File: tgmath_derivatives.swift.gyb

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (213 lines) | stat: -rw-r--r-- 7,495 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// RUN: %target-run-simple-swiftgyb(-Xfrontend -enable-experimental-forward-mode-differentiation)
// REQUIRES: executable_test

#if canImport(Darwin)
  import Darwin.C.tgmath
#elseif canImport(Glibc)
  import Glibc
#elseif canImport(Android)
  import Android
#elseif os(Windows)
  import CRT
#else
#error("Unsupported platform")
#endif

#if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64))
  typealias TestLiteralType = Float80
#else
  typealias TestLiteralType = Double
#endif

import StdlibUnittest
import _Differentiation

let DerivativeTests = TestSuite("TGMath")

func expectEqualWithTolerance<T>(_ expected: TestLiteralType, _ actual: T,
                                 ulps allowed: T = 3,
                                 file: String = #file, line: UInt = #line)
                                 where T: BinaryFloatingPoint {
  if actual == T(expected) || actual.isNaN && expected.isNaN || actual.isInfinite && expected.isInfinite {
    return
  }
  //  Compute error in ulp, compare to tolerance.
  let absoluteError = T(abs(TestLiteralType(actual) - expected))
  let ulpError = absoluteError / T(expected).ulp
  expectTrue(ulpError <= allowed,
             "\(actual) != \(expected) as \(T.self)" +
             "\n  \(ulpError)-ulp error exceeds \(allowed)-ulp tolerance.",
             file: file, line: line)
}

func computeDividedDifference<T: BinaryFloatingPoint> (
  _ f: (T, T) -> T,
  _ x: T,
  _ y: T,
  eps: T = 0.01
) -> (dfdx: T, dfdy: T) {
  let dfdx = (f(x + eps, y) - f(x, y)) / eps
  let dfdy = (f(x, y + eps) - f(x, y)) / eps
  return (dfdx, dfdy)
}

func checkGradient<T: BinaryFloatingPoint & Differentiable>(
  _ f: @differentiable(reverse) (T, T) -> T,
  _ x: T,
  _ y: T,
  ulps: T = 192)
where T == T.TangentVector {
  let eps = T(0.01)
  let grad = gradient(at: x, y, of: f)
  let (dfdx, dfdy) = computeDividedDifference(f, x, y, eps: eps)
  expectEqualWithTolerance(TestLiteralType(dfdx), grad.0, ulps: ulps)
  expectEqualWithTolerance(TestLiteralType(dfdy), grad.1, ulps: ulps)
}

func checkDerivative<T: BinaryFloatingPoint & Differentiable>(
  _ f: @differentiable(reverse) (T, T) -> T,
  _ x: T,
  _ y: T,
  ulps: T = 192)
where T == T.TangentVector {
  let eps = T(0.01)
  let deriv = derivative(at: x, y, of: f)
  let (dfdx, dfdy) = computeDividedDifference(f, x, y, eps: eps)
  expectEqualWithTolerance(TestLiteralType(dfdx + dfdy), deriv, ulps: ulps)
}

%for op in ['derivative', 'gradient']:
%for T in ['Float', 'Double', 'Float80']:

%if T == 'Float80':
#if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64))
%end

DerivativeTests.test("${op}_${T}") {
  expectEqualWithTolerance(7.3890560989306502274, ${op}(at: 2 as ${T}, of: exp))
  expectEqualWithTolerance(2.772588722239781145, ${op}(at: 2 as ${T}, of: exp2))
  expectEqualWithTolerance(7.3890560989306502274, ${op}(at: 2 as ${T}, of: expm1))
  expectEqualWithTolerance(0.5, ${op}(at: 2 as ${T}, of: log))
  expectEqualWithTolerance(0.21714724095162590833, ${op}(at: 2 as ${T}, of: log10))
  expectEqualWithTolerance(0.7213475204444817278, ${op}(at: 2 as ${T}, of: log2))
  expectEqualWithTolerance(0.33333333333333333334, ${op}(at: 2 as ${T}, of: log1p))
  expectEqualWithTolerance(5.774399204041917612, ${op}(at: 2 as ${T}, of: tan))
  expectEqualWithTolerance(-0.9092974268256816954, ${op}(at: 2 as ${T}, of: cos))
  expectEqualWithTolerance(-0.416146836547142387, ${op}(at: 2 as ${T}, of: sin))
  expectEqualWithTolerance(1.154700538379251529, ${op}(at: 0.5 as ${T}, of: asin))
  expectEqualWithTolerance(-1.154700538379251529, ${op}(at: 0.5 as ${T}, of: acos))
  expectEqualWithTolerance(0.8, ${op}(at: 0.5 as ${T}, of: atan))
  expectEqualWithTolerance(3.7621956910836314597, ${op}(at: 2 as ${T}, of: sinh))
  expectEqualWithTolerance(3.6268604078470187677, ${op}(at: 2 as ${T}, of: cosh))
  expectEqualWithTolerance(0.07065082485316446565, ${op}(at: 2 as ${T}, of: tanh))
  expectEqualWithTolerance(0.44721359549995793928, ${op}(at: 2 as ${T}, of: asinh))
  expectEqualWithTolerance(0.5773502691896257645, ${op}(at: 2 as ${T}, of: acosh))
  expectEqualWithTolerance(1.3333333333333333334, ${op}(at: 0.5 as ${T}, of: atanh))
  expectEqualWithTolerance(0.020666985354092053575, ${op}(at: 2 as ${T}, of: erf))
  expectEqualWithTolerance(-0.020666985354092053575, ${op}(at: 2 as ${T}, of: erfc))
  expectEqualWithTolerance(0.35355339059327376222, ${op}(at: 2 as ${T}, of: { sqrt($0) }))
  expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, of: { ceil($0) }))
  expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, of: { floor($0) }))
  expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, of: { round($0) }))
  expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, of: { trunc($0) }))

  // Differential operator specific tests.

  // fma
  let dfma = ${op}(at: 4 as ${T}, 5 as ${T}, 6 as ${T}, of: fma)
%if op == 'gradient':
  expectEqualWithTolerance(5, dfma.0)
  expectEqualWithTolerance(4, dfma.1)
  expectEqualWithTolerance(1, dfma.2)
%else: # if op == 'derivative'
  expectEqualWithTolerance(10, dfma)
%end

  // remainder, fmod
  for a in -10...10 {
    let x = ${T}(a)
    for b in -10...10 {
      let y = ${T}(b)
      guard b != 0 && remainder(x, y).sign == remainder(x + ${T}(0.001), y).sign &&
        remainder(x, y).sign == remainder(x, y + ${T}(0.001)).sign
        else { continue }
%if op == 'gradient':
      checkGradient({ remainder($0, $1) }, x, y)
      checkGradient({ fmod($0, $1) }, x, y)
%else: # if op == 'derivative'
      // TODO(TF-1108): Implement JVPs for `remainder` and `fmod`.
%end
    }
  }

  // pow
  let eps:${T} = 0.01
  let ulps:${T} = eps/eps.ulp

  // Checks for negative base.
  for a in -3..<0 {
    let x = ${T}(a)
    for b in -3...3 {
      let y = ${T}(b)
      let expectedDx =  y * pow(x, y - 1)
      let expectedDy = ${T}.zero
      let dpow = ${op}(at: x, y, of: pow)
%if op == 'gradient':
      expectEqualWithTolerance(TestLiteralType(expectedDx), dpow.0)
      expectEqualWithTolerance(TestLiteralType(expectedDy), dpow.1)
%else: # if op == 'derivative'
      expectEqualWithTolerance(TestLiteralType(expectedDx + expectedDy), dpow)
%end
    }
  }

  // Checks for 0 base.
  for b in -3...3 {
    let y = ${T}(b)
    var expectedValues: (dx: ${T}, dy: ${T})?
    if y.isLess(than: 0) {
      expectedValues = (dx: ${T}.infinity, dy: ${T}.nan)
    } else if y.isZero {
      expectedValues = (dx: ${T}.nan, dy: ${T}.zero)
    } else if !y.isEqual(to: 1) {
      expectedValues = (dx: ${T}.zero, dy: ${T}.zero)
    }
    if let (expectedDx, expectedDy) = expectedValues {
      let dpow = ${op}(at: 0.0, y, of: pow)
%if op == 'gradient':
      expectEqualWithTolerance(TestLiteralType(expectedDx), dpow.0)
      expectEqualWithTolerance(TestLiteralType(expectedDy), dpow.1)
%else: # if op == 'derivative'
      expectEqualWithTolerance(TestLiteralType(expectedDx + expectedDy), dpow)
%end
    } else {
%if op == 'gradient':
      checkGradient({ pow($0, $1) }, 0.0, y, ulps: ulps)
%else: # if op == 'derivative'
      checkDerivative({ pow($0, $1) }, 0.0, y, ulps: ulps)
%end
    }
  }

  // Checks for positive base.
  for a in 1...3 {
    let x = ${T}(a)
    for b in -3...3 {
      let y = ${T}(b)
%if op == 'gradient':
      checkGradient({ pow($0, $1) }, x, y, ulps: ulps)
%else: # if op == 'derivative'
      checkDerivative({ pow($0, $1) }, x, y, ulps: ulps)
%end
    }
  }
}

%if T == 'Float80':
#endif
%end

%end # for T in ['Float', 'Double', 'Float80']:
%end # for op in ['derivative', 'gradient']:

runAllTests()