1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
|
//===--- Mutex.h - Mutex, ConditionVariable, & ReadWriteLock ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Mutex, ConditionVariable, Read/Write lock, and Scoped lock abstractions
// for use in Swift runtime.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_MUTEX_BACKDEPLOY56_H
#define SWIFT_RUNTIME_MUTEX_BACKDEPLOY56_H
#include <type_traits>
#include <utility>
#if __has_include(<unistd.h>)
#include <unistd.h>
#endif
#if defined(SWIFT_STDLIB_SINGLE_THREADED_RUNTIME) || defined(__wasi__)
#include "MutexSingleThreaded.h"
#elif defined(_POSIX_THREADS)
#include "MutexPThread.h"
#elif defined(_WIN32)
#include "MutexWin32.h"
#else
#error "Implement equivalent of MutexPThread.h/cpp for your platform."
#endif
namespace swift {
/// A stack based object that notifies one thread waiting on a condition
/// variable on destruction.
template <typename ConditionVariable>
class ScopedNotifyOneT {
ScopedNotifyOneT() = delete;
ScopedNotifyOneT(const ScopedNotifyOneT &) = delete;
ScopedNotifyOneT &operator=(const ScopedNotifyOneT &) = delete;
ConditionVariable &Condition;
public:
explicit ScopedNotifyOneT(ConditionVariable &c) : Condition(c) {}
~ScopedNotifyOneT() {
Condition.notifyOne();
}
};
/// A stack based object that notifies all threads waiting on a condition
/// variable on destruction.
template <typename ConditionVariable>
class ScopedNotifyAllT {
ScopedNotifyAllT() = delete;
ScopedNotifyAllT(const ScopedNotifyAllT &) = delete;
ScopedNotifyAllT &operator=(const ScopedNotifyAllT &) = delete;
ConditionVariable &Condition;
public:
explicit ScopedNotifyAllT(ConditionVariable &c) : Condition(c) {}
~ScopedNotifyAllT() {
Condition.notifyAll();
}
};
/// Compile time adjusted stack based object that locks/unlocks the supplied
/// Mutex type. Use the provided typedefs instead of this directly.
template <typename T, bool Inverted> class ScopedLockT {
ScopedLockT() = delete;
ScopedLockT(const ScopedLockT &) = delete;
ScopedLockT &operator=(const ScopedLockT &) = delete;
ScopedLockT(ScopedLockT &&) = delete;
ScopedLockT &operator=(ScopedLockT &&) = delete;
public:
explicit ScopedLockT(T &l) : Lock(l) {
if (Inverted) {
Lock.unlock();
} else {
Lock.lock();
}
}
~ScopedLockT() {
if (Inverted) {
Lock.lock();
} else {
Lock.unlock();
}
}
private:
T &Lock;
};
/// A ConditionVariable that works with Mutex to allow -- as an example --
/// multi-threaded producers and consumers to signal each other in a safe way.
class ConditionVariable {
friend class ConditionMutex;
friend class StaticConditionVariable;
ConditionVariable(const ConditionVariable &) = delete;
ConditionVariable &operator=(const ConditionVariable &) = delete;
ConditionVariable(ConditionVariable &&) = delete;
ConditionVariable &operator=(ConditionVariable &&) = delete;
public:
ConditionVariable() { ConditionPlatformHelper::init(Handle); }
~ConditionVariable() { ConditionPlatformHelper::destroy(Handle); }
/// Notifies one waiter (if any exists) that the condition has been met.
///
/// Note: To avoid missed notification it is best hold the related mutex
// lock when calling notifyOne.
void notifyOne() { ConditionPlatformHelper::notifyOne(Handle); }
/// Notifies all waiters (if any exists) that the condition has been met.
///
/// Note: To avoid missed notification it is best hold the related mutex
// lock when calling notifyAll.
void notifyAll() { ConditionPlatformHelper::notifyAll(Handle); }
private:
ConditionHandle Handle;
public:
/// A Mutex object that also supports ConditionVariables.
///
/// This is NOT a recursive mutex.
class Mutex {
Mutex(const Mutex &) = delete;
Mutex &operator=(const Mutex &) = delete;
Mutex(Mutex &&) = delete;
Mutex &operator=(Mutex &&) = delete;
public:
/// Constructs a non-recursive mutex.
///
/// If `checked` is true the mutex will attempt to check for misuse and
/// fatalError when detected. If `checked` is false (the default) the
/// mutex will make little to no effort to check for misuse (more
/// efficient).
explicit Mutex(bool checked = false) {
MutexPlatformHelper::init(Handle, checked);
}
~Mutex() { MutexPlatformHelper::destroy(Handle); }
/// The lock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Blocks the calling thread until exclusive ownership of the mutex
/// can be obtained.
/// - Prior m.unlock() operations on the same mutex synchronize-with
/// this lock operation.
/// - The behavior is undefined if the calling thread already owns
/// the mutex (likely a deadlock).
/// - Does not throw exceptions but will halt on error (fatalError).
void lock() { MutexPlatformHelper::lock(Handle); }
/// The unlock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Releases the calling thread's ownership of the mutex and
/// synchronizes-with the subsequent successful lock operations on
/// the same object.
/// - The behavior is undefined if the calling thread does not own
/// the mutex.
/// - Does not throw exceptions but will halt on error (fatalError).
void unlock() { MutexPlatformHelper::unlock(Handle); }
/// The try_lock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Attempts to obtain exclusive ownership of the mutex for the calling
/// thread without blocking. If ownership is not obtained, returns
/// immediately. The function is allowed to spuriously fail and return
/// even if the mutex is not currently owned by another thread.
/// - If try_lock() succeeds, prior unlock() operations on the same object
/// synchronize-with this operation. lock() does not synchronize with a
/// failed try_lock()
/// - The behavior is undefined if the calling thread already owns
/// the mutex (likely a deadlock)?
/// - Does not throw exceptions but will halt on error (fatalError).
bool try_lock() { return MutexPlatformHelper::try_lock(Handle); }
/// Releases lock, waits on supplied condition, and relocks before
/// returning.
///
/// Precondition: Mutex held by this thread, undefined otherwise.
void wait(ConditionVariable &condition) {
ConditionPlatformHelper::wait(condition.Handle, Handle);
}
/// Acquires lock before calling the supplied critical section and releases
/// lock on return from critical section.
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following mutates value while holding the mutex lock.
///
/// ```
/// mutex.lock([&value] { value++; });
/// ```
///
/// Precondition: Mutex not held by this thread, undefined otherwise.
template <typename CriticalSection>
auto withLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
/// Acquires lock before calling the supplied critical section. If critical
/// section returns `false` then it will wait on the supplied condition and
/// call the critical section again when wait returns (after acquiring
/// lock). If critical section returns `true` (done) it will no longer wait,
/// it will release the lock and return (lockOrWait returns to caller).
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following will loop waiting on the condition until
/// `value > 0`. It will then "consume" that value and stop looping.
/// ...all while being correctly protected by mutex.
///
/// ```
/// mutex.withLockOrWait(condition, [&value] {
/// if (value > 0) {
/// value--;
/// return true;
/// }
/// return false;
/// });
/// ```
///
/// Precondition: Mutex not held by this thread, undefined otherwise.
template <typename CriticalSection>
void withLockOrWait(ConditionVariable &condition,
CriticalSection &&criticalSection) {
withLock([&] {
while (!criticalSection()) {
wait(condition);
}
});
}
/// Acquires lock before calling the supplied critical section and on return
/// from critical section it notifies one waiter of supplied condition and
/// then releases the lock.
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following mutates value while holding the mutex lock and
/// then notifies one condition waiter about this change.
///
/// ```
/// mutex.withLockThenNotifyOne(condition, [&value] { value++; });
/// ```
///
/// Precondition: Mutex not held by this thread, undefined otherwise.
template <typename CriticalSection>
auto withLockThenNotifyOne(ConditionVariable &condition,
CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
return withLock([&] {
ScopedNotifyOne guard(condition);
return std::forward<CriticalSection>(criticalSection)();
});
}
/// Acquires lock before calling the supplied critical section and on return
/// from critical section it notifies all waiters of supplied condition and
/// then releases the lock.
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following mutates value while holding the mutex lock and
/// then notifies all condition waiters about this change.
///
/// ```
/// mutex.withLockThenNotifyAll(condition, [&value] { value++; });
/// ```
///
/// Precondition: Mutex not held by this thread, undefined otherwise.
template <typename CriticalSection>
auto withLockThenNotifyAll(ConditionVariable &condition,
CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
return withLock([&] {
ScopedNotifyAll guard(condition);
return std::forward<CriticalSection>(criticalSection)();
});
}
/// A stack based object that locks the supplied mutex on construction
/// and unlocks it on destruction.
///
/// Precondition: Mutex unlocked by this thread, undefined otherwise.
typedef ScopedLockT<Mutex, false> ScopedLock;
/// A stack based object that unlocks the supplied mutex on construction
/// and relocks it on destruction.
///
/// Precondition: Mutex locked by this thread, undefined otherwise.
typedef ScopedLockT<Mutex, true> ScopedUnlock;
private:
ConditionMutexHandle Handle;
};
using ScopedNotifyOne = ScopedNotifyOneT<ConditionVariable>;
using ScopedNotifyAll = ScopedNotifyAllT<ConditionVariable>;
};
/// A Mutex object that supports `BasicLockable` and `Lockable` C++ concepts.
/// See http://en.cppreference.com/w/cpp/concept/BasicLockable
/// See http://en.cppreference.com/w/cpp/concept/Lockable
///
/// This is NOT a recursive mutex.
class Mutex {
Mutex(const Mutex &) = delete;
Mutex &operator=(const Mutex &) = delete;
Mutex(Mutex &&) = delete;
Mutex &operator=(Mutex &&) = delete;
public:
/// Constructs a non-recursive mutex.
///
/// If `checked` is true the mutex will attempt to check for misuse and
/// fatalError when detected. If `checked` is false (the default) the
/// mutex will make little to no effort to check for misuse (more efficient).
explicit Mutex(bool checked = false) {
MutexPlatformHelper::init(Handle, checked);
}
~Mutex() { MutexPlatformHelper::destroy(Handle); }
/// The lock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Blocks the calling thread until exclusive ownership of the mutex
/// can be obtained.
/// - Prior m.unlock() operations on the same mutex synchronize-with
/// this lock operation.
/// - The behavior is undefined if the calling thread already owns
/// the mutex (likely a deadlock).
/// - Does not throw exceptions but will halt on error (fatalError).
void lock() { MutexPlatformHelper::lock(Handle); }
/// The unlock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Releases the calling thread's ownership of the mutex and
/// synchronizes-with the subsequent successful lock operations on
/// the same object.
/// - The behavior is undefined if the calling thread does not own
/// the mutex.
/// - Does not throw exceptions but will halt on error (fatalError).
void unlock() { MutexPlatformHelper::unlock(Handle); }
/// The try_lock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Attempts to obtain exclusive ownership of the mutex for the calling
/// thread without blocking. If ownership is not obtained, returns
/// immediately. The function is allowed to spuriously fail and return
/// even if the mutex is not currently owned by another thread.
/// - If try_lock() succeeds, prior unlock() operations on the same object
/// synchronize-with this operation. lock() does not synchronize with a
/// failed try_lock()
/// - The behavior is undefined if the calling thread already owns
/// the mutex (likely a deadlock)?
/// - Does not throw exceptions but will halt on error (fatalError).
bool try_lock() { return MutexPlatformHelper::try_lock(Handle); }
/// Acquires lock before calling the supplied critical section and releases
/// lock on return from critical section.
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following mutates value while holding the mutex lock.
///
/// ```
/// mutex.lock([&value] { value++; });
/// ```
///
/// Precondition: Mutex not held by this thread, undefined otherwise.
template <typename CriticalSection>
auto withLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
/// A stack based object that locks the supplied mutex on construction
/// and unlocks it on destruction.
///
/// Precondition: Mutex unlocked by this thread, undefined otherwise.
typedef ScopedLockT<Mutex, false> ScopedLock;
/// A stack based object that unlocks the supplied mutex on construction
/// and relocks it on destruction.
///
/// Precondition: Mutex locked by this thread, undefined otherwise.
typedef ScopedLockT<Mutex, true> ScopedUnlock;
private:
MutexHandle Handle;
};
/// Compile time adjusted stack based object that locks/unlocks the supplied
/// ReadWriteLock type. Use the provided typedefs instead of this directly.
template <typename T, bool Read, bool Inverted> class ScopedRWLockT {
ScopedRWLockT() = delete;
ScopedRWLockT(const ScopedRWLockT &) = delete;
ScopedRWLockT &operator=(const ScopedRWLockT &) = delete;
ScopedRWLockT(ScopedRWLockT &&) = delete;
ScopedRWLockT &operator=(ScopedRWLockT &&) = delete;
public:
explicit ScopedRWLockT(T &l) : Lock(l) {
if (Inverted) {
if (Read) {
Lock.readUnlock();
} else {
Lock.writeUnlock();
}
} else {
if (Read) {
Lock.readLock();
} else {
Lock.writeLock();
}
}
}
~ScopedRWLockT() {
if (Inverted) {
if (Read) {
Lock.readLock();
} else {
Lock.writeLock();
}
} else {
if (Read) {
Lock.readUnlock();
} else {
Lock.writeUnlock();
}
}
}
private:
T &Lock;
};
class ReadWriteLock;
class StaticReadWriteLock;
/// A stack based object that unlocks the supplied ReadWriteLock on
/// construction and locks it for reading on destruction.
///
/// Precondition: ReadWriteLock unlocked by this thread, undefined otherwise.
typedef ScopedRWLockT<ReadWriteLock, true, false> ScopedReadLock;
typedef ScopedRWLockT<StaticReadWriteLock, true, false> StaticScopedReadLock;
/// A stack based object that unlocks the supplied ReadWriteLock on
/// construction and locks it for reading on destruction.
///
/// Precondition: ReadWriteLock unlocked by this thread, undefined
/// otherwise.
typedef ScopedRWLockT<ReadWriteLock, true, true> ScopedReadUnlock;
typedef ScopedRWLockT<StaticReadWriteLock, true, true> StaticScopedReadUnlock;
/// A stack based object that unlocks the supplied ReadWriteLock on
/// construction and locks it for reading on destruction.
///
/// Precondition: ReadWriteLock unlocked by this thread, undefined otherwise.
typedef ScopedRWLockT<ReadWriteLock, false, false> ScopedWriteLock;
typedef ScopedRWLockT<StaticReadWriteLock, false, false> StaticScopedWriteLock;
/// A stack based object that unlocks the supplied ReadWriteLock on
/// construction and locks it for writing on destruction.
///
/// Precondition: ReadWriteLock unlocked by this thread, undefined otherwise.
typedef ScopedRWLockT<ReadWriteLock, false, true> ScopedWriteUnlock;
typedef ScopedRWLockT<StaticReadWriteLock, false, true> StaticScopedWriteUnlock;
/// A Read / Write lock object that has semantics similar to `BasicLockable`
/// and `Lockable` C++ concepts however it supports multiple concurrent
/// threads holding the reader lock as long as the write lock isn't held and
/// only one thread can hold the write local at the same time.
///
/// If you need static allocated ReadWriteLock use StaticReadWriteLock.
///
/// See http://en.cppreference.com/w/cpp/concept/BasicLockable
/// See http://en.cppreference.com/w/cpp/concept/Lockable
///
/// This is NOT a recursive mutex.
class ReadWriteLock {
ReadWriteLock(const ReadWriteLock &) = delete;
ReadWriteLock &operator=(const ReadWriteLock &) = delete;
ReadWriteLock(ReadWriteLock &&) = delete;
ReadWriteLock &operator=(ReadWriteLock &&) = delete;
public:
ReadWriteLock() { ReadWriteLockPlatformHelper::init(Handle); }
~ReadWriteLock() { ReadWriteLockPlatformHelper::destroy(Handle); }
/// The readLock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Blocks the calling thread while the write lock is held by another
/// thread and once the read lock is acquired by the calling thread
/// other threads are prevented from acquiring the write lock.
/// - Multiple threads can hold the read lock at the same time.
/// - Prior unlock() operations on the same lock synchronize-with
/// this lock operation.
/// - The behavior is undefined if the calling thread already owns
/// the read or write lock (likely a deadlock).
/// - Does not throw exceptions but will halt on error (fatalError).
///
/// Callers must not mutate the data protected by the ReadWriteLock while
/// holding the read lock, the write lock must be used.
void readLock() { ReadWriteLockPlatformHelper::readLock(Handle); }
/// The try_readLock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Attempts to obtain the read lock without blocking the calling thread.
/// If ownership is not obtained, returns immediately. The function is
/// allowed to spuriously fail and return even if the lock is not
/// currently owned by another thread.
/// - If try_readLock() succeeds, prior unlock() operations on the same
/// object synchronize-with this operation. unlock() does not synchronize
/// with a failed try_readLock().
/// - The behavior is undefined if the calling thread already owns
/// the read or write lock (likely a deadlock)?
/// - Does not throw exceptions but will halt on error (fatalError).
///
/// Callers must not mutate the data protected by the ReadWriteLock while
/// holding the read lock, the write lock must be used.
bool try_readLock() {
return ReadWriteLockPlatformHelper::try_readLock(Handle);
}
/// The readUnlock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Releases the calling thread's ownership of the read lock
/// and synchronizes-with the subsequent successful lock operations on
/// the same object.
/// - The behavior is undefined if the calling thread does not own
/// the read lock.
/// - Does not throw exceptions but will halt on error (fatalError).
void readUnlock() { ReadWriteLockPlatformHelper::readUnlock(Handle); }
/// The writeLock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Blocks the calling thread while the write lock or a read lock is held
/// by another thread and once the write lock is acquired by the calling
/// thread other threads are prevented from acquiring the write lock or a
/// read lock.
/// - Only one thread can hold the write lock at the same time.
/// - Prior unlock() operations on the same lock synchronize-with
/// this lock operation.
/// - The behavior is undefined if the calling thread already owns
/// the read or write lock (likely a deadlock).
/// - Does not throw exceptions but will halt on error (fatalError).
void writeLock() { ReadWriteLockPlatformHelper::writeLock(Handle); }
/// The try_writeLock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Attempts to obtain the write lock without blocking the calling thread.
/// If ownership is not obtained, returns immediately. The function is
/// allowed to spuriously fail and return even if the lock is not
/// currently owned by another thread.
/// - If try_writeLock() succeeds, prior unlock() operations on the same
/// object synchronize-with this operation. unlock() does not synchronize
/// with a failed try_writeLock().
/// - The behavior is undefined if the calling thread already owns
/// the read or write lock (likely a deadlock)?
/// - Does not throw exceptions but will halt on error (fatalError).
bool try_writeLock() {
return ReadWriteLockPlatformHelper::try_writeLock(Handle);
}
/// The writeUnlock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Releases the calling thread's ownership of the write lock
/// and synchronizes-with the subsequent successful lock operations on
/// the same object.
/// - The behavior is undefined if the calling thread does not own
/// the write lock.
/// - Does not throw exceptions but will halt on error (fatalError).
void writeUnlock() { ReadWriteLockPlatformHelper::writeUnlock(Handle); }
/// Acquires read lock before calling the supplied critical section and
/// releases lock on return from critical section. Callers must not mutate
/// the data protected by the ReadWriteLock while holding the read lock, the
/// write lock must be used.
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following reads the cached value while holding
/// the read lock.
///
/// ```
/// rw.withReadLock([&value] { value = cachedValue; });
/// ```
///
/// Precondition: ReadWriteLock not held by this thread, undefined otherwise.
template <typename CriticalSection>
auto withReadLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedReadLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
/// Acquires write lock before calling the supplied critical section and
/// releases lock on return from critical section.
///
/// This call can block while waiting for the lock to become available.
///
/// For example the following updates the cached value while holding
/// the write lock.
///
/// ```
/// rw.withWriteLock([&newValue] { cachedValue = newValue });
/// ```
///
/// Precondition: ReadWriteLock not held by this thread, undefined otherwise.
template <typename CriticalSection>
auto withWriteLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedWriteLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
private:
ReadWriteLockHandle Handle;
};
/// A static allocation variant of ConditionVariable.
///
/// Use ConditionVariable instead unless you need static allocation.
class StaticConditionVariable {
StaticConditionVariable(const StaticConditionVariable &) = delete;
StaticConditionVariable &operator=(const StaticConditionVariable &) = delete;
StaticConditionVariable(StaticConditionVariable &&) = delete;
StaticConditionVariable &operator=(StaticConditionVariable &&) = delete;
public:
#if SWIFT_CONDITION_SUPPORTS_CONSTEXPR
constexpr
#endif
StaticConditionVariable()
: Handle(ConditionPlatformHelper::staticInit()) {
}
/// See ConditionVariable::notifyOne
void notifyOne() { ConditionPlatformHelper::notifyOne(Handle); }
/// See ConditionVariable::notifyAll
void notifyAll() { ConditionPlatformHelper::notifyAll(Handle); }
using ScopedNotifyOne = ScopedNotifyOneT<StaticConditionVariable>;
using ScopedNotifyAll = ScopedNotifyAllT<StaticConditionVariable>;
/// A static allocation variant of ConditionVariable::Mutex.
///
/// Use ConditionVariable::Mutex instead unless you need static allocation.
class StaticMutex {
StaticMutex(const StaticMutex &) = delete;
StaticMutex &operator=(const StaticMutex &) = delete;
StaticMutex(StaticMutex &&) = delete;
StaticMutex &operator=(StaticMutex &&) = delete;
public:
#if SWIFT_MUTEX_SUPPORTS_CONSTEXPR
constexpr
#endif
StaticMutex()
: Handle(MutexPlatformHelper::conditionStaticInit()) {
}
/// See Mutex::lock
void lock() { MutexPlatformHelper::lock(Handle); }
/// See Mutex::unlock
void unlock() { MutexPlatformHelper::unlock(Handle); }
/// See Mutex::try_lock
bool try_lock() { return MutexPlatformHelper::try_lock(Handle); }
/// See Mutex::wait
void wait(StaticConditionVariable &condition) {
ConditionPlatformHelper::wait(condition.Handle, Handle);
}
void wait(ConditionVariable &condition) {
ConditionPlatformHelper::wait(condition.Handle, Handle);
}
/// See Mutex::lock
template <typename CriticalSection>
auto withLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
/// See Mutex::withLockOrWait
template <typename CriticalSection>
void withLockOrWait(StaticConditionVariable &condition,
CriticalSection &&criticalSection) {
withLock([&] {
while (!criticalSection()) {
wait(condition);
}
});
}
/// See Mutex::withLockThenNotifyOne
template <typename CriticalSection>
auto withLockThenNotifyOne(StaticConditionVariable &condition,
CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
return withLock([&] {
StaticConditionVariable::ScopedNotifyOne guard(condition);
return std::forward<CriticalSection>(criticalSection)();
});
}
/// See Mutex::withLockThenNotifyAll
template <typename CriticalSection>
auto withLockThenNotifyAll(StaticConditionVariable &condition,
CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
return withLock([&] {
StaticConditionVariable::ScopedNotifyAll guard(condition);
return std::forward<CriticalSection>(criticalSection)();
});
}
/// A stack based object that locks the supplied mutex on construction
/// and unlocks it on destruction.
///
/// Precondition: Mutex unlocked by this thread, undefined otherwise.
typedef ScopedLockT<StaticMutex, false> ScopedLock;
/// A stack based object that unlocks the supplied mutex on construction
/// and relocks it on destruction.
///
/// Precondition: Mutex locked by this thread, undefined otherwise.
typedef ScopedLockT<StaticMutex, true> ScopedUnlock;
private:
ConditionMutexHandle Handle;
};
private:
ConditionHandle Handle;
};
/// A static allocation variant of Mutex.
///
/// Use Mutex instead unless you need static allocation.
class StaticMutex {
StaticMutex(const StaticMutex &) = delete;
StaticMutex &operator=(const StaticMutex &) = delete;
StaticMutex(StaticMutex &&) = delete;
StaticMutex &operator=(StaticMutex &&) = delete;
public:
#if SWIFT_MUTEX_SUPPORTS_CONSTEXPR
constexpr
#endif
StaticMutex()
: Handle(MutexPlatformHelper::staticInit()) {
}
/// See Mutex::lock
void lock() { MutexPlatformHelper::lock(Handle); }
/// See Mutex::unlock
void unlock() { MutexPlatformHelper::unlock(Handle); }
/// See Mutex::try_lock
bool try_lock() { return MutexPlatformHelper::try_lock(Handle); }
/// See Mutex::lock
template <typename CriticalSection>
auto withLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
/// A stack based object that locks the supplied mutex on construction
/// and unlocks it on destruction.
///
/// Precondition: Mutex unlocked by this thread, undefined otherwise.
typedef ScopedLockT<StaticMutex, false> ScopedLock;
/// A stack based object that unlocks the supplied mutex on construction
/// and relocks it on destruction.
///
/// Precondition: Mutex locked by this thread, undefined otherwise.
typedef ScopedLockT<StaticMutex, true> ScopedUnlock;
private:
MutexHandle Handle;
};
/// A static allocation variant of ReadWriteLock.
///
/// Use ReadWriteLock instead unless you need static allocation.
class StaticReadWriteLock {
StaticReadWriteLock(const StaticReadWriteLock &) = delete;
StaticReadWriteLock &operator=(const StaticReadWriteLock &) = delete;
StaticReadWriteLock(StaticReadWriteLock &&) = delete;
StaticReadWriteLock &operator=(StaticReadWriteLock &&) = delete;
public:
#if SWIFT_READWRITELOCK_SUPPORTS_CONSTEXPR
constexpr
#endif
StaticReadWriteLock()
: Handle(ReadWriteLockPlatformHelper::staticInit()) {
}
/// See ReadWriteLock::readLock
void readLock() { ReadWriteLockPlatformHelper::readLock(Handle); }
/// See ReadWriteLock::try_readLock
bool try_readLock() {
return ReadWriteLockPlatformHelper::try_readLock(Handle);
}
/// See ReadWriteLock::readUnlock
void readUnlock() { ReadWriteLockPlatformHelper::readUnlock(Handle); }
/// See ReadWriteLock::writeLock
void writeLock() { ReadWriteLockPlatformHelper::writeLock(Handle); }
/// See ReadWriteLock::try_writeLock
bool try_writeLock() {
return ReadWriteLockPlatformHelper::try_writeLock(Handle);
}
/// See ReadWriteLock::writeUnlock
void writeUnlock() { ReadWriteLockPlatformHelper::writeUnlock(Handle); }
/// See ReadWriteLock::withReadLock
template <typename CriticalSection>
auto withReadLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
StaticScopedReadLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
/// See ReadWriteLock::withWriteLock
template <typename CriticalSection>
auto withWriteLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
StaticScopedWriteLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
private:
ReadWriteLockHandle Handle;
};
/// A Mutex object that supports `BasicLockable` C++ concepts. It is
/// considered
/// unsafe to use because it doesn't do any error checking. It is only for
/// use in pathways that deal with reporting fatalErrors to avoid the
/// potential
/// for recursive fatalErrors that could happen if you used Mutex.
///
/// Always use Mutex, unless in the above mentioned error pathway situation.
class StaticUnsafeMutex {
StaticUnsafeMutex(const StaticUnsafeMutex &) = delete;
StaticUnsafeMutex &operator=(const StaticUnsafeMutex &) = delete;
StaticUnsafeMutex(StaticUnsafeMutex &&) = delete;
StaticUnsafeMutex &operator=(StaticUnsafeMutex &&) = delete;
public:
#if SWIFT_MUTEX_SUPPORTS_CONSTEXPR
constexpr
#endif
StaticUnsafeMutex()
: Handle(MutexPlatformHelper::staticInit()) {
}
/// The lock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Blocks the calling thread until exclusive ownership of the mutex
/// can be obtained.
/// - Prior m.unlock() operations on the same mutex synchronize-with
/// this lock operation.
/// - The behavior is undefined if the calling thread already owns
/// the mutex (likely a deadlock).
/// - Ignores errors that may happen, undefined when an error happens.
void lock() { MutexPlatformHelper::unsafeLock(Handle); }
/// The unlock() method has the following properties:
/// - Behaves as an atomic operation.
/// - Releases the calling thread's ownership of the mutex and
/// synchronizes-with the subsequent successful lock operations on
/// the same object.
/// - The behavior is undefined if the calling thread does not own
/// the mutex.
/// - Ignores errors that may happen, undefined when an error happens.
void unlock() { MutexPlatformHelper::unsafeUnlock(Handle); }
template <typename CriticalSection>
auto withLock(CriticalSection &&criticalSection)
-> decltype(std::forward<CriticalSection>(criticalSection)()) {
ScopedLock guard(*this);
return std::forward<CriticalSection>(criticalSection)();
}
typedef ScopedLockT<StaticUnsafeMutex, false> ScopedLock;
typedef ScopedLockT<StaticUnsafeMutex, true> ScopedUnlock;
private:
MutexHandle Handle;
};
/// An indirect variant of a Mutex. This allocates the mutex on the heap, for
/// places where having the mutex inline takes up too much space. Used for
/// SmallMutex on platforms where Mutex is large.
class IndirectMutex {
IndirectMutex(const IndirectMutex &) = delete;
IndirectMutex &operator=(const IndirectMutex &) = delete;
IndirectMutex(IndirectMutex &&) = delete;
IndirectMutex &operator=(IndirectMutex &&) = delete;
public:
explicit IndirectMutex(bool checked = false) { Ptr = new Mutex(checked); }
~IndirectMutex() { delete Ptr; }
void lock() { Ptr->lock(); }
void unlock() { Ptr->unlock(); }
bool try_lock() { return Ptr->try_lock(); }
template <typename CriticalSection>
auto withLock(CriticalSection &&criticalSection)
-> decltype(criticalSection()) {
return Ptr->withLock(std::forward<CriticalSection>(criticalSection));
}
/// A stack based object that locks the supplied mutex on construction
/// and unlocks it on destruction.
///
/// Precondition: Mutex unlocked by this thread, undefined otherwise.
typedef ScopedLockT<IndirectMutex, false> ScopedLock;
/// A stack based object that unlocks the supplied mutex on construction
/// and relocks it on destruction.
///
/// Precondition: Mutex locked by this thread, undefined otherwise.
typedef ScopedLockT<IndirectMutex, true> ScopedUnlock;
private:
Mutex *Ptr;
};
/// A "small" mutex, which is pointer sized or smaller, for places where the
/// mutex is stored inline with limited storage space. This uses a normal Mutex
/// when that is small, and otherwise uses IndirectMutex.
using SmallMutex =
std::conditional_t<sizeof(Mutex) <= sizeof(void *), Mutex, IndirectMutex>;
// Enforce literal requirements for static variants.
#if SWIFT_MUTEX_SUPPORTS_CONSTEXPR
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
static_assert(std::is_literal_type<StaticMutex>::value,
"StaticMutex must be literal type");
static_assert(std::is_literal_type<StaticUnsafeMutex>::value,
"StaticUnsafeMutex must be literal type");
#pragma clang diagnostic pop
#else
// Your platform doesn't currently support statically allocated Mutex
// you will possibly see global-constructors warnings
#endif
#if SWIFT_CONDITION_SUPPORTS_CONSTEXPR
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
static_assert(std::is_literal_type<StaticConditionVariable>::value,
"StaticConditionVariable must be literal type");
#pragma clang diagnostic pop
#else
// Your platform doesn't currently support statically allocated ConditionVar
// you will possibly see global-constructors warnings
#endif
#if SWIFT_READWRITELOCK_SUPPORTS_CONSTEXPR
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
static_assert(std::is_literal_type<StaticReadWriteLock>::value,
"StaticReadWriteLock must be literal type");
#pragma clang diagnostic pop
#else
// Your platform doesn't currently support statically allocated ReadWriteLocks
// you will possibly see global-constructors warnings
#endif
}
#endif // SWIFT_RUNTIME_MUTEX_BACKDEPLOY56_H
|