1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
// RUN: %target-swift-emit-sil -verify %s | %FileCheck %s -check-prefix=CHECK-SIL
import _Differentiation
@_silgen_name("identity")
func identity<T : Differentiable>(_ x: T) -> T {
return x
}
_ = gradient(at: Float(1), of: { x in identity(x) })
// Test PullbackCloner local buffer allocation.
// Verify that local buffers are immediately set to zero.
// CHECK-SIL-LABEL: sil private @identity16_Differentiation14DifferentiableRzlTJpSpSr
// CHECK-SIL: [[ORIG_COTAN:%.*]] = alloc_stack $τ_0_0.TangentVector
// CHECK-SIL-NEXT: [[ZERO_WITNESS:%.*]] = witness_method $τ_0_0.TangentVector, #AdditiveArithmetic.zero!getter
// CHECK-SIL-NEXT: [[ORIG_COTAN_METATYPE:%.*]] = metatype $@thick τ_0_0.TangentVector.Type
// CHECK-SIL-NEXT: [[EMIT_ZERO_INDIRECT:%.*]] = apply [[ZERO_WITNESS]]<τ_0_0.TangentVector>([[ORIG_COTAN]], [[ORIG_COTAN_METATYPE]])
// CHECK-SIL: }
// Test TF-201: differentiate direct references to generic function.
// This involves reabstraction thunk differentiation.
_ = gradient(at: Float(1), of: identity)
protocol DifferentiableAdditiveArithmetic: Differentiable & AdditiveArithmetic {
@differentiable(reverse)
static func + (lhs: Self, rhs: Self) -> Self
}
extension Float: DifferentiableAdditiveArithmetic {}
func generic<T: DifferentiableAdditiveArithmetic>(_ x: T) -> T {
x + x + x
}
_ = gradient(at: Float(10), of: generic)
struct Wrapper<Scalar : Differentiable> : Differentiable {
var value: Scalar
init(_ value: Scalar) { self.value = value }
}
func generic<T>(_ x: Wrapper<T>) -> T {
return x.value
}
_ = gradient(at: Wrapper<Float>(1), of: generic)
func generic2<T: Differentiable, U: Differentiable>(_ x: T, _ y: Float, _ z: U) -> T {
return x
}
func foo<T>(_ x: Wrapper<T>) {
_ = gradient(at: Float(1), 2, x, of: generic2)
}
// Test case where associated derivative function's requirements are met.
extension Wrapper where Scalar : Numeric {
@differentiable(reverse, wrt: self where Scalar : Differentiable & FloatingPoint)
func mean() -> Wrapper {
return self
}
@differentiable(reverse, wrt: self where Scalar : Differentiable & FloatingPoint)
func variance() -> Wrapper {
return mean() // ok
}
}
_ = pullback(at: Wrapper<Float>(1), of: { $0.variance() })
// Tests TF-277.
protocol Layer : Differentiable {
associatedtype Output : Differentiable
}
struct SupervisedTrainer<Model : Layer> {
var model: Model
var lossFunction: @differentiable(reverse) (Model.Output, Model.Output) -> Float
func fit(y: Model.Output) {
_ = gradient(at: y) { y in return self.lossFunction(y, y) }
}
}
// Tests TF-440.
struct TF_440_Input<Input: Differentiable, State: Differentiable>
: Differentiable {
var input: Input
var state: State
}
struct TF_440<T : Differentiable> {
@differentiable(reverse)
func applied(to input: TF_440_Input<Float, Float>) -> Float {
return input.state
}
@differentiable(reverse)
func applied(to input: TF_440_Input<T, Float>) -> Float {
return input.state
}
@differentiable(reverse)
func applied(to input: TF_440_Input<T, Float>) -> T {
return input.input
}
}
// Tests TF-508: differentiation requirements with dependent member types.
protocol TF_508_Proto {
associatedtype Scalar
}
extension TF_508_Proto where Scalar : FloatingPoint {
@differentiable(reverse
where Self : Differentiable, Scalar : Differentiable,
// Conformance requirement with dependent member type.
Self.TangentVector : TF_508_Proto
)
static func +(lhs: Self, rhs: Self) -> Self {
return lhs
}
@differentiable(reverse
where Self : Differentiable, Scalar : Differentiable,
// Same-type requirement with dependent member type.
Self.TangentVector == Float
)
static func -(lhs: Self, rhs: Self) -> Self {
return lhs
}
}
extension TF_508_Proto where Self : Differentiable,
Scalar : FloatingPoint & Differentiable,
Self.TangentVector : TF_508_Proto {
@derivative(of: +)
static func vjpAdd(lhs: Self, rhs: Self)
-> (value: Self, pullback: (TangentVector) -> (TangentVector, TangentVector)) {
return (lhs, { v in (v, v) })
}
}
extension TF_508_Proto where Self : Differentiable,
Scalar : FloatingPoint & Differentiable,
Self.TangentVector == Float {
@derivative(of: -)
static func vjpSubtract(lhs: Self, rhs: Self)
-> (value: Self, pullback: (TangentVector) -> (TangentVector, TangentVector)) {
return (lhs, { v in (v, v) })
}
}
struct TF_508_Struct<Scalar : AdditiveArithmetic>
: TF_508_Proto, AdditiveArithmetic {}
extension TF_508_Struct : Differentiable where Scalar : Differentiable {
typealias TangentVector = TF_508_Struct
}
func TF_508() {
let x = TF_508_Struct<Float>()
// Test conformance requirement with dependent member type.
_ = pullback(at: x, of: { (x: TF_508_Struct<Float>) -> TF_508_Struct<Float> in
return x + x
})
// Test same-type requirement with dependent member type.
_ = pullback(at: x, of: { (x: TF_508_Struct<Float>) -> TF_508_Struct<Float> in
return x - x
})
}
// TF-523
struct TF_523_Struct : Differentiable & AdditiveArithmetic {
var a: Float = 1
typealias TangentVector = TF_523_Struct
}
@differentiable(reverse)
func TF_523_f(_ x: TF_523_Struct) -> Float {
return x.a * 2
}
// TF-534: Thunk substitution map remapping.
protocol TF_534_Layer : Differentiable {
associatedtype Input : Differentiable
associatedtype Output : Differentiable
@differentiable(reverse)
func callAsFunction(_ input: Input) -> Output
}
struct TF_534_Tensor<Scalar> : Differentiable {}
func TF_534<Model: TF_534_Layer>(
_ model: inout Model, inputs: Model.Input
) -> TF_534_Tensor<Float> where Model.Output == TF_534_Tensor<Float> {
return valueWithPullback(at: model) { model -> Model.Output in
return model(inputs)
}.0
}
// TF-546: Test that SILGen linear map thunk performs correct reabstraction.
struct TF_546<T: FloatingPoint>: AdditiveArithmetic {
var real: T
var imaginary: T
@differentiable(reverse where T: Differentiable, T == T.TangentVector)
init(real: T = 0, imaginary: T = 0) {
self.real = real
self.imaginary = imaginary
}
}
extension TF_546: Differentiable where T: Differentiable {
typealias TangentVector = TF_546
}
extension TF_546 where T: Differentiable, T == T.TangentVector {
@derivative(of: init)
static func _vjpInit(real: T, imaginary: T) -> (value: TF_546, pullback: (TF_546) -> (T, T)) {
return (TF_546(real: real, imaginary: imaginary), { ($0.real, $0.imaginary) })
}
}
let _: @differentiable(reverse) (Float, Float) -> TF_546<Float> = { r, i in
TF_546(real: r, imaginary: i)
}
// TF-652: Test VJPCloner substitution map generic signature.
// The substitution map should have the VJP's generic signature, not the
// original function's.
struct TF_652<Scalar> {}
extension TF_652 : Differentiable where Scalar : FloatingPoint {}
@differentiable(reverse, wrt: x where Scalar: FloatingPoint)
func test<Scalar: Numeric>(x: TF_652<Scalar>) -> TF_652<Scalar> {
for _ in 0..<10 {
let _ = x
}
return x
}
// TF-682: Test that SILGen linear map thunk performs correct reabstraction.
protocol TF_682_Proto {
associatedtype Scalar
}
extension TF_682_Proto where Scalar : FloatingPoint {
@differentiable(reverse
where Self : Differentiable, Scalar : Differentiable,
// Same-type requirement with dependent member type.
Self.TangentVector == Float
)
func foo(lhs: Self) -> Self {
return lhs
}
}
extension TF_682_Proto where Self : Differentiable,
Scalar : FloatingPoint & Differentiable,
Self.TangentVector == Float {
@derivative(of: foo)
func vjpFoo(lhs: Self) -> (
value: Self, pullback: (TangentVector) -> (TangentVector, TangentVector)
) {
return (lhs, { v in (v, v) })
}
}
// NOTE(TF-1208): Differentiation regression due to changes in curry thunk generation.
/*
// TF-688: Test generic curry thunk cloning.
public struct TF_688_Struct<Scalar> {
var x: Scalar
}
extension TF_688_Struct: Differentiable where Scalar: Differentiable {
@differentiable(reverse)
public static func id(x: Self) -> Self {
return x
}
}
@differentiable(reverse, wrt: x)
public func TF_688<Scalar: Differentiable>(
_ x: TF_688_Struct<Scalar>,
reduction: @differentiable(reverse) (TF_688_Struct<Scalar>) -> TF_688_Struct<Scalar> = TF_688_Struct.id
) -> TF_688_Struct<Scalar> {
reduction(x)
}
*/
// TF-697: Test generic requirements of generated derivative function.
protocol TF_697_Module: Differentiable {
associatedtype Input
associatedtype Output: Differentiable
@differentiable(reverse, wrt: self)
func callModule(_ input: Input) -> Output
}
protocol TF_697_Layer: TF_697_Module where Input: Differentiable {
@differentiable(reverse)
func callLayer(_ input: Input) -> Output
}
struct TF_697_Sequential<Layer1: TF_697_Module, Layer2: TF_697_Layer>: TF_697_Module
where Layer1.Output == Layer2.Input {
var layer1: Layer1
var layer2: Layer2
@differentiable(reverse, wrt: self)
func callModule(_ input: Layer1.Input) -> Layer2.Output {
layer2.callLayer(layer1.callModule(input))
}
}
extension TF_697_Sequential: TF_697_Layer where Layer1: TF_697_Layer {
@differentiable(reverse)
func callLayer(_ input: Layer1.Input) -> Layer2.Output {
layer2.callLayer(layer1.callLayer(input))
}
}
// TF-817: Test remapping `apply` callee types in derivative function context.
struct TF_817<T> {
func foo(_ index: Int) -> T {
fatalError()
}
}
extension TF_817: Differentiable where T: Differentiable {
@derivative(of: foo)
func vjpFoo(index: Int) -> (value: T, pullback: (T.TangentVector) -> (TangentVector)) {
fatalError()
}
}
extension TF_817 {
@differentiable(reverse, wrt: self where T: Differentiable)
public func test(index: Int) -> T {
return self.foo(0) // crash happened here
}
}
// TF-886: Test `partial_apply` of linear map subset parameters thunk.
@differentiable(reverse)
func TF_886_foo<T, U: Differentiable>(_: Float, _: T, _: U) -> Float {
return 0
}
@differentiable(reverse)
func TF_886_bar<T>(x: Float, y: T) -> Float {
return TF_886_foo(x, y, 0)
}
// Test layout requirements.
// The layout requirement is "contextual": the requirement is not on `T`, the
// differentiable function parameter/result type.
struct ContextualLayoutRequirement<T: Differentiable, U: AnyObject> {
var stored: T
}
extension ContextualLayoutRequirement {
func test(_ x: T) {
let _: @differentiable(reverse) (T) -> T = { _ in self.stored }
let _: @differentiable(reverse) (T) -> T = { $0 }
}
}
// The layout requirement directly involves `T`, the differentiable function
// parameter/result type.
// TODO(TF-851): Uncomment the tests below after `@differentiable` function
// SILGen thunking is fixed.
/*
struct LayoutRequirement<T: AnyObject & Differentiable> {
var stored: T
}
extension LayoutRequirement {
func test(_ x: T) {
let _: @differentiable(reverse) (T) -> T = { _ in self.stored }
let _: @differentiable(reverse) (T) -> T = { $0 }
}
}
*/
// Test superclass requirements.
class Super: Differentiable {}
// The superclass requirement is "contextual": the requirement is not on `T`,
// the differentiable function parameter/result type.
struct ContextualSuperclassRequirement<T: Differentiable, U: Super> {
var stored: T
}
extension ContextualSuperclassRequirement {
func test(_ x: T) {
let _: @differentiable(reverse) (T) -> T = { _ in self.stored }
let _: @differentiable(reverse) (T) -> T = { $0 }
}
}
// The superclass requirement directly involves `T`, the differentiable
// function parameter/result type.
// TODO(TF-851): Uncomment the tests below after `@differentiable` function
// SILGen thunking is fixed.
/*
struct SuperclassRequirement<T: Super & Differentiable> {
var stored: T
}
extension SuperclassRequirement {
func test(_ x: T) {
let _: @differentiable(reverse) (T) -> T = { _ in self.stored }
let _: @differentiable(reverse) (T) -> T = { $0 }
}
}
*/
|