1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// RUN: %target-typecheck-verify-swift -disable-availability-checking
protocol Q { }
protocol P {
associatedtype A: Q
}
protocol P1<A> {
associatedtype A
}
extension Int: P {
typealias A = Double
}
extension Array: P where Element: P {
typealias A = String
}
extension Double: Q { }
extension String: Q { }
func acceptGeneric<T: P>(_: T) -> T.A? { nil }
func acceptCollection<C: Collection>(_ c: C) -> C.Element { c.first! }
// --- Simple opening of existential values
func testSimpleExistentialOpening(p: any P, pq: any P & Q, c: any Collection) {
let pa = acceptGeneric(p)
let _: Int = pa // expected-error{{cannot convert value of type '(any Q)?' to specified type 'Int'}}
var vp = p
let vpa = acceptGeneric(vp)
let _: Int = vpa // expected-error{{cannot convert value of type '(any Q)?' to specified type 'Int'}}
let pqa = acceptGeneric(pq)
let _: Int = pqa // expected-error{{cannot convert value of type '(any Q)?' to specified type 'Int'}}
let element = acceptCollection(c)
let _: Int = element // expected-error{{cannot convert value of type 'Any' to specified type 'Int'}}
}
// --- Requirements on nested types
protocol CollectionOfPs: Collection where Self.Element: P { }
func takeCollectionOfPs<C: Collection>(_: C) -> C.Element.A?
where C.Element: P
{
nil
}
func testCollectionOfPs(cp: any CollectionOfPs) {
let e = takeCollectionOfPs(cp)
let _: Int = e // expected-error{{cannot convert value of type '(any Q)?' to specified type 'Int'}}
}
// --- Multiple opened existentials in the same expression
func takeTwoGenerics<T1: P, T2: P>(_ a: T1, _ b: T2) -> (T1, T2) { (a, b) }
extension P {
func combineThePs<T: P & Q>(_ other: T) -> (A, T.A)? { nil }
}
func testMultipleOpened(a: any P, b: any P & Q) {
let r1 = takeTwoGenerics(a, b)
let _: Int = r1 // expected-error{{cannot convert value of type '(any P, any P & Q)' to specified type 'Int'}}
let r2 = a.combineThePs(b)
let _: Int = r2 // expected-error{{cannot convert value of type '(any Q, any Q)?' to specified type 'Int'}}
}
// --- Opening existential metatypes
func conjureValue<T: P>(of type: T.Type) -> T? {
nil
}
func testMagic(pt: any P.Type) {
let pOpt = conjureValue(of: pt)
let _: Int = pOpt // expected-error{{cannot convert value of type '(any P)?' to specified type 'Int'}}
}
// --- With primary associated types and opaque parameter types
protocol CollectionOf<Element>: Collection { }
extension Array: CollectionOf { }
extension Set: CollectionOf { }
// expected-note@+2{{required by global function 'reverseIt' where 'some CollectionOf<T>' = 'any CollectionOf'}}
@available(SwiftStdlib 5.1, *)
func reverseIt<T>(_ c: some CollectionOf<T>) -> some CollectionOf<T> {
return c.reversed()
}
@available(SwiftStdlib 5.1, *)
func useReverseIt(_ c: any CollectionOf) {
// Can't type-erase the `T` from the result.
_ = reverseIt(c) // expected-error{{type 'any CollectionOf' cannot conform to 'CollectionOf'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
}
/// --- Opening existentials when returning opaque types.
@available(SwiftStdlib 5.1, *)
extension P {
func getQ() -> some Q {
let a: A? = nil
return a!
}
func getCollectionOf() -> some CollectionOf<A> {
return [] as [A]
}
}
@available(SwiftStdlib 5.1, *)
func getPQ<T: P>(_: T) -> some Q {
let a: T.A? = nil
return a!
}
// expected-note@+2{{required by global function 'getCollectionOfP' where 'T' = 'any P'}}
@available(SwiftStdlib 5.1, *)
func getCollectionOfP<T: P>(_: T) -> some CollectionOf<T.A> {
return [] as [T.A]
}
func funnyIdentity<T: P>(_ value: T) -> T? {
value
}
func arrayOfOne<T: P>(_ value: T) -> [T] {
[value]
}
struct X<T: P> {
// expected-note@-1{{required by generic struct 'X' where 'T' = 'any P'}}
func f(_: T) { }
}
// expected-note@+1{{required by global function 'createX' where 'T' = 'any P'}}
func createX<T: P>(_ value: T) -> X<T> {
X<T>()
}
func doNotOpenOuter(p: any P) {
_ = X().f(p) // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
}
func takesVariadic<T: P>(_ args: T...) { }
// expected-note@-1 2{{required by global function 'takesVariadic' where 'T' = 'any P'}}
// expected-note@-2{{in call to function 'takesVariadic'}}
func callVariadic(p1: any P, p2: any P) {
takesVariadic() // expected-error{{generic parameter 'T' could not be inferred}}
takesVariadic(p1) // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
takesVariadic(p1, p2) // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
}
func takesInOut<T: P>(_ value: inout T) { }
func passesInOut(i: Int) {
var p: any P = i
takesInOut(&p)
}
func takesOptional<T: P>(_ value: T?) { }
// expected-note@-1{{required by global function 'takesOptional' where 'T' = 'any P'}}
func passesToOptional(p: any P, pOpt: (any P)?) {
takesOptional(p) // okay
takesOptional(pOpt) // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
}
@available(SwiftStdlib 5.1, *)
func testReturningOpaqueTypes(p: any P) {
let q = p.getQ()
let _: Int = q // expected-error{{cannot convert value of type 'any Q' to specified type 'Int'}}
p.getCollectionOf() // expected-error{{member 'getCollectionOf' cannot be used on value of type 'any P'; consider using a generic constraint instead}}
let q2 = getPQ(p)
let _: Int = q2 // expected-error{{cannot convert value of type 'any Q' to specified type 'Int'}}
getCollectionOfP(p) // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
let fi = funnyIdentity(p)
let _: Int = fi // expected-error{{cannot convert value of type '(any P)?' to specified type 'Int'}}
_ = arrayOfOne(p) // okay, arrays are covariant in their argument
_ = createX(p) // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
}
// Type-erasing vs. opening for parameters after the opened one.
func takeValueAndClosure<T: P>(_ value: T, body: (T) -> Void) { }
func takeValueAndClosureBackwards<T: P>(body: (T) -> Void, _ value: T) { }
// expected-note@-1{{required by global function 'takeValueAndClosureBackwards(body:_:)' where 'T' = 'any P'}}
func genericFunctionTakingP<T: P>(_: T) { }
func genericFunctionTakingPQ<T: P & Q>(_: T) { }
func overloadedGenericFunctionTakingP<T: P>(_: T) -> Int { 0 }
func overloadedGenericFunctionTakingP<T: P>(_: T) { }
func testTakeValueAndClosure(p: any P) {
// Type-erase when not provided with a generic function.
takeValueAndClosure(p) { x in
print(x)
let _: Int = x // expected-error{{cannot convert value of type 'any P' to specified type 'Int'}}
}
// Do not erase when referring to a generic function.
takeValueAndClosure(p, body: genericFunctionTakingP)
takeValueAndClosure(p, body: overloadedGenericFunctionTakingP)
takeValueAndClosure(p, body: genericFunctionTakingPQ) // expected-error{{global function 'genericFunctionTakingPQ' requires that 'T' conform to 'Q'}}
// Do not allow opening if there are any uses of the type parameter before
// the opened parameter. This maintains left-to-right evaluation order.
takeValueAndClosureBackwards( // expected-error{{type 'any P' cannot conform to 'P'}}
// expected-note@-1{{only concrete types such as structs, enums and classes can conform to protocols}}
body: { x in x as Int }, // expected-error{{'any P' is not convertible to 'Int'}}
// expected-note@-1{{did you mean to use 'as!' to force downcast?}}
p)
}
protocol B {
associatedtype C: P where C.A == Double
associatedtype D: P
associatedtype E: P1 where E.A == Double
}
protocol D {
associatedtype E
}
extension B {
var testVar: (Int, [C]) { get { fatalError() } }
func getC() -> C { fatalError() }
}
func testExplicitCoercionRequirement(v: any B, otherV: any B & D) {
func getC<T: B>(_: T) -> T.C { fatalError() }
func getE<T: B>(_: T) -> T.E { fatalError() }
func getTuple<T: B>(_: T) -> (T, T.C) { fatalError() }
func getNoError<T: B>(_: T) -> T.C.A { fatalError() }
func getComplex<T: B>(_: T) -> ([(x: (a: T.C, b: Int), y: Int)], [Int: T.C]) { fatalError() }
func overloaded<T: B>(_: T) -> (x: Int, y: T.C) { fatalError() }
func overloaded<T: P>(_: T) -> Int { 42 }
_ = getC(v) // Ok
_ = getC(v) as any P // Ok
_ = getE(v) // Ok
_ = getE(v) as any P1<Double> // Ok
_ = getTuple(v) // Ok
_ = getTuple(v) as (any B, any P) // Ok
// Ok because T.C.A == Double
_ = getNoError(v)
_ = getComplex(v) // Ok
_ = getComplex(v) as ([(x: (a: any P, b: Int), y: Int)], [Int : any P]) // Ok
_ = overloaded(v) // Ok
func acceptsAny<T>(_: T) {}
acceptsAny(getC(v)) // Ok
acceptsAny(getC(v) as any P) // Ok
acceptsAny(getComplex(v)) // Ok
acceptsAny(getComplex(v) as ([(x: (a: any P, b: Int), y: Int)], [Int : any P]))
func getAssocNoRequirements<T: B>(_: T) -> (Int, [T.D]) { fatalError() }
_ = getAssocNoRequirements(v) // Ok, `D` doesn't have any requirements
// Test existential opening from protocol extension access
_ = v.getC() // Ok
_ = v.getC() as any P // Ok
_ = v.testVar // Ok
_ = v.testVar as (Int, [any P])
func getF<T: D>(_: T) -> T.E { fatalError() }
_ = getF(otherV) // Ok `E` doesn't have a `where` clause
func getSelf<T: B>(_: T) -> T { fatalError() } // expected-note {{found this candidate}}
func getSelf<T: D>(_: T) -> T { fatalError() } // expected-note {{found this candidate}}
_ = getSelf(v) // Ok
_ = getSelf(v) as any B // Ok
_ = getSelf(otherV) as any B & D // expected-error {{ambiguous use of 'getSelf'}}
func getBDSelf<T: D>(_: T) -> T { fatalError() }
_ = getBDSelf(otherV) // Ok
_ = getBDSelf(otherV) as any B & D // Ok
func getP<T: P>(_: T) {}
getP(getC(v)) // Ok
getP(v.getC()) // Ok
getP((getC(v) as any P)) // Ok - parens avoid opening suppression
getP((v.getC() as any P)) // Ok - parens avoid opening suppression
}
class C1 {}
class C2<T>: C1 {}
// Test Associated Types
protocol P2 {
associatedtype A
associatedtype B: C2<A>
func returnAssocTypeB() -> B
}
func testAssocReturn(p: any P2) {
let _ = p.returnAssocTypeB() // returns C1
}
protocol Q2 : P2 where A == Int {}
do {
let q: any Q2
let _ = q.returnAssocTypeB() // returns C1
}
// Test Primary Associated Types
protocol P3<A> {
associatedtype A
associatedtype B: C2<A>
func returnAssocTypeB() -> B
}
func testAssocReturn(p: any P3<Int>) {
let _ = p.returnAssocTypeB() // returns C2<A>
}
func testAssocReturn(p: any P3<any P3<String>>) {
let _ = p.returnAssocTypeB()
}
protocol P4<A> {
associatedtype A
associatedtype B: C2<A>
func returnPrimaryAssocTypeA() -> A
func returnAssocTypeCollection() -> any Collection<A>
}
//Confirm there is no way to access Primary Associated Type directly
func testPrimaryAssocReturn(p: any P4<Int>) {
let _ = p.returnPrimaryAssocTypeA()
}
func testPrimaryAssocCollection(p: any P4<Float>) {
let _: any Collection<Float> = p.returnAssocTypeCollection()
}
protocol P5<X> {
associatedtype X = Void
}
struct K<T>: P5 {
typealias X = T
}
extension P5 {
@available(macOS 10.15, iOS 13.0, tvOS 13.0, watchOS 6.0, *)
func foo() -> some P5<X>{
K<X>()
}
func bar(_ handler: @escaping (X) -> Void) -> some P5<X> {
K<X>()
}
}
@available(macOS 10.15, iOS 13.0, tvOS 13.0, watchOS 6.0, *)
func testFoo(_ p: any P5<String>) -> any P5 {
p.foo()
}
func testFooGeneric<U>(_ p: any P5<Result<U, Error>>) -> any P5 {
p.foo()
}
@available(macOS 10.15, iOS 13.0, tvOS 13.0, watchOS 6.0, *)
func testBar<U>(_ p: any P5<Result<U, Error>>) -> any P5 {
p.bar { _ in }
}
enum Node<T> {
case e(any P5)
case f(any P5<Result<T, Error>>)
}
struct S<T, U> {
@available(macOS 10.15, iOS 13.0, tvOS 13.0, watchOS 6.0, *)
func foo(_ elt: Node<U>) -> Node<T>? {
switch elt {
case let .e(p):
return .e(p)
case let .f(p):
return .e(p.bar { _ in })
}
}
}
|