1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if SWIFT_STDLIB_ENABLE_UNICODE_DATA
#if defined(__APPLE__)
#include "Apple/ScalarPropsData.h"
#else
#include "Common/ScalarPropsData.h"
#endif
#include "Common/CaseData.h"
#include "Common/ScriptData.h"
#else
#include "swift/Runtime/Debug.h"
#endif
#include "swift/shims/UnicodeData.h"
#include <limits>
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_uint64_t _swift_stdlib_getBinaryProperties(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto lowerBoundIndex = 0;
auto endIndex = BIN_PROPS_COUNT;
auto upperBoundIndex = endIndex - 1;
while (upperBoundIndex >= lowerBoundIndex) {
auto index = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
auto entry = _swift_stdlib_scalar_binProps[index];
// Shift the ccc value out of the scalar.
auto lowerBoundScalar = (entry << 11) >> 11;
__swift_uint32_t upperBoundScalar = 0;
// If we're not at the end of the array, the range count is simply the
// distance to the next element.
if (index != endIndex - 1) {
auto nextEntry = _swift_stdlib_scalar_binProps[index + 1];
auto nextLower = (nextEntry << 11) >> 11;
upperBoundScalar = nextLower - 1;
} else {
// Otherwise, the range count is the distance to 0x10FFFF
upperBoundScalar = 0x10FFFF;
}
// Shift everything out.
auto dataIndex = entry >> 21;
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
return _swift_stdlib_scalar_binProps_data[dataIndex];
}
if (scalar > upperBoundScalar) {
lowerBoundIndex = index + 1;
continue;
}
if (scalar < lowerBoundScalar) {
upperBoundIndex = index - 1;
continue;
}
}
// If we make it out of this loop, then it means the scalar was not found at
// all in the array. This should never happen because the array represents all
// scalars from 0x0 to 0x10FFFF, but if somehow this branch gets reached,
// return 0 to indicate no properties.
return 0;
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_uint8_t _swift_stdlib_getNumericType(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto lowerBoundIndex = 0;
auto endIndex = NUMERIC_TYPE_COUNT;
auto upperBoundIndex = endIndex - 1;
while (upperBoundIndex >= lowerBoundIndex) {
auto idx = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
auto entry = _swift_stdlib_numeric_type[idx];
auto lowerBoundScalar = (entry << 11) >> 11;
auto rangeCount = (entry << 3) >> 24;
auto upperBoundScalar = lowerBoundScalar + rangeCount;
auto numericType = (__swift_uint8_t)(entry >> 29);
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
return numericType;
}
if (scalar > upperBoundScalar) {
lowerBoundIndex = idx + 1;
continue;
}
if (scalar < lowerBoundScalar) {
upperBoundIndex = idx - 1;
continue;
}
}
// If we made it out here, then our scalar was not found in the composition
// array.
// Return the max here to indicate that we couldn't find one.
return std::numeric_limits<__swift_uint8_t>::max();
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
double _swift_stdlib_getNumericValue(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto levelCount = NUMERIC_VALUES_LEVEL_COUNT;
__swift_intptr_t scalarIdx = _swift_stdlib_getMphIdx(scalar, levelCount,
_swift_stdlib_numeric_values_keys,
_swift_stdlib_numeric_values_ranks,
_swift_stdlib_numeric_values_sizes);
auto valueIdx = _swift_stdlib_numeric_values_indices[scalarIdx];
return _swift_stdlib_numeric_values[valueIdx];
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
const char *_swift_stdlib_getNameAlias(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
_swift_stdlib_nameAlias,
_swift_stdlib_nameAlias_ranks);
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
return nullptr;
}
return _swift_stdlib_nameAlias_data[dataIdx];
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_int32_t _swift_stdlib_getMapping(__swift_uint32_t scalar,
__swift_uint8_t mapping) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
_swift_stdlib_mappings,
_swift_stdlib_mappings_ranks);
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
return 0;
}
auto mappings = _swift_stdlib_mappings_data_indices[dataIdx];
__swift_uint8_t mappingIdx;
switch (mapping) {
// Uppercase
case 0:
mappingIdx = mappings & 0xFF;
break;
// Lowercase
case 1:
mappingIdx = (mappings & 0xFF00) >> 8;
break;
// Titlecase
case 2:
mappingIdx = (mappings & 0xFF0000) >> 16;
break;
// Unknown mapping
default:
return 0;
}
if (mappingIdx == 0xFF) {
return 0;
}
return _swift_stdlib_mappings_data[mappingIdx];
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
const __swift_uint8_t *_swift_stdlib_getSpecialMapping(__swift_uint32_t scalar,
__swift_uint8_t mapping,
__swift_intptr_t *length) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
_swift_stdlib_special_mappings,
_swift_stdlib_special_mappings_ranks);
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
return nullptr;
}
auto index = _swift_stdlib_special_mappings_data_indices[dataIdx];
auto uppercase = _swift_stdlib_special_mappings_data + index;
auto lowercase = uppercase + 1 + *uppercase;
auto titlecase = lowercase + 1 + *lowercase;
switch (mapping) {
// Uppercase
case 0:
*length = *uppercase;
return uppercase + 1;
// Lowercase
case 1:
*length = *lowercase;
return lowercase + 1;
// Titlecase
case 2:
*length = *titlecase;
return titlecase + 1;
// Unknown mapping.
default:
return nullptr;
}
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_intptr_t _swift_stdlib_getScalarName(__swift_uint32_t scalar,
__swift_uint8_t *buffer,
__swift_intptr_t capacity) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto setOffset = _swift_stdlib_names_scalar_sets[scalar >> 7];
if (setOffset == std::numeric_limits<__swift_uint16_t>::max()) {
return 0;
}
auto scalarIndex = (setOffset << 7) + (scalar & ((1 << 7) - 1));
auto scalarOffset = _swift_stdlib_names_scalars[scalarIndex];
// U+20 is the first scalar that Unicode defines a name for, so their offset
// will the only valid 0.
if (scalarOffset == 0 && scalar != 0x20) {
return 0;
}
__swift_uint32_t nextScalarOffset = 0;
if (scalarIndex != NAMES_SCALARS_MAX_INDEX) {
int i = 1;
// Look for the next scalar who has a name and their position in the names
// array. This tells us exactly how many bytes our name takes up.
while (nextScalarOffset == 0) {
nextScalarOffset = _swift_stdlib_names_scalars[scalarIndex + i];
i += 1;
}
} else {
// This is the last element in the array which represents the last scalar
// name that Unicode defines (excluding variation selectors).
nextScalarOffset = NAMES_LAST_SCALAR_OFFSET;
}
auto nameSize = nextScalarOffset - scalarOffset;
// The total number of initialized bytes in the name string.
int c = 0;
for (__swift_uint32_t i = 0; i < nameSize; i += 1) {
__swift_uint16_t wordIndex = (__swift_uint16_t) _swift_stdlib_names[
scalarOffset + i
];
// If our word index is 0xFF, then it means our word index is larger than a
// byte, so the next two bytes will compose the 16 bit index.
if (wordIndex == 0xFF) {
i += 1;
auto firstPart = _swift_stdlib_names[scalarOffset + i];
wordIndex = firstPart;
i += 1;
auto secondPart = _swift_stdlib_names[scalarOffset + i];
wordIndex |= secondPart << 8;
}
auto wordOffset = _swift_stdlib_word_indices[wordIndex];
auto word = _swift_stdlib_words + wordOffset;
// The last character in a word has the 7th bit set.
while (*word < 0x80) {
if (c >= capacity) {
return c;
}
buffer[c++] = *word++;
}
if (c >= capacity) {
return c;
}
buffer[c++] = *word & 0x7F;
if (c >= capacity) {
return c;
}
buffer[c++] = ' ';
}
// Remove the trailing space.
c -= 1;
// The return value is the number of initialized bytes.
return c;
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_uint16_t _swift_stdlib_getAge(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto lowerBoundIndex = 0;
auto endIndex = AGE_COUNT;
auto upperBoundIndex = endIndex - 1;
while (upperBoundIndex >= lowerBoundIndex) {
auto idx = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
auto entry = _swift_stdlib_ages[idx];
auto lowerBoundScalar = (entry << 43) >> 43;
auto rangeCount = entry >> 32;
auto upperBoundScalar = lowerBoundScalar + rangeCount;
auto ageIdx = (__swift_uint8_t)((entry << 32) >> 32 >> 21);
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
return _swift_stdlib_ages_data[ageIdx];
}
if (scalar > upperBoundScalar) {
lowerBoundIndex = idx + 1;
continue;
}
if (scalar < lowerBoundScalar) {
upperBoundIndex = idx - 1;
continue;
}
}
// If we made it out here, then our scalar was not found in the composition
// array.
// Return the max here to indicate that we couldn't find one.
return std::numeric_limits<__swift_uint16_t>::max();
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_uint8_t _swift_stdlib_getGeneralCategory(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto lowerBoundIndex = 0;
auto endIndex = GENERAL_CATEGORY_COUNT;
auto upperBoundIndex = endIndex - 1;
while (upperBoundIndex >= lowerBoundIndex) {
auto idx = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
auto entry = _swift_stdlib_generalCategory[idx];
auto lowerBoundScalar = (entry << 43) >> 43;
auto rangeCount = entry >> 32;
auto upperBoundScalar = lowerBoundScalar + rangeCount;
auto generalCategory = (__swift_uint8_t)((entry << 32) >> 32 >> 21);
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
return generalCategory;
}
if (scalar > upperBoundScalar) {
lowerBoundIndex = idx + 1;
continue;
}
if (scalar < lowerBoundScalar) {
upperBoundIndex = idx - 1;
continue;
}
}
// If we made it out here, then our scalar was not found in the composition
// array.
// Return the max here to indicate that we couldn't find one.
return std::numeric_limits<__swift_uint8_t>::max();
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
__swift_uint8_t _swift_stdlib_getScript(__swift_uint32_t scalar) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto lowerBoundIndex = 0;
auto endIndex = SCRIPTS_COUNT;
auto upperBoundIndex = endIndex - 1;
while (upperBoundIndex >= lowerBoundIndex) {
auto index = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
auto entry = _swift_stdlib_scripts[index];
// Shift the enum value out of the scalar.
auto lowerBoundScalar = (entry << 11) >> 11;
__swift_uint32_t upperBoundScalar = 0;
// If we're not at the end of the array, the range count is simply the
// distance to the next element.
if (index != endIndex - 1) {
auto nextEntry = _swift_stdlib_scripts[index + 1];
auto nextLower = (nextEntry << 11) >> 11;
upperBoundScalar = nextLower - 1;
} else {
// Otherwise, the range count is the distance to 0x10FFFF
upperBoundScalar = 0x10FFFF;
}
// Shift the scalar out and get the enum value.
auto script = entry >> 21;
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
return script;
}
if (scalar > upperBoundScalar) {
lowerBoundIndex = index + 1;
continue;
}
if (scalar < lowerBoundScalar) {
upperBoundIndex = index - 1;
continue;
}
}
// If we make it out of this loop, then it means the scalar was not found at
// all in the array. This should never happen because the array represents all
// scalars from 0x0 to 0x10FFFF, but if somehow this branch gets reached,
// return 255 to indicate a failure.
return std::numeric_limits<__swift_uint8_t>::max();
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
const __swift_uint8_t *_swift_stdlib_getScriptExtensions(__swift_uint32_t scalar,
__swift_uint8_t *count) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
_swift_stdlib_script_extensions,
_swift_stdlib_script_extensions_ranks);
// If we don't have an index into the data indices, then this scalar has no
// script extensions
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
return 0;
}
auto scalarDataIdx = _swift_stdlib_script_extensions_data_indices[dataIdx];
*count = scalarDataIdx >> 11;
return _swift_stdlib_script_extensions_data + (scalarDataIdx & 0x7FF);
#endif
}
SWIFT_RUNTIME_STDLIB_INTERNAL
void _swift_stdlib_getCaseMapping(__swift_uint32_t scalar,
__swift_uint32_t *buffer) {
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
swift::swift_abortDisabledUnicodeSupport();
#else
auto mphIdx = _swift_stdlib_getMphIdx(scalar, CASE_FOLD_LEVEL_COUNT,
_swift_stdlib_case_keys,
_swift_stdlib_case_ranks,
_swift_stdlib_case_sizes);
auto caseValue = _swift_stdlib_case[mphIdx];
__swift_uint32_t hashedScalar = (caseValue << 43) >> 43;
// If our scalar is not the original one we hashed, then this scalar has no
// case mapping. It maps to itself.
if (scalar != hashedScalar) {
buffer[0] = scalar;
return;
}
// If the top bit is NOT set, then this scalar simply maps to another scalar.
// We have stored the distance to said scalar in this value.
if ((caseValue & ((__swift_uint64_t)(0x1) << 63)) == 0) {
auto distance = (__swift_int32_t)((caseValue << 1) >> 22);
auto mappedScalar = (__swift_uint32_t)((__swift_int32_t)(scalar) - distance);
buffer[0] = mappedScalar;
return;
}
// Our top bit WAS set which means this scalar maps to multiple scalars.
// Lookup our mapping in the full mph.
auto fullMphIdx = _swift_stdlib_getMphIdx(scalar, CASE_FULL_FOLD_LEVEL_COUNT,
_swift_stdlib_case_full_keys,
_swift_stdlib_case_full_ranks,
_swift_stdlib_case_full_sizes);
auto fullCaseValue = _swift_stdlib_case_full[fullMphIdx];
// Count is either 2 or 3.
auto count = fullCaseValue >> 62;
for (__swift_uint64_t i = 0; i != count; i += 1) {
auto distance = (__swift_int32_t)(fullCaseValue & 0xFFFF);
if ((fullCaseValue & 0x10000) != 0) {
distance = -distance;
}
fullCaseValue >>= 17;
auto mappedScalar = (__swift_uint32_t)((__swift_int32_t)(scalar) - distance);
buffer[i] = mappedScalar;
}
#endif
}
|