - 9) {
dest[0] = '\0';
return 0;
}
// Next 8 digits are good; add them to the output
int d1234 = bulkDigits / 10000;
int d5678 = bulkDigits % 10000;
int d78 = d5678 % 100;
int d56 = d5678 / 100;
memcpy(p + 6, asciiDigitTable + d78 * 2, 2);
memcpy(p + 4, asciiDigitTable + d56 * 2, 2);
int d34 = d1234 % 100;
int d12 = d1234 / 100;
memcpy(p + 2, asciiDigitTable + d34 * 2, 2);
memcpy(p, asciiDigitTable + d12 * 2, 2);
p += 8;
t = t0;
delta = d0;
}
// Finish up by generating and writing one digit at a time.
while (isLessThan128x128(delta, t)) {
if (p > dest + length - 2) {
dest[0] = '\0';
return 0;
}
multiply128xu32(&delta, 10);
multiply128xu32(&t, 10);
*p++ = '0' + extractIntegerPart128(&t, integerBits);
}
// Adjust the final digit to be closer to the original value. This accounts
// for the fact that sometimes there is more than one shortest digit
// sequence.
// For example, consider how the above would work if you had the
// value 0.1234 and computed u = 0.1257, l = 0.1211. The above
// digit generation works with `u`, so produces 0.125. But the
// values 0.122, 0.123, and 0.124 are just as short and 0.123 is
// therefore the best choice, since it's closest to the original
// value.
// We know delta and t are both less than 10.0 here, so we can
// shed some excess integer bits to simplify the following:
const int adjustIntegerBits = 4; // Integer bits for "adjust" phase
shiftLeft128(&delta, integerBits - adjustIntegerBits);
shiftLeft128(&t, integerBits - adjustIntegerBits);
// Note: We've already consumed most of our available precision,
// so it's okay to just work in 64 bits for this...
uint64_t deltaHigh64 = extractHigh64From128(delta);
uint64_t tHigh64 = extractHigh64From128(t);
// If `delta < t + 1.0`, then the interval is narrower than
// one decimal digit, so there is no other option.
if (deltaHigh64 >= tHigh64 + ((uint64_t)1 << (64 - adjustIntegerBits))) {
uint64_t skew;
if (isBoundary) {
// If we're at the boundary where the exponent shifts,
// then the original value is 1/3 of the way from
// the bottom of the interval ...
skew = deltaHigh64 - deltaHigh64 / 3 - tHigh64;
} else {
// ... otherwise it's exactly in the middle.
skew = deltaHigh64 / 2 - tHigh64;
}
// The `skew` above is the difference between our
// computed digits and the original exact value.
// Use that to offset the final digit:
uint64_t one = (uint64_t)(1) << (64 - adjustIntegerBits);
uint64_t fractionMask = one - 1;
uint64_t oneHalf = one >> 1;
if ((skew & fractionMask) == oneHalf) {
int adjust = (int)(skew >> (64 - adjustIntegerBits));
// If the skew is exactly integer + 1/2, round the
// last digit even after adjustment
p[-1] -= adjust;
p[-1] &= ~1;
} else {
// Else round to nearest...
int adjust = (int)((skew + oneHalf) >> (64 - adjustIntegerBits));
p[-1] -= adjust;
}
}
}
// Step 8: Shuffle digits into the final textual form
int forceExponential = binaryExponent > 54 || (binaryExponent == 54 && !isBoundary);
return finishFormatting(dest, length, p, firstOutputChar, forceExponential, base10Exponent);
}
#endif
// ================================================================
//
// FLOAT80
//
// ================================================================
#if SWIFT_DTOA_FLOAT80_SUPPORT
#if LONG_DOUBLE_IS_FLOAT80
size_t swift_dtoa_optimal_long_double(long double d, char *dest, size_t length) {
return swift_dtoa_optimal_float80_p(&d, dest, length);
}
#endif
// Format an Intel x87 80-bit extended precision floating-point format
// This does not rely on the C environment for floating-point arithmetic
// or library support of any kind.
size_t swift_dtoa_optimal_float80_p(const void *d, char *dest, size_t length)
{
static const int exponentBitCount = 15;
static const int exponentMask = (1 << exponentBitCount) - 1;
// See comments in swift_dtoa_optimal_binary64_p to understand
// why we use 16,382 instead of 16,383 here.
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 16,382
// Step 0: Deconstruct the target number
// Note: this strongly assumes Intel 80-bit extended format in LSB
// byte order
const uint64_t *raw_p = (const uint64_t *)d;
int exponentBitPattern = raw_p[1] & exponentMask;
int negative = (raw_p[1] >> 15) & 1;
uint64_t significandBitPattern = raw_p[0];
// Step 1: Handle the various input cases:
int64_t binaryExponent;
uint64_t significand;
int isBoundary = (significandBitPattern & 0x7fffffffffffffff) == 0;
if (length < 1) {
return 0;
} else if (exponentBitPattern == exponentMask) { // NaN or Infinity
// Following 80387 semantics as documented in Wikipedia.org "Extended Precision"
// Also see Intel's "Floating Point Reference Sheet"
// https://software.intel.com/content/dam/develop/external/us/en/documents/floating-point-reference-sheet.pdf
int selector = significandBitPattern >> 62; // Top 2 bits
uint64_t payload = significandBitPattern & (((uint64_t)1 << 62) - 1); // bottom 62 bits
switch (selector) {
case 0: // ∞ or snan on 287, invalid on 387
case 1: // Pseudo-NaN: snan on 287, invalid on 387
break;
case 2:
if (payload == 0) { // snan on 287, ∞ on 387
return infinity(dest, length, negative);
} else { // snan on 287 and 387
return nan_details(dest, length, negative, 0 /* quiet */, 0, payload);
}
break;
case 3:
// Zero payload and sign bit set is "indefinite" (treated as qNaN here),
// Otherwise qNan on 387, sNaN on 287
return nan_details(dest, length, negative, 1 /* quiet */, 0, payload);
}
// Handle "invalid" patterns as plain "nan"
return nan_details(dest, length, 0 /* negative */, 1 /* quiet */, 0, payload);
} else if (exponentBitPattern == 0) {
if (significandBitPattern == 0) { // Zero
return zero(dest, length, negative);
} else { // subnormal
binaryExponent = 1 - exponentBias;
significand = significandBitPattern;
}
} else if (significandBitPattern >> 63) { // Normal
binaryExponent = exponentBitPattern - exponentBias;
significand = significandBitPattern;
} else {
// Invalid pattern rejected by 80387 and later.
// Handle "invalid" patterns as plain "nan"
return nan_details(dest, length, 0 /* negative */, 1 /* quiet */, 0, 0);
}
// Step 2: Determine the exact unscaled target interval
uint64_t halfUlp = (uint64_t)1 << 63;
uint64_t quarterUlp = halfUlp >> 1;
uint64_t threeQuarterUlp = halfUlp + quarterUlp;
swift_uint128_t upperMidpointExact, lowerMidpointExact;
initialize128WithHighLow64(upperMidpointExact, significand, halfUlp);
// Subtract 1/4 or 1/2 ULP by first subtracting 1 full ULP, then adding some back
initialize128WithHighLow64(lowerMidpointExact, significand - 1, isBoundary ? threeQuarterUlp : halfUlp);
return _swift_dtoa_256bit_backend
(
dest,
length,
upperMidpointExact,
lowerMidpointExact,
negative,
isBoundary,
(significandBitPattern & 1) != 0,
binaryExponent,
binaryExponent > 65 || (binaryExponent == 65 && !isBoundary) // forceExponential
);
}
#endif
// ================================================================
//
// BINARY128
//
// ================================================================
#if SWIFT_DTOA_BINARY128_SUPPORT
#if LONG_DOUBLE_IS_BINARY128
size_t swift_dtoa_optimal_long_double(long double d, char *dest, size_t length) {
return swift_dtoa_optimal_binary128_p(&d, dest, length);
}
#endif
// Format an IEEE 754 binary128 quad-precision floating-point number.
// This does not rely on the C environment for floating-point arithmetic
// or library support of any kind.
size_t swift_dtoa_optimal_binary128_p(const void *d, char *dest, size_t length)
{
static const int exponentBitCount = 15;
static const int exponentMask = (1 << exponentBitCount) - 1;
// See comments in swift_dtoa_optimal_binary64_p to understand
// why we use 16,382 instead of 16,383 here.
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 16,382
// Step 0: Deconstruct the target number in IEEE 754 binary128 LSB format
const uint64_t *raw_p = (const uint64_t *)d;
int exponentBitPattern = (raw_p[1] >> 48) & exponentMask;
int negative = (raw_p[1] >> 63) & 1;
uint64_t significandHigh = raw_p[1] & 0xffffffffffffULL;
uint64_t significandLow = raw_p[0];
// Step 1: Handle the various input cases:
int64_t binaryExponent;
int isBoundary = (significandLow == 0) && (significandHigh == 0);
if (length < 1) {
return 0;
} else if (exponentBitPattern == exponentMask) { // NaN or Infinity
if (isBoundary) { // Infinity
return infinity(dest, length, negative);
} else { // NaN
int signaling = (significandHigh >> 47) & 1;
uint64_t payloadHigh = significandHigh & 0x3fffffffffffULL;
uint64_t payloadLow = significandLow;
return nan_details(dest, length, negative, signaling == 0, payloadHigh, payloadLow);
}
} else if (exponentBitPattern == 0) {
if (isBoundary) { // Zero
return zero(dest, length, negative);
} else { // subnormal
binaryExponent = 1 - exponentBias;
}
} else { // Normal
binaryExponent = exponentBitPattern - exponentBias;
significandHigh |= (1ULL << 48);
}
// Align significand to 0.113 fractional form
significandHigh <<= 15;
significandHigh |= significandLow >> (64 - 15);
significandLow <<= 15;
// Step 2: Determine the exact unscaled target interval
uint64_t halfUlp = (uint64_t)1 << 14;
uint64_t quarterUlp = halfUlp >> 1;
swift_uint128_t upperMidpointExact, lowerMidpointExact;
initialize128WithHighLow64(upperMidpointExact, significandHigh, significandLow + halfUlp);
// Subtract 1/4 or 1/2 ULP
if (significandLow == 0) {
initialize128WithHighLow64(lowerMidpointExact,
significandHigh - 1,
significandLow - (isBoundary ? quarterUlp : halfUlp));
} else {
initialize128WithHighLow64(lowerMidpointExact,
significandHigh,
significandLow - (isBoundary ? quarterUlp : halfUlp));
}
return _swift_dtoa_256bit_backend
(
dest,
length,
upperMidpointExact,
lowerMidpointExact,
negative,
isBoundary,
(significandLow & 0x8000) != 0,
binaryExponent,
binaryExponent > 114 || (binaryExponent == 114 && !isBoundary) // forceExponential
);
}
#endif
// ================================================================
//
// FLOAT80/BINARY128 common backend
//
// This uses 256-bit fixed-width arithmetic to efficiently compute the
// optimal form for a decomposed float80 or binary128 value. It is
// less heavily commented than the 128-bit version above; see that
// implementation for detailed explanation of the logic here.
//
// This sacrifices some performance for float80, which can be done
// more efficiently with 192-bit fixed-width arithmetic. But the code
// size savings from sharing this logic between float80 and binary128
// are substantial, and the resulting float80 performance is still much
// better than most competing implementations.
//
// Also in the interest of code size savings, this eschews some of the
// optimizations used by the 128-bit backend above. Those
// optimizations are simple to reintroduce if you're interested in
// further performance improvements.
//
// If you are interested in extreme code size, you can also use this
// backend for binary32 and binary64, eliminating the separate 128-bit
// implementation. That variation offers surprisingly reasonable
// performance overall.
//
// ================================================================
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
static size_t _swift_dtoa_256bit_backend
(
char *dest,
size_t length,
swift_uint128_t upperMidpointExact,
swift_uint128_t lowerMidpointExact,
int negative,
int isBoundary,
int isOddSignificand,
int binaryExponent,
bool forceExponential
)
{
// Step 3: Estimate the base 10 exponent
int base10Exponent = decimalExponentFor2ToThe(binaryExponent);
// Step 4: Compute a power-of-10 scale factor
swift_uint256_t powerOfTenRoundedDown;
swift_uint256_t powerOfTenRoundedUp;
int powerOfTenExponent = 0;
intervalContainingPowerOf10_Binary128(-base10Exponent,
&powerOfTenRoundedDown,
&powerOfTenRoundedUp,
&powerOfTenExponent);
const int extraBits = binaryExponent + powerOfTenExponent;
// Step 5: Scale the interval (with rounding)
static const int integerBits = 14; // Enough for 4 decimal digits
#if HAVE_UINT128_T
static const int highFractionBits = 64 - integerBits;
#else
static const int highFractionBits = 32 - integerBits;
#endif
swift_uint256_t u, l;
if (isOddSignificand) {
// Narrow the interval (odd significand)
u = powerOfTenRoundedDown;
multiply256x128RoundingDown(&u, upperMidpointExact);
shiftRightRoundingDown256(&u, integerBits - extraBits);
l = powerOfTenRoundedUp;
multiply256x128RoundingUp(&l, lowerMidpointExact);
shiftRightRoundingUp256(&l, integerBits - extraBits);
} else {
// Widen the interval (even significand)
u = powerOfTenRoundedUp;
multiply256x128RoundingUp(&u, upperMidpointExact);
shiftRightRoundingUp256(&u, integerBits - extraBits);
l = powerOfTenRoundedDown;
multiply256x128RoundingDown(&l, lowerMidpointExact);
shiftRightRoundingDown256(&l, integerBits - extraBits);
}
// Step 6: Align first digit, adjust exponent
#if HAVE_UINT128_T
while (u.high < (uint64_t)1 << highFractionBits)
#else
while (u.elt[7] < (uint64_t)1 << highFractionBits)
#endif
{
base10Exponent -= 1;
multiply256xu32(&l, 10);
multiply256xu32(&u, 10);
}
swift_uint256_t t = u;
swift_uint256_t delta = u;
subtract256x256(&delta, l);
// Step 7: Generate digits
char *p = dest;
if (p > dest + length - 4) { // Shortest output is "1.0" (4 bytes)
dest[0] = '\0';
return 0;
}
if (negative) {
*p++ = '-';
}
char * const firstOutputChar = p;
// Adjustment above already set up the first digit
*p++ = '0';
*p++ = '0' + extractIntegerPart256(&t, integerBits);
// Generate 4 digits at a time
swift_uint256_t d0 = delta;
multiply256xu32(&d0, 10000);
swift_uint256_t t0 = t;
multiply256xu32(&t0, 10000);
int d1234 = extractIntegerPart256(&t0, integerBits);
while (isLessThan256x256(d0, t0)) {
if (p > dest + length - 5) {
dest[0] = '\0';
return 0;
}
int d34 = d1234 % 100;
int d12 = d1234 / 100;
memcpy(p + 2, asciiDigitTable + d34 * 2, 2);
memcpy(p, asciiDigitTable + d12 * 2, 2);
p += 4;
t = t0;
delta = d0;
multiply256xu32(&d0, 10000);
multiply256xu32(&t0, 10000);
d1234 = extractIntegerPart256(&t0, integerBits);
}
// Generate one digit at a time...
while (isLessThan256x256(delta, t)) {
if (p > dest + length - 2) {
dest[0] = '\0';
return 0;
}
multiply256xu32(&delta, 10);
multiply256xu32(&t, 10);
*p++ = extractIntegerPart256(&t, integerBits) + '0';
}
// Adjust the final digit to be closer to the original value
// We've already consumed most of our available precision, and only
// need a couple of integer bits, so we can narrow down to
// 64 bits here.
#if HAVE_UINT128_T
uint64_t deltaHigh64 = delta.high;
uint64_t tHigh64 = t.high;
#else
uint64_t deltaHigh64 = ((uint64_t)delta.elt[7] << 32) + delta.elt[6];
uint64_t tHigh64 = ((uint64_t)t.elt[7] << 32) + t.elt[6];
#endif
if (deltaHigh64 >= tHigh64 + ((uint64_t)1 << (64 - integerBits))) {
uint64_t skew;
if (isBoundary) {
skew = deltaHigh64 - deltaHigh64 / 3 - tHigh64;
} else {
skew = deltaHigh64 / 2 - tHigh64;
}
uint64_t one = (uint64_t)(1) << (64 - integerBits);
uint64_t fractionMask = one - 1;
uint64_t oneHalf = one >> 1;
if ((skew & fractionMask) == oneHalf) {
int adjust = (int)(skew >> (64 - integerBits));
// If the skew is integer + 1/2, round the last digit even
// after adjustment
p[-1] -= adjust;
p[-1] &= ~1;
} else {
// Else round to nearest...
int adjust = (int)((skew + oneHalf) >> (64 - integerBits));
p[-1] -= adjust;
}
}
return finishFormatting(dest, length, p, firstOutputChar, forceExponential, base10Exponent);
}
#endif
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
static int finishFormatting(char *dest, size_t length,
char *p,
char *firstOutputChar,
int forceExponential,
int base10Exponent)
{
int digitCount = p - firstOutputChar - 1;
if (base10Exponent < -4 || forceExponential) {
// Exponential form: convert "0123456" => "1.23456e78"
firstOutputChar[0] = firstOutputChar[1];
if (digitCount > 1) {
firstOutputChar[1] = '.';
} else {
p--;
}
// Add exponent at the end
if (p > dest + length - 5) {
dest[0] = '\0';
return 0;
}
*p++ = 'e';
if (base10Exponent < 0) {
*p++ = '-';
base10Exponent = -base10Exponent;
} else {
*p++ = '+';
}
if (base10Exponent > 99) {
if (base10Exponent > 999) {
if (p > dest + length - 5) {
dest[0] = '\0';
return 0;
}
memcpy(p, asciiDigitTable + (base10Exponent / 100) * 2, 2);
p += 2;
} else {
if (p > dest + length - 4) {
dest[0] = '\0';
return 0;
}
*p++ = (base10Exponent / 100) + '0';
}
base10Exponent %= 100;
}
memcpy(p, asciiDigitTable + base10Exponent * 2, 2);
p += 2;
} else if (base10Exponent < 0) { // "0123456" => "0.00123456"
// Slide digits back in buffer and prepend zeros and a period
if (p > dest + length + base10Exponent - 1) {
dest[0] = '\0';
return 0;
}
memmove(firstOutputChar - base10Exponent, firstOutputChar, p - firstOutputChar);
memset(firstOutputChar, '0', -base10Exponent);
firstOutputChar[1] = '.';
p += -base10Exponent;
} else if (base10Exponent + 1 < digitCount) { // "0123456" => "123.456"
// Slide integer digits forward and insert a '.'
memmove(firstOutputChar, firstOutputChar + 1, base10Exponent + 1);
firstOutputChar[base10Exponent + 1] = '.';
} else { // "0123456" => "12345600.0"
// Slide digits forward 1 and append suitable zeros and '.0'
if (p + base10Exponent - digitCount > dest + length - 3) {
dest[0] = '\0';
return 0;
}
memmove(firstOutputChar, firstOutputChar + 1, p - firstOutputChar - 1);
p -= 1;
memset(p, '0', base10Exponent - digitCount + 1);
p += base10Exponent - digitCount + 1;
*p++ = '.';
*p++ = '0';
}
*p = '\0';
return p - dest;
}
#endif
// ================================================================
//
// Arithmetic helpers
//
// ================================================================
// The core algorithm relies heavily on fixed-point arithmetic with
// 128-bit and 256-bit integer values. (For binary32/64 and
// float80/binary128, respectively.) They also need precise control
// over all rounding.
//
// Note that most arithmetic operations are the same for integers and
// fractions, so we can just use the normal integer operations in most
// places. Multiplication however, is different for fixed-size
// fractions. Integer multiplication preserves the low-order part and
// discards the high-order part (ignoring overflow). Fraction
// multiplication preserves the high-order part and discards the
// low-order part (rounding). So most of the arithmetic helpers here
// are for multiplication.
// Note: With 64-bit GCC and Clang, we get a noticeable performance
// gain by using `__uint128_t`. Otherwise, we have to break things
// down into 32-bit chunks so we don't overflow 64-bit temporaries.
#if SWIFT_DTOA_BINARY64_SUPPORT
// Multiply a 128-bit fraction by a 64-bit fraction, rounding down.
static swift_uint128_t multiply128x64RoundingDown(swift_uint128_t lhs, uint64_t rhs) {
#if HAVE_UINT128_T
uint64_t lhsl = (uint64_t)lhs;
uint64_t lhsh = (uint64_t)(lhs >> 64);
swift_uint128_t h = (swift_uint128_t)lhsh * rhs;
swift_uint128_t l = (swift_uint128_t)lhsl * rhs;
return h + (l >> 64);
#else
swift_uint128_t result;
static const uint64_t mask32 = UINT32_MAX;
uint64_t rhs0 = rhs & mask32;
uint64_t rhs1 = rhs >> 32;
uint64_t t = (lhs.low) * rhs0;
t >>= 32;
uint64_t a = (lhs.b) * rhs0;
uint64_t b = (lhs.low) * rhs1;
t += a + (b & mask32);
t >>= 32;
t += (b >> 32);
a = lhs.c * rhs0;
b = lhs.b * rhs1;
t += (a & mask32) + (b & mask32);
result.low = t;
t >>= 32;
t += (a >> 32) + (b >> 32);
a = lhs.high * rhs0;
b = lhs.c * rhs1;
t += (a & mask32) + (b & mask32);
result.b = t;
t >>= 32;
t += (a >> 32) + (b >> 32);
t += lhs.high * rhs1;
result.c = t;
result.high = t >> 32;
return result;
#endif
}
// Multiply a 128-bit fraction by a 64-bit fraction, rounding up.
static swift_uint128_t multiply128x64RoundingUp(swift_uint128_t lhs, uint64_t rhs) {
#if HAVE_UINT128_T
uint64_t lhsl = (uint64_t)lhs;
uint64_t lhsh = (uint64_t)(lhs >> 64);
swift_uint128_t h = (swift_uint128_t)lhsh * rhs;
swift_uint128_t l = (swift_uint128_t)lhsl * rhs;
const static __uint128_t bias = ((__uint128_t)1 << 64) - 1;
return h + ((l + bias) >> 64);
#else
swift_uint128_t result;
static const uint64_t mask32 = UINT32_MAX;
uint64_t rhs0 = rhs & mask32;
uint64_t rhs1 = rhs >> 32;
uint64_t t = (lhs.low) * rhs0 + mask32;
t >>= 32;
uint64_t a = (lhs.b) * rhs0;
uint64_t b = (lhs.low) * rhs1;
t += (a & mask32) + (b & mask32) + mask32;
t >>= 32;
t += (a >> 32) + (b >> 32);
a = lhs.c * rhs0;
b = lhs.b * rhs1;
t += (a & mask32) + (b & mask32);
result.low = t;
t >>= 32;
t += (a >> 32) + (b >> 32);
a = lhs.high * rhs0;
b = lhs.c * rhs1;
t += (a & mask32) + (b & mask32);
result.b = t;
t >>= 32;
t += (a >> 32) + (b >> 32);
t += lhs.high * rhs1;
result.c = t;
result.high = t >> 32;
return result;
#endif
}
#if !HAVE_UINT128_T
// Multiply a 128-bit fraction by a 32-bit integer in a 32-bit environment.
// (On 64-bit, we use a fast inline macro.)
static void multiply128xu32(swift_uint128_t *lhs, uint32_t rhs) {
uint64_t t = (uint64_t)(lhs->low) * rhs;
lhs->low = (uint32_t)t;
t = (t >> 32) + (uint64_t)(lhs->b) * rhs;
lhs->b = (uint32_t)t;
t = (t >> 32) + (uint64_t)(lhs->c) * rhs;
lhs->c = (uint32_t)t;
t = (t >> 32) + (uint64_t)(lhs->high) * rhs;
lhs->high = (uint32_t)t;
}
// Compare two 128-bit integers in a 32-bit environment
// (On 64-bit, we use a fast inline macro.)
static int isLessThan128x128(swift_uint128_t lhs, swift_uint128_t rhs) {
return ((lhs.high < rhs.high)
|| ((lhs.high == rhs.high)
&& ((lhs.c < rhs.c)
|| ((lhs.c == rhs.c)
&& ((lhs.b < rhs.b)
|| ((lhs.b == rhs.b)
&& (lhs.low < rhs.low)))))));
}
// Subtract 128-bit values in a 32-bit environment
static void subtract128x128(swift_uint128_t *lhs, swift_uint128_t rhs) {
uint64_t t = (uint64_t)lhs->low + (~rhs.low) + 1;
lhs->low = (uint32_t)t;
t = (t >> 32) + lhs->b + (~rhs.b);
lhs->b = (uint32_t)t;
t = (t >> 32) + lhs->c + (~rhs.c);
lhs->c = (uint32_t)t;
t = (t >> 32) + lhs->high + (~rhs.high);
lhs->high = (uint32_t)t;
}
#endif
#if !HAVE_UINT128_T
// Shift a 128-bit integer right, rounding down.
static swift_uint128_t shiftRightRoundingDown128(swift_uint128_t lhs, int shift) {
// Note: Shift is always less than 32
swift_uint128_t result;
uint64_t t = (uint64_t)lhs.low >> shift;
t += ((uint64_t)lhs.b << (32 - shift));
result.low = t;
t >>= 32;
t += ((uint64_t)lhs.c << (32 - shift));
result.b = t;
t >>= 32;
t += ((uint64_t)lhs.high << (32 - shift));
result.c = t;
t >>= 32;
result.high = t;
return result;
}
#endif
#if !HAVE_UINT128_T
// Shift a 128-bit integer right, rounding up.
static swift_uint128_t shiftRightRoundingUp128(swift_uint128_t lhs, int shift) {
swift_uint128_t result;
const uint64_t bias = (1 << shift) - 1;
uint64_t t = ((uint64_t)lhs.low + bias) >> shift;
t += ((uint64_t)lhs.b << (32 - shift));
result.low = t;
t >>= 32;
t += ((uint64_t)lhs.c << (32 - shift));
result.b = t;
t >>= 32;
t += ((uint64_t)lhs.high << (32 - shift));
result.c = t;
t >>= 32;
result.high = t;
return result;
}
#endif
#endif
// Shift a 128-bit integer left, discarding high bits
#if (SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT) && !HAVE_UINT128_T
static void shiftLeft128(swift_uint128_t *lhs, int shift) {
// Note: Shift is always less than 32
uint64_t t = (uint64_t)lhs->high << (shift + 32);
t += (uint64_t)lhs->c << shift;
lhs->high = t >> 32;
t <<= 32;
t += (uint64_t)lhs->b << shift;
lhs->c = t >> 32;
t <<= 32;
t += (uint64_t)lhs->low << shift;
lhs->b = t >> 32;
lhs->low = t;
}
#endif
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
// Multiply a 256-bit fraction by a 32-bit integer.
// This is used in the digit generation to multiply by ten or
// 10,000. Note that rounding is never an issue.
// As used above, this will never overflow.
static void multiply256xu32(swift_uint256_t *lhs, uint32_t rhs) {
#if HAVE_UINT128_T
__uint128_t t = (__uint128_t)lhs->low * rhs;
lhs->low = (uint64_t)t;
t = (t >> 64) + (__uint128_t)lhs->midlow * rhs;
lhs->midlow = (uint64_t)t;
t = (t >> 64) + (__uint128_t)lhs->midhigh * rhs;
lhs->midhigh = (uint64_t)t;
t = (t >> 64) + (__uint128_t)lhs->high * rhs;
lhs->high = (uint64_t)t;
#else
uint64_t t = 0;
for (int i = 0; i < 8; ++i) {
t = (t >> 32) + (uint64_t)lhs->elt[i] * rhs;
lhs->elt[i] = t;
}
#endif
}
// Multiply a 256-bit fraction by a 128-bit fraction, rounding down.
static void multiply256x128RoundingDown(swift_uint256_t *lhs, swift_uint128_t rhs) {
#if HAVE_UINT128_T
// A full multiply of four 64-bit values by two 64-bit values
// yields six such components. We discard the bottom two (except
// for carries) to get a rounded-down four-element result.
__uint128_t current = (__uint128_t)lhs->low * (uint64_t)rhs;
current = (current >> 64);
__uint128_t t = (__uint128_t)lhs->low * (rhs >> 64);
current += (uint64_t)t;
__uint128_t next = t >> 64;
t = (__uint128_t)lhs->midlow * (uint64_t)rhs;
current += (uint64_t)t;
next += t >> 64;
current = next + (current >> 64);
t = (__uint128_t)lhs->midlow * (rhs >> 64);
current += (uint64_t)t;
next = t >> 64;
t = (__uint128_t)lhs->midhigh * (uint64_t)rhs;
current += (uint64_t)t;
next += t >> 64;
lhs->low = (uint64_t)current;
current = next + (current >> 64);
t = (__uint128_t)lhs->midhigh * (rhs >> 64);
current += (uint64_t)t;
next = t >> 64;
t = (__uint128_t)lhs->high * (uint64_t)rhs;
current += (uint64_t)t;
next += t >> 64;
lhs->midlow = (uint64_t)current;
current = next + (current >> 64);
t = (__uint128_t)lhs->high * (rhs >> 64);
current += t;
lhs->midhigh = (uint64_t)current;
lhs->high = (uint64_t)(current >> 64);
#else
uint64_t a, b, c, d; // temporaries
// Eight 32-bit values multiplied by 4 32-bit values. Oh my.
static const uint64_t mask32 = UINT32_MAX;
uint64_t t = 0;
a = (uint64_t)lhs->elt[0] * rhs.low;
t += (a & mask32);
t >>= 32;
t += (a >> 32);
a = (uint64_t)lhs->elt[0] * rhs.b;
b = (uint64_t)lhs->elt[1] * rhs.low;
t += (a & mask32) + (b & mask32);
t >>= 32;
t += (a >> 32) + (b >> 32);
a = (uint64_t)lhs->elt[0] * rhs.c;
b = (uint64_t)lhs->elt[1] * rhs.b;
c = (uint64_t)lhs->elt[2] * rhs.low;
t += (a & mask32) + (b & mask32) + (c & mask32);
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32);
a = (uint64_t)lhs->elt[0] * rhs.high;
b = (uint64_t)lhs->elt[1] * rhs.c;
c = (uint64_t)lhs->elt[2] * rhs.b;
d = (uint64_t)lhs->elt[3] * rhs.low;
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32);
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
for (int i = 0; i < 4; ++i) {
a = (uint64_t)lhs->elt[i + 1] * rhs.high;
b = (uint64_t)lhs->elt[i + 2] * rhs.c;
c = (uint64_t)lhs->elt[i + 3] * rhs.b;
d = (uint64_t)lhs->elt[i + 4] * rhs.low;
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32);
lhs->elt[i] = t;
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
}
a = (uint64_t)lhs->elt[5] * rhs.high;
b = (uint64_t)lhs->elt[6] * rhs.c;
c = (uint64_t)lhs->elt[7] * rhs.b;
t += (a & mask32) + (b & mask32) + (c & mask32);
lhs->elt[4] = t;
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32);
a = (uint64_t)lhs->elt[6] * rhs.high;
b = (uint64_t)lhs->elt[7] * rhs.c;
t += (a & mask32) + (b & mask32);
lhs->elt[5] = t;
t >>= 32;
t += (a >> 32) + (b >> 32);
t += (uint64_t)lhs->elt[7] * rhs.high;
lhs->elt[6] = t;
lhs->elt[7] = t >> 32;
#endif
}
// Multiply a 256-bit fraction by a 128-bit fraction, rounding up.
static void multiply256x128RoundingUp(swift_uint256_t *lhs, swift_uint128_t rhs) {
#if HAVE_UINT128_T
// Same as the rounding-down version, but we add
// UINT128_MAX to the bottom two to force an extra
// carry if they are non-zero.
swift_uint128_t current = (swift_uint128_t)lhs->low * (uint64_t)rhs;
current += UINT64_MAX;
current = (current >> 64);
swift_uint128_t t = (swift_uint128_t)lhs->low * (rhs >> 64);
current += (uint64_t)t;
swift_uint128_t next = t >> 64;
t = (swift_uint128_t)lhs->midlow * (uint64_t)rhs;
current += (uint64_t)t;
next += t >> 64;
// Round up by adding UINT128_MAX (upper half)
current += UINT64_MAX;
current = next + (current >> 64);
t = (swift_uint128_t)lhs->midlow * (rhs >> 64);
current += (uint64_t)t;
next = t >> 64;
t = (swift_uint128_t)lhs->midhigh * (uint64_t)rhs;
current += (uint64_t)t;
next += t >> 64;
lhs->low = (uint64_t)current;
current = next + (current >> 64);
t = (swift_uint128_t)lhs->midhigh * (rhs >> 64);
current += (uint64_t)t;
next = t >> 64;
t = (swift_uint128_t)lhs->high * (uint64_t)rhs;
current += (uint64_t)t;
next += t >> 64;
lhs->midlow = (uint64_t)current;
current = next + (current >> 64);
t = (swift_uint128_t)lhs->high * (rhs >> 64);
current += t;
lhs->midhigh = (uint64_t)current;
lhs->high = (uint64_t)(current >> 64);
#else
uint64_t a, b, c, d; // temporaries
// Eight 32-bit values multiplied by 4 32-bit values. Oh my.
static const uint64_t mask32 = UINT32_MAX;
uint64_t t = 0;
a = (uint64_t)lhs->elt[0] * rhs.low + mask32;
t += (a & mask32);
t >>= 32;
t += (a >> 32);
a = (uint64_t)lhs->elt[0] * rhs.b;
b = (uint64_t)lhs->elt[1] * rhs.low;
t += (a & mask32) + (b & mask32) + mask32;
t >>= 32;
t += (a >> 32) + (b >> 32);
a = (uint64_t)lhs->elt[0] * rhs.c;
b = (uint64_t)lhs->elt[1] * rhs.b;
c = (uint64_t)lhs->elt[2] * rhs.low;
t += (a & mask32) + (b & mask32) + (c & mask32) + mask32;
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32);
a = (uint64_t)lhs->elt[0] * rhs.high;
b = (uint64_t)lhs->elt[1] * rhs.c;
c = (uint64_t)lhs->elt[2] * rhs.b;
d = (uint64_t)lhs->elt[3] * rhs.low;
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32) + mask32;
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
for (int i = 0; i < 4; ++i) {
a = (uint64_t)lhs->elt[i + 1] * rhs.high;
b = (uint64_t)lhs->elt[i + 2] * rhs.c;
c = (uint64_t)lhs->elt[i + 3] * rhs.b;
d = (uint64_t)lhs->elt[i + 4] * rhs.low;
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32);
lhs->elt[i] = t;
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
}
a = (uint64_t)lhs->elt[5] * rhs.high;
b = (uint64_t)lhs->elt[6] * rhs.c;
c = (uint64_t)lhs->elt[7] * rhs.b;
t += (a & mask32) + (b & mask32) + (c & mask32);
lhs->elt[4] = t;
t >>= 32;
t += (a >> 32) + (b >> 32) + (c >> 32);
a = (uint64_t)lhs->elt[6] * rhs.high;
b = (uint64_t)lhs->elt[7] * rhs.c;
t += (a & mask32) + (b & mask32);
lhs->elt[5] = t;
t >>= 32;
t += (a >> 32) + (b >> 32);
t += (uint64_t)lhs->elt[7] * rhs.high;
lhs->elt[6] = t;
lhs->elt[7] = t >> 32;
#endif
}
// Subtract two 256-bit integers or fractions.
static void subtract256x256(swift_uint256_t *lhs, swift_uint256_t rhs) {
#if HAVE_UINT128_T
swift_uint128_t t = (swift_uint128_t)lhs->low + (~rhs.low) + 1;
lhs->low = t;
t = (t >> 64) + lhs->midlow + (~rhs.midlow);
lhs->midlow = t;
t = (t >> 64) + lhs->midhigh + (~rhs.midhigh);
lhs->midhigh = t;
lhs->high += (t >> 64) + (~rhs.high);
#else
uint64_t t = ((uint64_t)1) << 32;
for (int i = 0; i < 8; i++) {
t = (t >> 32) + lhs->elt[i] + (~rhs.elt[i]);
lhs->elt[i] = t;
}
#endif
}
// Compare two 256-bit integers or fractions.
static int isLessThan256x256(swift_uint256_t lhs, swift_uint256_t rhs) {
#if HAVE_UINT128_T
return (lhs.high < rhs.high)
|| (lhs.high == rhs.high
&& (lhs.midhigh < rhs.midhigh
|| (lhs.midhigh == rhs.midhigh
&& (lhs.midlow < rhs.midlow
|| (lhs.midlow == rhs.midlow
&& lhs.low < rhs.low)))));
#else
for (int i = 7; i >= 0; i--) {
if (lhs.elt[i] < rhs.elt[i]) {
return true;
} else if (lhs.elt[i] > rhs.elt[i]) {
return false;
}
}
return false;
#endif
}
// Shift a 256-bit integer right (by less than 32 bits!), rounding down.
static void shiftRightRoundingDown256(swift_uint256_t *lhs, int shift) {
#if HAVE_UINT128_T
__uint128_t t = (__uint128_t)lhs->low >> shift;
t += ((__uint128_t)lhs->midlow << (64 - shift));
lhs->low = t;
t >>= 64;
t += ((__uint128_t)lhs->midhigh << (64 - shift));
lhs->midlow = t;
t >>= 64;
t += ((__uint128_t)lhs->high << (64 - shift));
lhs->midhigh = t;
t >>= 64;
lhs->high = t;
#else
uint64_t t = (uint64_t)lhs->elt[0] >> shift;
for (int i = 0; i < 7; ++i) {
t += ((uint64_t)lhs->elt[i + 1] << (32 - shift));
lhs->elt[i] = t;
t >>= 32;
}
lhs->elt[7] = t;
#endif
}
// Shift a 256-bit integer right, rounding up.
// Note: The shift will always be less than 20. Someday, that
// might suggest a way to further optimize this.
static void shiftRightRoundingUp256(swift_uint256_t *lhs, int shift) {
#if HAVE_UINT128_T
const uint64_t bias = (1 << shift) - 1;
__uint128_t t = ((__uint128_t)lhs->low + bias) >> shift;
t += ((__uint128_t)lhs->midlow << (64 - shift));
lhs->low = t;
t >>= 64;
t += ((__uint128_t)lhs->midhigh << (64 - shift));
lhs->midlow = t;
t >>= 64;
t += ((__uint128_t)lhs->high << (64 - shift));
lhs->midhigh = t;
t >>= 64;
lhs->high = t;
#else
const uint64_t bias = (1 << shift) - 1;
uint64_t t = ((uint64_t)lhs->elt[0] + bias) >> shift;
for (int i = 0; i < 7; ++i) {
t += ((uint64_t)lhs->elt[i + 1] << (32 - shift));
lhs->elt[i] = t;
t >>= 32;
}
lhs->elt[7] = t;
#endif
}
#endif
// ================================================================
//
// Power of 10 calculation
//
// ================================================================
//
// ------------ Power-of-10 tables. --------------------------
//
// Grisu-style algorithms rely on being able to rapidly
// find a high-precision approximation of any power of 10.
// These values were computed by a simple script that
// relied on Python's excellent variable-length
// integer support.
#if SWIFT_DTOA_BINARY32_SUPPORT
// Table with negative powers of 10 to 64 bits
//
// Table size: 320 bytes
static uint64_t powersOf10_negativeBinary32[] = {
0x8b61313bbabce2c6ULL, // x 2^-132 ~= 10^-40
0xae397d8aa96c1b77ULL, // x 2^-129 ~= 10^-39
0xd9c7dced53c72255ULL, // x 2^-126 ~= 10^-38
0x881cea14545c7575ULL, // x 2^-122 ~= 10^-37
0xaa242499697392d2ULL, // x 2^-119 ~= 10^-36
0xd4ad2dbfc3d07787ULL, // x 2^-116 ~= 10^-35
0x84ec3c97da624ab4ULL, // x 2^-112 ~= 10^-34
0xa6274bbdd0fadd61ULL, // x 2^-109 ~= 10^-33
0xcfb11ead453994baULL, // x 2^-106 ~= 10^-32
0x81ceb32c4b43fcf4ULL, // x 2^-102 ~= 10^-31
0xa2425ff75e14fc31ULL, // x 2^-99 ~= 10^-30
0xcad2f7f5359a3b3eULL, // x 2^-96 ~= 10^-29
0xfd87b5f28300ca0dULL, // x 2^-93 ~= 10^-28
0x9e74d1b791e07e48ULL, // x 2^-89 ~= 10^-27
0xc612062576589ddaULL, // x 2^-86 ~= 10^-26
0xf79687aed3eec551ULL, // x 2^-83 ~= 10^-25
0x9abe14cd44753b52ULL, // x 2^-79 ~= 10^-24
0xc16d9a0095928a27ULL, // x 2^-76 ~= 10^-23
0xf1c90080baf72cb1ULL, // x 2^-73 ~= 10^-22
0x971da05074da7beeULL, // x 2^-69 ~= 10^-21
0xbce5086492111aeaULL, // x 2^-66 ~= 10^-20
0xec1e4a7db69561a5ULL, // x 2^-63 ~= 10^-19
0x9392ee8e921d5d07ULL, // x 2^-59 ~= 10^-18
0xb877aa3236a4b449ULL, // x 2^-56 ~= 10^-17
0xe69594bec44de15bULL, // x 2^-53 ~= 10^-16
0x901d7cf73ab0acd9ULL, // x 2^-49 ~= 10^-15
0xb424dc35095cd80fULL, // x 2^-46 ~= 10^-14
0xe12e13424bb40e13ULL, // x 2^-43 ~= 10^-13
0x8cbccc096f5088cbULL, // x 2^-39 ~= 10^-12
0xafebff0bcb24aafeULL, // x 2^-36 ~= 10^-11
0xdbe6fecebdedd5beULL, // x 2^-33 ~= 10^-10
0x89705f4136b4a597ULL, // x 2^-29 ~= 10^-9
0xabcc77118461cefcULL, // x 2^-26 ~= 10^-8
0xd6bf94d5e57a42bcULL, // x 2^-23 ~= 10^-7
0x8637bd05af6c69b5ULL, // x 2^-19 ~= 10^-6
0xa7c5ac471b478423ULL, // x 2^-16 ~= 10^-5
0xd1b71758e219652bULL, // x 2^-13 ~= 10^-4
0x83126e978d4fdf3bULL, // x 2^-9 ~= 10^-3
0xa3d70a3d70a3d70aULL, // x 2^-6 ~= 10^-2
0xccccccccccccccccULL, // x 2^-3 ~= 10^-1
};
#endif
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
// Tables with powers of 10
//
// The constant powers of 10 here represent pure fractions
// with a binary point at the far left. (Each number in
// this first table is implicitly divided by 2^128.)
//
// Table size: 896 bytes
//
// A 64-bit significand allows us to exactly represent powers of 10 up
// to 10^27. In 128 bits, we can exactly represent powers of 10 up to
// 10^55. As with all of these tables, the binary exponent is not stored;
// it is computed by the `binaryExponentFor10ToThe(p)` function.
static const uint64_t powersOf10_Exact128[56 * 2] = {
// Low order ... high order
0x0000000000000000ULL, 0x8000000000000000ULL, // x 2^1 == 10^0 exactly
0x0000000000000000ULL, 0xa000000000000000ULL, // x 2^4 == 10^1 exactly
0x0000000000000000ULL, 0xc800000000000000ULL, // x 2^7 == 10^2 exactly
0x0000000000000000ULL, 0xfa00000000000000ULL, // x 2^10 == 10^3 exactly
0x0000000000000000ULL, 0x9c40000000000000ULL, // x 2^14 == 10^4 exactly
0x0000000000000000ULL, 0xc350000000000000ULL, // x 2^17 == 10^5 exactly
0x0000000000000000ULL, 0xf424000000000000ULL, // x 2^20 == 10^6 exactly
0x0000000000000000ULL, 0x9896800000000000ULL, // x 2^24 == 10^7 exactly
0x0000000000000000ULL, 0xbebc200000000000ULL, // x 2^27 == 10^8 exactly
0x0000000000000000ULL, 0xee6b280000000000ULL, // x 2^30 == 10^9 exactly
0x0000000000000000ULL, 0x9502f90000000000ULL, // x 2^34 == 10^10 exactly
0x0000000000000000ULL, 0xba43b74000000000ULL, // x 2^37 == 10^11 exactly
0x0000000000000000ULL, 0xe8d4a51000000000ULL, // x 2^40 == 10^12 exactly
0x0000000000000000ULL, 0x9184e72a00000000ULL, // x 2^44 == 10^13 exactly
0x0000000000000000ULL, 0xb5e620f480000000ULL, // x 2^47 == 10^14 exactly
0x0000000000000000ULL, 0xe35fa931a0000000ULL, // x 2^50 == 10^15 exactly
0x0000000000000000ULL, 0x8e1bc9bf04000000ULL, // x 2^54 == 10^16 exactly
0x0000000000000000ULL, 0xb1a2bc2ec5000000ULL, // x 2^57 == 10^17 exactly
0x0000000000000000ULL, 0xde0b6b3a76400000ULL, // x 2^60 == 10^18 exactly
0x0000000000000000ULL, 0x8ac7230489e80000ULL, // x 2^64 == 10^19 exactly
0x0000000000000000ULL, 0xad78ebc5ac620000ULL, // x 2^67 == 10^20 exactly
0x0000000000000000ULL, 0xd8d726b7177a8000ULL, // x 2^70 == 10^21 exactly
0x0000000000000000ULL, 0x878678326eac9000ULL, // x 2^74 == 10^22 exactly
0x0000000000000000ULL, 0xa968163f0a57b400ULL, // x 2^77 == 10^23 exactly
0x0000000000000000ULL, 0xd3c21bcecceda100ULL, // x 2^80 == 10^24 exactly
0x0000000000000000ULL, 0x84595161401484a0ULL, // x 2^84 == 10^25 exactly
0x0000000000000000ULL, 0xa56fa5b99019a5c8ULL, // x 2^87 == 10^26 exactly
0x0000000000000000ULL, 0xcecb8f27f4200f3aULL, // x 2^90 == 10^27 exactly
0x4000000000000000ULL, 0x813f3978f8940984ULL, // x 2^94 == 10^28 exactly
0x5000000000000000ULL, 0xa18f07d736b90be5ULL, // x 2^97 == 10^29 exactly
0xa400000000000000ULL, 0xc9f2c9cd04674edeULL, // x 2^100 == 10^30 exactly
0x4d00000000000000ULL, 0xfc6f7c4045812296ULL, // x 2^103 == 10^31 exactly
0xf020000000000000ULL, 0x9dc5ada82b70b59dULL, // x 2^107 == 10^32 exactly
0x6c28000000000000ULL, 0xc5371912364ce305ULL, // x 2^110 == 10^33 exactly
0xc732000000000000ULL, 0xf684df56c3e01bc6ULL, // x 2^113 == 10^34 exactly
0x3c7f400000000000ULL, 0x9a130b963a6c115cULL, // x 2^117 == 10^35 exactly
0x4b9f100000000000ULL, 0xc097ce7bc90715b3ULL, // x 2^120 == 10^36 exactly
0x1e86d40000000000ULL, 0xf0bdc21abb48db20ULL, // x 2^123 == 10^37 exactly
0x1314448000000000ULL, 0x96769950b50d88f4ULL, // x 2^127 == 10^38 exactly
0x17d955a000000000ULL, 0xbc143fa4e250eb31ULL, // x 2^130 == 10^39 exactly
0x5dcfab0800000000ULL, 0xeb194f8e1ae525fdULL, // x 2^133 == 10^40 exactly
0x5aa1cae500000000ULL, 0x92efd1b8d0cf37beULL, // x 2^137 == 10^41 exactly
0xf14a3d9e40000000ULL, 0xb7abc627050305adULL, // x 2^140 == 10^42 exactly
0x6d9ccd05d0000000ULL, 0xe596b7b0c643c719ULL, // x 2^143 == 10^43 exactly
0xe4820023a2000000ULL, 0x8f7e32ce7bea5c6fULL, // x 2^147 == 10^44 exactly
0xdda2802c8a800000ULL, 0xb35dbf821ae4f38bULL, // x 2^150 == 10^45 exactly
0xd50b2037ad200000ULL, 0xe0352f62a19e306eULL, // x 2^153 == 10^46 exactly
0x4526f422cc340000ULL, 0x8c213d9da502de45ULL, // x 2^157 == 10^47 exactly
0x9670b12b7f410000ULL, 0xaf298d050e4395d6ULL, // x 2^160 == 10^48 exactly
0x3c0cdd765f114000ULL, 0xdaf3f04651d47b4cULL, // x 2^163 == 10^49 exactly
0xa5880a69fb6ac800ULL, 0x88d8762bf324cd0fULL, // x 2^167 == 10^50 exactly
0x8eea0d047a457a00ULL, 0xab0e93b6efee0053ULL, // x 2^170 == 10^51 exactly
0x72a4904598d6d880ULL, 0xd5d238a4abe98068ULL, // x 2^173 == 10^52 exactly
0x47a6da2b7f864750ULL, 0x85a36366eb71f041ULL, // x 2^177 == 10^53 exactly
0x999090b65f67d924ULL, 0xa70c3c40a64e6c51ULL, // x 2^180 == 10^54 exactly
0xfff4b4e3f741cf6dULL, 0xd0cf4b50cfe20765ULL, // x 2^183 == 10^55 exactly
};
#endif
#if SWIFT_DTOA_BINARY64_SUPPORT
// Rounded values supporting the full range of binary64
//
// Table size: 464 bytes
//
// We only store every 28th power of ten here.
// We can multiply by an exact 64-bit power of
// ten from the table above to reconstruct the
// significand for any power of 10.
static const uint64_t powersOf10_Binary64[] = {
// low-order half, high-order half
0x3931b850df08e738, 0x95fe7e07c91efafa, // x 2^-1328 ~= 10^-400
0xba954f8e758fecb3, 0x9774919ef68662a3, // x 2^-1235 ~= 10^-372
0x9028bed2939a635c, 0x98ee4a22ecf3188b, // x 2^-1142 ~= 10^-344
0x47b233c92125366e, 0x9a6bb0aa55653b2d, // x 2^-1049 ~= 10^-316
0x4ee367f9430aec32, 0x9becce62836ac577, // x 2^-956 ~= 10^-288
0x6f773fc3603db4a9, 0x9d71ac8fada6c9b5, // x 2^-863 ~= 10^-260
0xc47bc5014a1a6daf, 0x9efa548d26e5a6e1, // x 2^-770 ~= 10^-232
0x80e8a40eccd228a4, 0xa086cfcd97bf97f3, // x 2^-677 ~= 10^-204
0xb8ada00e5a506a7c, 0xa21727db38cb002f, // x 2^-584 ~= 10^-176
0xc13e60d0d2e0ebba, 0xa3ab66580d5fdaf5, // x 2^-491 ~= 10^-148
0xc2974eb4ee658828, 0xa54394fe1eedb8fe, // x 2^-398 ~= 10^-120
0xcb4ccd500f6bb952, 0xa6dfbd9fb8e5b88e, // x 2^-305 ~= 10^-92
0x3f2398d747b36224, 0xa87fea27a539e9a5, // x 2^-212 ~= 10^-64
0xdde50bd1d5d0b9e9, 0xaa242499697392d2, // x 2^-119 ~= 10^-36
0xfdc20d2b36ba7c3d, 0xabcc77118461cefc, // x 2^-26 ~= 10^-8
0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly
0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly
0x3b25a55f43294bcb, 0xb0de65388cc8ada8, // x 2^253 ~= 10^76
0x58edec91ec2cb657, 0xb2977ee300c50fe7, // x 2^346 ~= 10^104
0x29babe4598c311fb, 0xb454e4a179dd1877, // x 2^439 ~= 10^132
0x577b986b314d6009, 0xb616a12b7fe617aa, // x 2^532 ~= 10^160
0x0c11ed6d538aeb2f, 0xb7dcbf5354e9bece, // x 2^625 ~= 10^188
0x6d953e2bd7173692, 0xb9a74a0637ce2ee1, // x 2^718 ~= 10^216
0x9d6d1ad41abe37f1, 0xbb764c4ca7a4440f, // x 2^811 ~= 10^244
0x4b2d8644d8a74e18, 0xbd49d14aa79dbc82, // x 2^904 ~= 10^272
0xe0470a63e6bd56c3, 0xbf21e44003acdd2c, // x 2^997 ~= 10^300
0x505f522e53053ff2, 0xc0fe908895cf3b44, // x 2^1090 ~= 10^328
0xcca845ab2beafa9a, 0xc2dfe19c8c055535, // x 2^1183 ~= 10^356
0x1027fff56784f444, 0xc4c5e310aef8aa17, // x 2^1276 ~= 10^384
};
#endif
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
// Every 56th power of 10 across the range of Float80/Binary128
//
// Table size: 5,728 bytes
//
// Note: We could cut this in half at the cost of one additional
// 256-bit multiply by only storing the positive values and
// multiplying by 10^-4984 to obtain the negative ones.
static const uint64_t powersOf10_Binary128[] = {
// Low-order ... high-order
0xaec2e6aff96b46aeULL, 0xf91044c2eff84750ULL, 0x2b55c9e70e00c557ULL, 0xb6536903bf8f2bdaULL, // x 2^-16556 ~= 10^-4984
0xda1b3c3dd3889587ULL, 0x73a7380aba84a6b1ULL, 0xbddb2dfde3f8a6e3ULL, 0xb9e5428330737362ULL, // x 2^-16370 ~= 10^-4928
0xa2d23c57cfebb9ecULL, 0x9f165c039ead6d77ULL, 0x88227fdfc13ab53dULL, 0xbd89006346a9a34dULL, // x 2^-16184 ~= 10^-4872
0x333d510cf27e5a5ULL, 0x4e3cc383eaa17b7bULL, 0xe05fe4207ca3d508ULL, 0xc13efc51ade7df64ULL, // x 2^-15998 ~= 10^-4816
0xff242c569bc1f539ULL, 0x5c67ba58680c4cceULL, 0x3c55f3f947fef0e9ULL, 0xc50791bd8dd72edbULL, // x 2^-15812 ~= 10^-4760
0xe4b75ae27bec50bfULL, 0x25b0419765fdfcdbULL, 0x915564d8ab057eeULL, 0xc8e31de056f89c19ULL, // x 2^-15626 ~= 10^-4704
0x548b1e80a94f3434ULL, 0xe418e9217ce83755ULL, 0x801e38463183fc88ULL, 0xccd1ffc6bba63e21ULL, // x 2^-15440 ~= 10^-4648
0x541950a0fdc2b4d9ULL, 0xeea173da1f0eb7b4ULL, 0xcfadf6b2aa7c4f43ULL, 0xd0d49859d60d40a3ULL, // x 2^-15254 ~= 10^-4592
0x7e64501be95ad76bULL, 0x451e855d8acef835ULL, 0x9e601e707a2c3488ULL, 0xd4eb4a687c0253e8ULL, // x 2^-15068 ~= 10^-4536
0xdadd9645f360cb51ULL, 0xf290163350ecb3ebULL, 0xa8edffdccfe4db4bULL, 0xd9167ab0c1965798ULL, // x 2^-14882 ~= 10^-4480
0x7e447db3018ffbdfULL, 0x4fa1860c08a85923ULL, 0xb17cd86e7fcece75ULL, 0xdd568fe9ab559344ULL, // x 2^-14696 ~= 10^-4424
0x61cd4655bf64d265ULL, 0xb19fd88fe285b3bcULL, 0x1151250681d59705ULL, 0xe1abf2cd11206610ULL, // x 2^-14510 ~= 10^-4368
0xa5703f5ce7a619ecULL, 0x361243a84b55574dULL, 0x25a8e1e5dbb41d6ULL, 0xe6170e21b2910457ULL, // x 2^-14324 ~= 10^-4312
0xb93897a6cf5d3e61ULL, 0x18746fcc6a190db9ULL, 0x66e849253e5da0c2ULL, 0xea984ec57de69f13ULL, // x 2^-14138 ~= 10^-4256
0x309043d12ab5b0acULL, 0x79c93cff11f09319ULL, 0xf5a7800f23ef67b8ULL, 0xef3023b80a732d93ULL, // x 2^-13952 ~= 10^-4200
0xa3baa84c049b52b9ULL, 0xbec466ee1b586342ULL, 0xe85fc7f4edbd3caULL, 0xf3defe25478e074aULL, // x 2^-13766 ~= 10^-4144
0xd1f4628316b15c7aULL, 0xae16192410d3135eULL, 0x4268a54f70bd28c4ULL, 0xf8a551706112897cULL, // x 2^-13580 ~= 10^-4088
0x9eb9296cc5749dbaULL, 0x48324e275376dfddULL, 0x5052e9289f0f2333ULL, 0xfd83933eda772c0bULL, // x 2^-13394 ~= 10^-4032
0xff6aae669a5a0d8aULL, 0x24fed95087b9006eULL, 0x1b02378a405b421ULL, 0x813d1dc1f0c754d6ULL, // x 2^-13207 ~= 10^-3976
0xf993f18de00dc89bULL, 0x15617da021b89f92ULL, 0xb782db1fc6aba49bULL, 0x83c4e245ed051dc1ULL, // x 2^-13021 ~= 10^-3920
0xc6a0d64a712172b1ULL, 0x2217669197ac1504ULL, 0x4250be2eeba87d15ULL, 0x86595584116caf3cULL, // x 2^-12835 ~= 10^-3864
0xbdc0c67a220687bULL, 0x44a66a6d6fd6537bULL, 0x3f1f93f1943ca9b6ULL, 0x88fab70d8b44952aULL, // x 2^-12649 ~= 10^-3808
0xb60b57164ad28122ULL, 0xde5bd4572c25a830ULL, 0x2c87f18b39478aa2ULL, 0x8ba947b223e5783eULL, // x 2^-12463 ~= 10^-3752
0xbd59568efdb9bfeeULL, 0x292f8f2c98d7f44cULL, 0x4054f5360249ebd1ULL, 0x8e6549867da7d11aULL, // x 2^-12277 ~= 10^-3696
0x9fa0721e66791accULL, 0x1789061d717d454cULL, 0xc1187fa0c18adbbeULL, 0x912effea7015b2c5ULL, // x 2^-12091 ~= 10^-3640
0x982b64e953ac4e27ULL, 0x45efb05f20cf48b3ULL, 0x4b4de34e0ebc3e06ULL, 0x9406af8f83fd6265ULL, // x 2^-11905 ~= 10^-3584
0xa53f5950eec21dcaULL, 0x3bd8754763bdbca1ULL, 0xac73f0226eff5ea1ULL, 0x96ec9e7f9004839bULL, // x 2^-11719 ~= 10^-3528
0x320e19f88f1161b7ULL, 0x72e93fe0cce7cfd9ULL, 0x2184706ea46a4c38ULL, 0x99e11423765ec1d0ULL, // x 2^-11533 ~= 10^-3472
0x491aba48dfc0e36eULL, 0xd3de560ee34022b2ULL, 0xddadb80577b906bdULL, 0x9ce4594a044e0f1bULL, // x 2^-11347 ~= 10^-3416
0x6789d038697142fULL, 0x7a466a75be73db21ULL, 0x60dbd8aa443b560fULL, 0x9ff6b82ef415d222ULL, // x 2^-11161 ~= 10^-3360
0x40ed8056af76ac43ULL, 0x8251c601e346456ULL, 0x7401c6f091f87727ULL, 0xa3187c82120dace6ULL, // x 2^-10975 ~= 10^-3304
0x8c643ee307bffec6ULL, 0xf369a11c6f66c05aULL, 0x4d5b32f713d7f476ULL, 0xa649f36e8583e81aULL, // x 2^-10789 ~= 10^-3248
0xe32f5e080e36b4beULL, 0x3adf30ff2eb163d4ULL, 0xb4b39dd9ddb8d317ULL, 0xa98b6ba23e2300c7ULL, // x 2^-10603 ~= 10^-3192
0x6b9d538c192cfb1bULL, 0x1c5af3bd4d2c60b5ULL, 0xec41c1793d69d0d1ULL, 0xacdd3555869159d1ULL, // x 2^-10417 ~= 10^-3136
0x1adadaeedf7d699cULL, 0x71043692494aa743ULL, 0x3ca5a7540d9d56c9ULL, 0xb03fa252bd05a815ULL, // x 2^-10231 ~= 10^-3080
0xec3e4e5fc6b03617ULL, 0x47c9b16afe8fdf74ULL, 0x92e1bc1fbb33f18dULL, 0xb3b305fe328e571fULL, // x 2^-10045 ~= 10^-3024
0x1d42fa68b12bdb23ULL, 0xac46a7b3f2b4b34eULL, 0xa908fd4a88728b6aULL, 0xb737b55e31cdde04ULL, // x 2^-9859 ~= 10^-2968
0x887dede507f2b618ULL, 0x359a8fa0d014b9a7ULL, 0x7c4c65d15c614c56ULL, 0xbace07232df1c802ULL, // x 2^-9673 ~= 10^-2912
0x504708e718b4b669ULL, 0xfb4d9440822af452ULL, 0xef84cc99cb4c5d17ULL, 0xbe7653b01aae13e5ULL, // x 2^-9487 ~= 10^-2856
0x5b7977525516bff0ULL, 0x75913092420c9b35ULL, 0xcfc147ade4843a24ULL, 0xc230f522ee0a7fc2ULL, // x 2^-9301 ~= 10^-2800
0xad5d11883cc1302bULL, 0x860a754894b9a0bcULL, 0x4668677d5f46c29bULL, 0xc5fe475d4cd35cffULL, // x 2^-9115 ~= 10^-2744
0x42032f9f971bfc07ULL, 0x9fb576046ab35018ULL, 0x474b3cb1fe1d6a7fULL, 0xc9dea80d6283a34cULL, // x 2^-8929 ~= 10^-2688
0xd3e7fbb72403a4ddULL, 0x8ca223055819af54ULL, 0xd6ea3b733029ef0bULL, 0xcdd276b6e582284fULL, // x 2^-8743 ~= 10^-2632
0xba2431d885f2b7d9ULL, 0xc9879fc42869f610ULL, 0x3736730a9e47fef8ULL, 0xd1da14bc489025eaULL, // x 2^-8557 ~= 10^-2576
0xa11edbcd65dd1844ULL, 0xcb8edae81a295887ULL, 0x3d24e68dc1027246ULL, 0xd5f5e5681a4b9285ULL, // x 2^-8371 ~= 10^-2520
0xa0f076652f69ad08ULL, 0x9d19c341f5f42f2aULL, 0x742ab8f3864562c8ULL, 0xda264df693ac3e30ULL, // x 2^-8185 ~= 10^-2464
0x29f760ef115f2824ULL, 0xe0ee47c041c9de0fULL, 0x8c119f3680212413ULL, 0xde6bb59f56672cdaULL, // x 2^-7999 ~= 10^-2408
0x8b90230b3409c9d3ULL, 0x9d76eef2c1543e65ULL, 0x43190b523f872b9cULL, 0xe2c6859f5c284230ULL, // x 2^-7813 ~= 10^-2352
0xd44ce9993bc6611eULL, 0x777c9b2dfbede079ULL, 0x2a0969bf88679396ULL, 0xe7372943179706fcULL, // x 2^-7627 ~= 10^-2296
0xe8c5f5a63fd0fbd1ULL, 0xccc12293f1d7a58ULL, 0x131565be33dda91aULL, 0xebbe0df0c8201ac5ULL, // x 2^-7441 ~= 10^-2240
0xdb97988dd6b776f4ULL, 0xeb2106f435f7e1d5ULL, 0xccfb1cc2ef1f44deULL, 0xf05ba3330181c750ULL, // x 2^-7255 ~= 10^-2184
0x2fcbc8df94a1d54bULL, 0x796d0a8120801513ULL, 0x5f8385b3a882ff4cULL, 0xf5105ac3681f2716ULL, // x 2^-7069 ~= 10^-2128
0xc8700c11071a40f5ULL, 0x23cb9e9df9331fe4ULL, 0x166c15f456786c27ULL, 0xf9dca895a3226409ULL, // x 2^-6883 ~= 10^-2072
0x9589f4637a50cbb5ULL, 0xea8242b0030e4a51ULL, 0x6c656c3b1f2c9d91ULL, 0xfec102e2857bc1f9ULL, // x 2^-6697 ~= 10^-2016
0xc4be56c83349136cULL, 0x6188db81ac8e775dULL, 0xfa70b9a2ca60b004ULL, 0x81def119b76837c8ULL, // x 2^-6510 ~= 10^-1960
0xb85d39054658b363ULL, 0xe7df06bc613fda21ULL, 0x6a22490e8e9ec98bULL, 0x8469e0b6f2b8bd9bULL, // x 2^-6324 ~= 10^-1904
0x800b1e1349fef248ULL, 0x469cfd2e6ca32a77ULL, 0x69138459b0fa72d4ULL, 0x87018eefb53c6325ULL, // x 2^-6138 ~= 10^-1848
0xb62593291c768919ULL, 0xc098e6ed0bfbd6f6ULL, 0x6c83ad1260ff20f4ULL, 0x89a63ba4c497b50eULL, // x 2^-5952 ~= 10^-1792
0x92ee7fce474479d3ULL, 0xe02017175bf040c6ULL, 0xd82ef2860273de8dULL, 0x8c5827f711735b46ULL, // x 2^-5766 ~= 10^-1736
0x7b0e6375ca8c77d9ULL, 0x5f07e1e10097d47fULL, 0x416d7f9ab1e67580ULL, 0x8f17964dfc3961f2ULL, // x 2^-5580 ~= 10^-1680
0xc8d869ed561af1ceULL, 0x8b6648e941de779bULL, 0x56700866b85d57feULL, 0x91e4ca5db93dbfecULL, // x 2^-5394 ~= 10^-1624
0xfc04df783488a410ULL, 0x64d1f15da2c146b1ULL, 0x43cf71d5c4fd7868ULL, 0x94c0092dd4ef9511ULL, // x 2^-5208 ~= 10^-1568
0xfbaf03b48a965a64ULL, 0x9b6122aa2b72a13cULL, 0x387898a6e22f821bULL, 0x97a9991fd8b3afc0ULL, // x 2^-5022 ~= 10^-1512
0x50f7f7c13119aaddULL, 0xe415d8b25694250aULL, 0x8f8857e875e7774eULL, 0x9aa1c1f6110c0dd0ULL, // x 2^-4836 ~= 10^-1456
0xce214403545fd685ULL, 0xf36d1ad779b90e09ULL, 0xa5c58d5f91a476d7ULL, 0x9da8ccda75b341b5ULL, // x 2^-4650 ~= 10^-1400
0x63ddfb68f971b0c5ULL, 0x2822e38faf74b26eULL, 0x6e1f7f1642ebaac8ULL, 0xa0bf0465b455e921ULL, // x 2^-4464 ~= 10^-1344
0xf0d00cec9daf7444ULL, 0x6bf3eea6f661a32aULL, 0xfad2be1679765f27ULL, 0xa3e4b4a65e97b76aULL, // x 2^-4278 ~= 10^-1288
0x463b4ab4bd478f57ULL, 0x6f6583b5b36d5426ULL, 0x800cfab80c4e2eb1ULL, 0xa71a2b283c14fba6ULL, // x 2^-4092 ~= 10^-1232
0xef163df2fa96e983ULL, 0xa825f32bc8f6b080ULL, 0x850b0c5976b21027ULL, 0xaa5fb6fbc115010bULL, // x 2^-3906 ~= 10^-1176
0x7db1b3f8e100eb43ULL, 0x2862b1f61d64ddc3ULL, 0x61363686961a41e5ULL, 0xadb5a8bdaaa53051ULL, // x 2^-3720 ~= 10^-1120
0xfd349cf00ba1e09aULL, 0x6d282fe1b7112879ULL, 0xc6f075c4b81fc72dULL, 0xb11c529ec0d87268ULL, // x 2^-3534 ~= 10^-1064
0xf7221741b221cf6fULL, 0x3739f15b06ac3c76ULL, 0xb4e4be5b6455ef96ULL, 0xb494086bbfea00c3ULL, // x 2^-3348 ~= 10^-1008
0xc4e5a2f864c403bbULL, 0x6e33cdcda4367276ULL, 0x24d256c540a50309ULL, 0xb81d1f9569068d8eULL, // x 2^-3162 ~= 10^-952
0x276e3f0f67f0553bULL, 0xde73d9d5be6974ULL, 0x6d4aa5b50bb5dc0dULL, 0xbbb7ef38bb827f2dULL, // x 2^-2976 ~= 10^-896
0x51a34a3e674484edULL, 0x1fb6069f8b26f840ULL, 0x925624c0d7d93317ULL, 0xbf64d0275747de70ULL, // x 2^-2790 ~= 10^-840
0xcc775c8cb6de1dbcULL, 0x6d60d02eac6309eeULL, 0x8e5a2e5116baf191ULL, 0xc3241cf0094a8e70ULL, // x 2^-2604 ~= 10^-784
0x6023c8fa17d7b105ULL, 0x69cf8f51d2e5e65ULL, 0xb0560c246f90e9e8ULL, 0xc6f631e782d57096ULL, // x 2^-2418 ~= 10^-728
0x92c17acb2d08d5fdULL, 0xc26ffb8e81532725ULL, 0x2ffff1289a804c5aULL, 0xcadb6d313c8736fcULL, // x 2^-2232 ~= 10^-672
0x47df78ab9e92897aULL, 0xc02b302a892b81dcULL, 0xa855e127113c887bULL, 0xced42ec885d9dbbeULL, // x 2^-2046 ~= 10^-616
0xdaf2dec03ec0c322ULL, 0x72db3bc15b0c7014ULL, 0xe00bad8dfc0d8c8eULL, 0xd2e0d889c213fd60ULL, // x 2^-1860 ~= 10^-560
0xd3a04799e4473ac8ULL, 0xa116409a2fdf1e9eULL, 0xc654d07271e6c39fULL, 0xd701ce3bd387bf47ULL, // x 2^-1674 ~= 10^-504
0x5c8a5dc65d745a24ULL, 0x2726c48a85389fa7ULL, 0x84c663cee6b86e7cULL, 0xdb377599b6074244ULL, // x 2^-1488 ~= 10^-448
0xd7ebc61ba77a9e66ULL, 0x8bf77d4bc59b35b1ULL, 0xcb285ceb2fed040dULL, 0xdf82365c497b5453ULL, // x 2^-1302 ~= 10^-392
0x744ce999bfed213aULL, 0x363b1f2c568dc3e2ULL, 0xfd1b1b2308169b25ULL, 0xe3e27a444d8d98b7ULL, // x 2^-1116 ~= 10^-336
0x6a40608fe10de7e7ULL, 0xf910f9f648232f14ULL, 0xd1b3400f8f9cff68ULL, 0xe858ad248f5c22c9ULL, // x 2^-930 ~= 10^-280
0x9bdbfc21260dd1adULL, 0x4609ac5c7899ca36ULL, 0xa4f8bf5635246428ULL, 0xece53cec4a314ebdULL, // x 2^-744 ~= 10^-224
0xd88181aad19d7454ULL, 0xf80f36174730ca34ULL, 0xdc44e6c3cb279ac1ULL, 0xf18899b1bc3f8ca1ULL, // x 2^-558 ~= 10^-168
0xee19bfa6947f8e02ULL, 0xaa09501d5954a559ULL, 0x4d4617b5ff4a16d5ULL, 0xf64335bcf065d37dULL, // x 2^-372 ~= 10^-112
0xebbc75a03b4d60e6ULL, 0xac2e4f162cfad40aULL, 0xeed6e2f0f0d56712ULL, 0xfb158592be068d2eULL, // x 2^-186 ~= 10^-56
0x0ULL, 0x0ULL, 0x0ULL, 0x8000000000000000ULL, // x 2^1 == 10^0 exactly
0x0ULL, 0x2000000000000000ULL, 0xbff8f10e7a8921a4ULL, 0x82818f1281ed449fULL, // x 2^187 == 10^56 exactly
0x51775f71e92bf2f2ULL, 0x74a7ef0198791097ULL, 0x3e2cf6bc604ddb0ULL, 0x850fadc09923329eULL, // x 2^373 ~= 10^112
0xb204b3d9686f55b5ULL, 0xfb118fc9c217a1d2ULL, 0x90fb44d2f05d0842ULL, 0x87aa9aff79042286ULL, // x 2^559 ~= 10^168
0xd7924bff833149faULL, 0xbc10c5c5cda97c8dULL, 0x82bd6b70d99aaa6fULL, 0x8a5296ffe33cc92fULL, // x 2^745 ~= 10^224
0xa67d072d3c7fa14bULL, 0x7ec63730f500b406ULL, 0xdb0b487b6423e1e8ULL, 0x8d07e33455637eb2ULL, // x 2^931 ~= 10^280
0x546f2a35dc367e47ULL, 0x949063d8a46f0c0eULL, 0x213a4f0aa5e8a7b1ULL, 0x8fcac257558ee4e6ULL, // x 2^1117 ~= 10^336
0x50611a621c0ee3aeULL, 0x202d895116aa96beULL, 0x1c306f5d1b0b5fdfULL, 0x929b7871de7f22b9ULL, // x 2^1303 ~= 10^392
0xffa6738a27dcf7a3ULL, 0x3c11d8430d5c4802ULL, 0xa7ea9c8838ce9437ULL, 0x957a4ae1ebf7f3d3ULL, // x 2^1489 ~= 10^448
0x5bf36c0f40bde99dULL, 0x284ba600ee9f6303ULL, 0xbf1d49cacccd5e68ULL, 0x9867806127ece4f4ULL, // x 2^1675 ~= 10^504
0xa6e937834ed12e58ULL, 0x73f26eb82f6b8066ULL, 0x655494c5c95d77f2ULL, 0x9b63610bb9243e46ULL, // x 2^1861 ~= 10^560
0xcd4b7660adc6930ULL, 0x8f868688f8eb79ebULL, 0x2e008393fd60b55ULL, 0x9e6e366733f85561ULL, // x 2^2047 ~= 10^616
0x3efb9807d86d3c6aULL, 0x84c10a1d22f5adc5ULL, 0x55e04dba4b3bd4ddULL, 0xa1884b69ade24964ULL, // x 2^2233 ~= 10^672
0xf065089401df33b4ULL, 0x1fc02370c451a755ULL, 0x44b222741eb1ebbfULL, 0xa4b1ec80f47c84adULL, // x 2^2419 ~= 10^728
0xa62d0da836fce7d5ULL, 0x75933380ceb5048cULL, 0x1cf4a5c3bc09fa6fULL, 0xa7eb6799e8aec999ULL, // x 2^2605 ~= 10^784
0x7a400df820f096c2ULL, 0x802c4085068d2dd5ULL, 0x3c4a575151b294dcULL, 0xab350c27feb90accULL, // x 2^2791 ~= 10^840
0xf48b51375df06e86ULL, 0x412fe9e72afd355eULL, 0x870a8d87239d8f35ULL, 0xae8f2b2ce3d5dbe9ULL, // x 2^2977 ~= 10^896
0x881883521930127cULL, 0xe53fd3fcb5b4df25ULL, 0xdd929f09c3eff5acULL, 0xb1fa17404a30e5e8ULL, // x 2^3163 ~= 10^952
0x270cd9f1348eb326ULL, 0x37ed82fe9c75fccfULL, 0x1931b583a9431d7eULL, 0xb5762497dbf17a9eULL, // x 2^3349 ~= 10^1008
0x8919b01a5b3d9ec1ULL, 0x6a7669bdfc6f699cULL, 0xe30db03e0f8dd286ULL, 0xb903a90f561d25e2ULL, // x 2^3535 ~= 10^1064
0xf0461526b4201aa5ULL, 0x7fe40defe17e55f5ULL, 0x9eb5cb19647508c5ULL, 0xbca2fc30cc19f090ULL, // x 2^3721 ~= 10^1120
0xd67bf35422978bbfULL, 0xdbb1c416ebe661fULL, 0x24bd4c00042ad125ULL, 0xc054773d149bf26bULL, // x 2^3907 ~= 10^1176
0xdd093192ef5508d0ULL, 0x6eac3085943ccc0fULL, 0x7ea30dbd7ea479e3ULL, 0xc418753460cdcca9ULL, // x 2^4093 ~= 10^1232
0xfe4ff20db6d25dc2ULL, 0x5d5d5a9519e34a42ULL, 0x764f4cf916b4deceULL, 0xc7ef52defe87b751ULL, // x 2^4279 ~= 10^1288
0xd8adfb2e00494c5eULL, 0x72435286baf0e84eULL, 0xbeb7fbdc1cbe8b37ULL, 0xcbd96ed6466cf081ULL, // x 2^4465 ~= 10^1344
0xe07c1e4384f594afULL, 0xc6b90b8874d5189ULL, 0xdce472c619aa3f63ULL, 0xcfd7298db6cb9672ULL, // x 2^4651 ~= 10^1400
0x5dd902c68fa448cfULL, 0xea8d16bd9544e48eULL, 0xe47defc14a406e4fULL, 0xd3e8e55c3c1f43d0ULL, // x 2^4837 ~= 10^1456
0x1223d79357bedca8ULL, 0xeae6c2843752ac35ULL, 0xb7157c60a24a0569ULL, 0xd80f0685a81b2a81ULL, // x 2^5023 ~= 10^1512
0xcff72d64bc79e429ULL, 0xccc52c236decd778ULL, 0xfb0b98f6bbc4f0cbULL, 0xdc49f3445824e360ULL, // x 2^5209 ~= 10^1568
0x3731f76b905dffbbULL, 0x5e2bddd7d12a9e42ULL, 0xc6c6c1764e047e15ULL, 0xe09a13d30c2dba62ULL, // x 2^5395 ~= 10^1624
0xeb58d8ef2ada7c09ULL, 0xbc1a3b726b789947ULL, 0x87e8dcfc09dbc33aULL, 0xe4ffd276eedce658ULL, // x 2^5581 ~= 10^1680
0x249a5c06dc5d5db7ULL, 0xa8f09440be97bfe6ULL, 0xb1a3642a8da3cf4fULL, 0xe97b9b89d001dab3ULL, // x 2^5767 ~= 10^1736
0xbf34ff7963028cd9ULL, 0xc20578fa3851488bULL, 0x2d4070f33b21ab7bULL, 0xee0ddd84924ab88cULL, // x 2^5953 ~= 10^1792
0x2d0511317361d5ULL, 0xd6919e041129a1a7ULL, 0xa2bf0c63a814e04eULL, 0xf2b70909cd3fd35cULL, // x 2^6139 ~= 10^1848
0x1fa87f28acf1dcd2ULL, 0xe7a0a88981d1a0f9ULL, 0x8f13995cf9c2747ULL, 0xf77790f0a48a45ceULL, // x 2^6325 ~= 10^1904
0x1b6ff8afbe589b72ULL, 0xc851bb3f9aeb1211ULL, 0x7a37993eb21444faULL, 0xfc4fea4fd590b40aULL, // x 2^6511 ~= 10^1960
0xef23a4cbc039f0c2ULL, 0xbb3f8498a972f18eULL, 0xb7b1ada9cdeba84dULL, 0x80a046447e3d49f1ULL, // x 2^6698 ~= 10^2016
0x2cc44f2b602b6231ULL, 0xf231f4b7996b7278ULL, 0xcc6866c5d69b2cbULL, 0x8324f8aa08d7d411ULL, // x 2^6884 ~= 10^2072
0x822c97629a3a4c69ULL, 0x8a9afcdbc940e6f9ULL, 0x7fe2b4308dcbf1a3ULL, 0x85b64a659077660eULL, // x 2^7070 ~= 10^2128
0xf66cfcf42d4896b0ULL, 0x1f11852a20ed33c5ULL, 0x1d73ef3eaac3c964ULL, 0x88547abb1d8e5bd9ULL, // x 2^7256 ~= 10^2184
0x63093ad0caadb06cULL, 0x31be1482014cdaf0ULL, 0x1e34291b1ef566c7ULL, 0x8affca2bd1f88549ULL, // x 2^7442 ~= 10^2240
0xab50f69048738e9aULL, 0xa126c32ff4882be8ULL, 0x9e9383d73d486881ULL, 0x8db87a7c1e56d873ULL, // x 2^7628 ~= 10^2296
0xe57e659432b0a73eULL, 0x47a0e15dfc7986b8ULL, 0x9cc5ee51962c011aULL, 0x907eceba168949b3ULL, // x 2^7814 ~= 10^2352
0x8a6ff950599f8ae5ULL, 0xd1cbbb7d005a76d3ULL, 0x413407cfeeac9743ULL, 0x93530b43e5e2c129ULL, // x 2^8000 ~= 10^2408
0xd4e6b6e847550caaULL, 0x56a3106227b87706ULL, 0x7efa7d29c44e11b7ULL, 0x963575ce63b6332dULL, // x 2^8186 ~= 10^2464
0xd835c90b09842263ULL, 0xb69f01a641da2a42ULL, 0x5a848859645d1c6fULL, 0x9926556bc8defe43ULL, // x 2^8372 ~= 10^2520
0x9b0ae73c204ecd61ULL, 0x794fd5e5a51ac2fULL, 0x51edea897b34601fULL, 0x9c25f29286e9ddb6ULL, // x 2^8558 ~= 10^2576
0x3130484fb0a61d89ULL, 0x32b7105223a27365ULL, 0xb50008d92529e91fULL, 0x9f3497244186fca4ULL, // x 2^8744 ~= 10^2632
0x8cd036553f38a1e8ULL, 0x5e997e9f45d7897dULL, 0xf09e780bcc8238d9ULL, 0xa2528e74eaf101fcULL, // x 2^8930 ~= 10^2688
0xe1f8b43b08b5d0efULL, 0xa0eaf3f62dc1777cULL, 0x3a5828869701a165ULL, 0xa580255203f84b47ULL, // x 2^9116 ~= 10^2744
0x3c7f62e3154fa708ULL, 0x5786f3927eb15bd5ULL, 0x8b231a70eb5444ceULL, 0xa8bdaa0a0064fa44ULL, // x 2^9302 ~= 10^2800
0x1ebc24a19cd70a2aULL, 0x843fddd10c7006b8ULL, 0xfa1bde1f473556a4ULL, 0xac0b6c73d065f8ccULL, // x 2^9488 ~= 10^2856
0x46b6aae34cfd26fcULL, 0xdb7d919b136c68ULL, 0x7730e00421da4d55ULL, 0xaf69bdf68fc6a740ULL, // x 2^9674 ~= 10^2912
0x1c4edcb83fc4c49dULL, 0x61c0edd56bbcb3e8ULL, 0x7f959cb702329d14ULL, 0xb2d8f1915ba88ca5ULL, // x 2^9860 ~= 10^2968
0x428c840d247382feULL, 0x9cc3b1569b1325a4ULL, 0x40c3a071220f5567ULL, 0xb6595be34f821493ULL, // x 2^10046 ~= 10^3024
0xbeb82e734787ec63ULL, 0xbeff12280d5a1676ULL, 0x11c48d02b8326bd3ULL, 0xb9eb5333aa272e9bULL, // x 2^10232 ~= 10^3080
0x302349e12f45c73fULL, 0xb494bcc96d53e49cULL, 0x566765461bd2f61bULL, 0xbd8f2f7a1ba47d6dULL, // x 2^10418 ~= 10^3136
0x5704ebf5f16946ceULL, 0x431388ec68ac7a26ULL, 0xb889018e4f6e9a52ULL, 0xc1454a673cb9b1ceULL, // x 2^10604 ~= 10^3192
0x5a30431166af9b23ULL, 0x132d031fc1d1fec0ULL, 0xf85333a94848659fULL, 0xc50dff6d30c3aefcULL, // x 2^10790 ~= 10^3248
0x7573d4b3ffe4ba3bULL, 0xf888498a40220657ULL, 0x1a1aeae7cf8a9d3dULL, 0xc8e9abc872eb2bc1ULL, // x 2^10976 ~= 10^3304
0xb5eaef7441511eb9ULL, 0xc9cf998035a91664ULL, 0x12e29f09d9061609ULL, 0xccd8ae88cf70ad84ULL, // x 2^11162 ~= 10^3360
0x73aed4f1908f4d01ULL, 0x8c53e7beeca4578fULL, 0xdf7601457ca20b35ULL, 0xd0db689a89f2f9b1ULL, // x 2^11348 ~= 10^3416
0x5adbd55696e1cdd9ULL, 0x4949d09424b87626ULL, 0xcbdcd02f23cc7690ULL, 0xd4f23ccfb1916df5ULL, // x 2^11534 ~= 10^3472
0x3f500ccf4ea03593ULL, 0x9b80aac81b50762aULL, 0x44289dd21b589d7aULL, 0xd91d8fe9a3d019ccULL, // x 2^11720 ~= 10^3528
0x134ca67a679b84aeULL, 0x8909e424a112a3cdULL, 0x95aa118ec1d08317ULL, 0xdd5dc8a2bf27f3f7ULL, // x 2^11906 ~= 10^3584
0xe89e3cf733d9ff40ULL, 0x14344660a175c36ULL, 0x72c4d2cad73b0a7bULL, 0xe1b34fb846321d04ULL, // x 2^12092 ~= 10^3640
0x68c0a2c6c02dae9aULL, 0xb11160a6edb5f57ULL, 0xe20a88f1134f906dULL, 0xe61e8ff47461cda9ULL, // x 2^12278 ~= 10^3696
0x47fa54906741561aULL, 0xaa13acba1e5511f5ULL, 0xc7c91d5c341ed39dULL, 0xea9ff638c54554e1ULL, // x 2^12464 ~= 10^3752
0x365460ed91271c24ULL, 0xabe33496aff629b4ULL, 0xf659ede2159a45ecULL, 0xef37f1886f4b6690ULL, // x 2^12650 ~= 10^3808
0xe4cbf4acc7fba37fULL, 0x350e915f7055b1b8ULL, 0x78d946bab954b82fULL, 0xf3e6f313130ef0efULL, // x 2^12836 ~= 10^3864
0xe692accdfa5bd859ULL, 0xf4d4d3202379829eULL, 0xc9b1474d8f89c269ULL, 0xf8ad6e3fa030bd15ULL, // x 2^13022 ~= 10^3920
0xeca0018ea3b8d1b4ULL, 0xe878edb67072c26dULL, 0x6b1d2745340e7b14ULL, 0xfd8bd8b770cb469eULL, // x 2^13208 ~= 10^3976
0xce5fec949ab87cf7ULL, 0x151dcd7a53488c3ULL, 0xf22e502fcdd4bca2ULL, 0x81415538ce493bd5ULL, // x 2^13395 ~= 10^4032
0x5e1731fbff8c032eULL, 0xe752f53c2f8fa6c1ULL, 0x7c1735fc3b813c8cULL, 0x83c92edf425b292dULL, // x 2^13581 ~= 10^4088
0xb552102ea83f47e6ULL, 0xdf0fd2002ff6b3a3ULL, 0x367500a8e9a178fULL, 0x865db7a9ccd2839eULL, // x 2^13767 ~= 10^4144
0x76507bafe00ec873ULL, 0x71b256ecd954434cULL, 0xc9ac50475e25293aULL, 0x88ff2f2bade74531ULL, // x 2^13953 ~= 10^4200
0x5e2075ba289a360bULL, 0xac376f28b45e5accULL, 0x879b2e5f6ee8b1cULL, 0x8badd636cc48b341ULL, // x 2^14139 ~= 10^4256
0xab87d85e6311e801ULL, 0xb7f786d14d58173dULL, 0x2f33c652bd12fab7ULL, 0x8e69eee1f23f2be5ULL, // x 2^14325 ~= 10^4312
0x7fed9b68d77255beULL, 0x35dc241819de7182ULL, 0xad6a6308a8e8b557ULL, 0x9133bc8f2a130fe5ULL, // x 2^14511 ~= 10^4368
0x728ae72899d4bd12ULL, 0xe5413d9414142a55ULL, 0x9dbaa465efe141a0ULL, 0x940b83f23a55842aULL, // x 2^14697 ~= 10^4424
0xf7740145246fb8fULL, 0x186ef2c39acb4103ULL, 0x888c9ab2fc5b3437ULL, 0x96f18b1742aad751ULL, // x 2^14883 ~= 10^4480
0xd8bb0fba2183c6efULL, 0xbf66d66cc34f0197ULL, 0xba00864671d1053fULL, 0x99e6196979b978f1ULL, // x 2^15069 ~= 10^4536
0x9b71ed2ceb790e49ULL, 0x6faac32d59cc1f5dULL, 0x61d59d402aae4feaULL, 0x9ce977ba0ce3a0bdULL, // x 2^15255 ~= 10^4592
0xa0aa6d5e63991cfbULL, 0x19482fa0ac45669cULL, 0x803c1cd864033781ULL, 0x9ffbf04722750449ULL, // x 2^15441 ~= 10^4648
0x95a9949e04b8bff3ULL, 0x900aa3c2f02ac9d4ULL, 0xa28a151725a55e10ULL, 0xa31dcec2fef14b30ULL, // x 2^15627 ~= 10^4704
0x3acf9496dade0ce9ULL, 0xbd8ecf923d23bec0ULL, 0x5b8452af2302fe13ULL, 0xa64f605b4e3352cdULL, // x 2^15813 ~= 10^4760
0x6204425d2b58e822ULL, 0xdee162a8a1248550ULL, 0x82b84cabc828bf93ULL, 0xa990f3c09110c544ULL, // x 2^15999 ~= 10^4816
0x91a2658e0639f32ULL, 0x66fa2184cee0b861ULL, 0x8d29dd5122e4278dULL, 0xace2d92db0390b59ULL, // x 2^16185 ~= 10^4872
0x80acda113324758aULL, 0xded179c26d9ab828ULL, 0x58f8fde02c03a6c6ULL, 0xb045626fb50a35e7ULL, // x 2^16371 ~= 10^4928
0x7128a8aad239ce8fULL, 0x8737bd250290cd5bULL, 0xd950102978dbd0ffULL, 0xb3b8e2eda91a232dULL, // x 2^16557 ~= 10^4984
};
#endif
#if SWIFT_DTOA_BINARY32_SUPPORT
// Given a power `p`, this returns three values:
// * 64-bit fractions `lower` and `upper`
// * integer `exponent`
//
// The returned values satisfy the following:
// ```
// lower * 2^exponent <= 10^p <= upper * 2^exponent
// ```
//
// Note: Max(*upper - *lower) = 3
static void intervalContainingPowerOf10_Binary32(int p, uint64_t *lower, uint64_t *upper, int *exponent) {
if (p >= 0) {
uint64_t base = powersOf10_Exact128[p * 2 + 1];
*lower = base;
if (p < 28) {
*upper = base;
} else {
*upper = base + 1;
}
} else {
uint64_t base = powersOf10_negativeBinary32[p + 40];
*lower = base;
*upper = base + 1;
}
*exponent = binaryExponentFor10ToThe(p);
}
#endif
#if SWIFT_DTOA_BINARY64_SUPPORT
// Given a power `p`, this returns three values:
// * 128-bit fractions `lower` and `upper`
// * integer `exponent`
//
// Note: This function takes on average about 10% of the total runtime
// for formatting a double, as the general case here requires several
// multiplications to accurately reconstruct the lower and upper
// bounds.
//
// The returned values satisfy the following:
// ```
// lower * 2^exponent <= 10^p <= upper * 2^exponent
// ```
//
// Note: Max(*upper - *lower) = 3
static void intervalContainingPowerOf10_Binary64(int p, swift_uint128_t *lower, swift_uint128_t *upper, int *exponent) {
if (p >= 0 && p <= 55) {
// Use one 64-bit exact value
swift_uint128_t exact;
initialize128WithHighLow64(exact,
powersOf10_Exact128[p * 2 + 1],
powersOf10_Exact128[p * 2]);
*upper = exact;
*lower = exact;
*exponent = binaryExponentFor10ToThe(p);
return;
}
// Multiply a 128-bit approximate value with a 64-bit exact value
int index = p + 400;
// Copy a pair of uint64_t into a swift_uint128_t
int mainPower = index / 28;
const uint64_t *base_p = powersOf10_Binary64 + mainPower * 2;
swift_uint128_t base;
initialize128WithHighLow64(base, base_p[1], base_p[0]);
int extraPower = index - mainPower * 28;
int baseExponent = binaryExponentFor10ToThe(p - extraPower);
int e = baseExponent;
if (extraPower == 0) {
// We're using a tightly-rounded lower bound, so +1 gives a tightly-rounded upper bound
*lower = base;
#if HAVE_UINT128_T
*upper = *lower + 1;
#else
*upper = *lower;
upper->low += 1;
#endif
} else {
// We need to multiply two values to get a lower bound
int64_t extra = powersOf10_Exact128[extraPower * 2 + 1];
e += binaryExponentFor10ToThe(extraPower);
*lower = multiply128x64RoundingDown(base, extra);
// +2 is enough to get an upper bound
// (Verified through exhaustive testing.)
#if HAVE_UINT128_T
*upper = *lower + 2;
#else
*upper = *lower;
upper->low += 2;
#endif
}
*exponent = e;
}
#endif
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
// As above, but returning 256-bit fractions suitable for
// converting float80/binary128.
static void intervalContainingPowerOf10_Binary128(int p, swift_uint256_t *lower, swift_uint256_t *upper, int *exponent) {
if (p >= 0 && p <= 55) {
// We have an exact form, return a zero-width interval
// and avoid the multiplication.
uint64_t exactLow = powersOf10_Exact128[p * 2];
uint64_t exactHigh = powersOf10_Exact128[p * 2 + 1];
initialize256WithHighMidLow64(*lower, exactHigh, exactLow, 0, 0);
*upper = *lower;
*exponent = binaryExponentFor10ToThe(p);
return;
}
int index = p + 4984;
const uint64_t *base_p = powersOf10_Binary128 + (index / 56) * 4;
// The values in the table are always tightly rounded down, so we use that
// directly as a lower bound.
initialize256WithHighMidLow64(*lower, base_p[3], base_p[2], base_p[1], base_p[0]);
int extraPower = index % 56;
int e = binaryExponentFor10ToThe(p - extraPower);
if (extraPower > 0) {
swift_uint128_t extra;
initialize128WithHighLow64(extra,
powersOf10_Exact128[extraPower * 2 + 1],
powersOf10_Exact128[extraPower * 2]);
multiply256x128RoundingDown(lower, extra);
e += binaryExponentFor10ToThe(extraPower);
}
// We could compute upper similar to lower using rounding-up
// multiplications, but this is faster.
// Since there's just one multiplication, we can prove that 2 is
// enough to get a true upper bound, and we've verified (through
// exhaustive testing) that the least-significant component never
// wraps.
*upper = *lower;
#if HAVE_UINT128_T
upper->low += 2;
#else
upper->elt[0] += 2;
#endif
*exponent = e;
}
#endif
|