1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
//===--- Algorithms.swift -------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// RUN: %empty-directory(%t)
// RUN: %target-build-swift -g -Onone -DUSE_STDLIBUNITTEST %s -o %t/a.out
// RUN: %target-codesign %t/a.out
// RUN: %target-run %t/a.out
// REQUIRES: executable_test
#if USE_STDLIBUNITTEST
import Swift
import StdlibUnittest
#endif
//===--- Rotate -----------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// Provides customization points for `MutableCollection` algorithms.
///
/// If incorporated into the standard library, these requirements would just be
/// part of `MutableCollection`. In the meantime, you can declare conformance
/// of a collection to `MutableCollectionAlgorithms` to get these customization
/// points to be used from other algorithms defined on
/// `MutableCollectionAlgorithms`.
public protocol MutableCollectionAlgorithms : MutableCollection
where SubSequence : MutableCollectionAlgorithms
{
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
mutating func rotate(shiftingToStart middle: Index) -> Index
}
// Conformances of common collection types to MutableCollectionAlgorithms.
// If rotate was a requirement of MutableCollection, these would not be needed.
extension Array : MutableCollectionAlgorithms { }
extension ArraySlice : MutableCollectionAlgorithms { }
extension Slice : MutableCollectionAlgorithms
where Base: MutableCollection { }
extension MutableCollection {
/// Swaps the elements of the two given subranges, up to the upper bound of
/// the smaller subrange. The returned indices are the ends of the two ranges
/// that were actually swapped.
///
/// Input:
/// [a b c d e f g h i j k l m n o p]
/// ^^^^^^^ ^^^^^^^^^^^^^
/// lhs rhs
///
/// Output:
/// [i j k l e f g h a b c d m n o p]
/// ^ ^
/// p q
///
/// - Precondition: !lhs.isEmpty && !rhs.isEmpty
/// - Postcondition: For returned indices `(p, q)`:
/// - distance(from: lhs.lowerBound, to: p) ==
/// distance(from: rhs.lowerBound, to: q)
/// - p == lhs.upperBound || q == rhs.upperBound
@inline(__always)
internal mutating func _swapNonemptySubrangePrefixes(
_ lhs: Range<Index>, _ rhs: Range<Index>
) -> (Index, Index) {
assert(!lhs.isEmpty)
assert(!rhs.isEmpty)
var p = lhs.lowerBound
var q = rhs.lowerBound
repeat {
swapAt(p, q)
formIndex(after: &p)
formIndex(after: &q)
}
while p != lhs.upperBound && q != rhs.upperBound
return (p, q)
}
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotate(shiftingToStart middle: Index) -> Index {
var m = middle, s = startIndex
let e = endIndex
// Handle the trivial cases
if s == m { return e }
if m == e { return s }
// We have two regions of possibly-unequal length that need to be
// exchanged. The return value of this method is going to be the
// position following that of the element that is currently last
// (element j).
//
// [a b c d e f g|h i j] or [a b c|d e f g h i j]
// ^ ^ ^ ^ ^ ^
// s m e s m e
//
var ret = e // start with a known incorrect result.
while true {
// Exchange the leading elements of each region (up to the
// length of the shorter region).
//
// [a b c d e f g|h i j] or [a b c|d e f g h i j]
// ^^^^^ ^^^^^ ^^^^^ ^^^^^
// [h i j d e f g|a b c] or [d e f|a b c g h i j]
// ^ ^ ^ ^ ^ ^ ^ ^
// s s1 m m1/e s s1/m m1 e
//
let (s1, m1) = _swapNonemptySubrangePrefixes(s..<m, m..<e)
if m1 == e {
// Left-hand case: we have moved element j into position. if
// we haven't already, we can capture the return value which
// is in s1.
//
// Note: the STL breaks the loop into two just to avoid this
// comparison once the return value is known. I'm not sure
// it's a worthwhile optimization, though.
if ret == e { ret = s1 }
// If both regions were the same size, we're done.
if s1 == m { break }
}
// Now we have a smaller problem that is also a rotation, so we
// can adjust our bounds and repeat.
//
// h i j[d e f g|a b c] or d e f[a b c|g h i j]
// ^ ^ ^ ^ ^ ^
// s m e s m e
s = s1
if s == m { m = m1 }
}
return ret
}
}
extension MutableCollection where Self: BidirectionalCollection {
/// Reverses the elements of the collection, moving from each end until
/// `limit` is reached from either direction. The returned indices are the
/// start and end of the range of unreversed elements.
///
/// Input:
/// [a b c d e f g h i j k l m n o p]
/// ^
/// limit
/// Output:
/// [p o n m e f g h i j k l d c b a]
/// ^ ^
/// f l
///
/// - Postcondition: For returned indices `(f, l)`:
/// `f == limit || l == limit`
@inline(__always)
@discardableResult
internal mutating func _reverseUntil(_ limit: Index) -> (Index, Index) {
var f = startIndex
var l = endIndex
while f != limit && l != limit {
formIndex(before: &l)
swapAt(f, l)
formIndex(after: &f)
}
return (f, l)
}
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotate(shiftingToStart middle: Index) -> Index {
// FIXME: this algorithm should be benchmarked on arrays against
// the forward Collection algorithm above to prove that it's
// actually faster. The other one sometimes does more swaps, but
// has better locality properties. Similarly, we've omitted a
// specialization of rotate for RandomAccessCollection that uses
// cycles per section 11.4 in "From Mathematics to Generic
// Programming" by A. Stepanov because it has *much* worse
// locality properties than either of the other implementations.
// Benchmarks should be performed for that algorithm too, just to
// be sure.
self[..<middle].reverse()
self[middle...].reverse()
let (p, q) = _reverseUntil(middle)
self[p..<q].reverse()
return middle == p ? q : p
}
}
/// Returns the greatest common denominator for `m` and `n`.
internal func _gcd(_ m: Int, _ n: Int) -> Int {
var (m, n) = (m, n)
while n != 0 {
let t = m % n
m = n
n = t
}
return m
}
extension MutableCollection where Self: RandomAccessCollection {
/// Rotates elements through a cycle, using `sourceForIndex` to generate
/// the source index for each movement.
@inline(__always)
internal mutating func _rotateCycle(
start: Index,
sourceOffsetForIndex: (Index) -> Int
) {
let tmp = self[start]
var i = start
var j = index(start, offsetBy: sourceOffsetForIndex(start))
while j != start {
self[i] = self[j]
i = j
j = index(j, offsetBy: sourceOffsetForIndex(j))
}
self[i] = tmp
}
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotateRandomAccess(
shiftingToStart middle: Index) -> Index
{
if middle == startIndex { return endIndex }
if middle == endIndex { return startIndex }
// The distance to move an element that is moving ->
let plus = distance(from: startIndex, to: middle)
// The distance to move an element that is moving <-
let minus = distance(from: endIndex, to: middle)
// The new pivot point, aka the destination for the first element
let pivot = index(startIndex, offsetBy: -minus)
// If the difference moving forward and backward are relative primes,
// the entire rotation will be completed in one cycle. Otherwise, repeat
// cycle, moving the start point forward with each cycle.
let cycles = _gcd(plus, -minus)
for cycle in 1...cycles {
_rotateCycle(
start: index(startIndex, offsetBy: cycle),
sourceOffsetForIndex: { $0 < pivot ? plus : minus })
}
return pivot
}
}
//===--- Concatenation ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Concatenation improves on a flattened array or other collection by
// allowing random-access traversal if the underlying collections are
// random-access.
/// A concatenation of two sequences with the same element type.
public struct Concatenation<Base1: Sequence, Base2: Sequence>: Sequence
where Base1.Element == Base2.Element
{
let _base1: Base1
let _base2: Base2
init(_base1: Base1, base2: Base2) {
self._base1 = _base1
self._base2 = base2
}
public struct Iterator: IteratorProtocol {
var _iterator1: Base1.Iterator
var _iterator2: Base2.Iterator
init(_ concatenation: Concatenation) {
_iterator1 = concatenation._base1.makeIterator()
_iterator2 = concatenation._base2.makeIterator()
}
public mutating func next() -> Base1.Element? {
return _iterator1.next() ?? _iterator2.next()
}
}
public func makeIterator() -> Iterator {
Iterator(self)
}
}
extension Concatenation: Collection where Base1: Collection, Base2: Collection {
/// A position in a `Concatenation`.
public struct Index : Comparable {
internal enum _Representation : Equatable {
case first(Base1.Index)
case second(Base2.Index)
}
/// Creates a new index into the first underlying collection.
internal init(first i: Base1.Index) {
_position = .first(i)
}
/// Creates a new index into the second underlying collection.
internal init(second i: Base2.Index) {
_position = .second(i)
}
internal let _position: _Representation
public static func < (lhs: Index, rhs: Index) -> Bool {
switch (lhs._position, rhs._position) {
case (.first, .second):
return true
case (.second, .first):
return false
case let (.first(l), .first(r)):
return l < r
case let (.second(l), .second(r)):
return l < r
}
}
}
public var startIndex: Index {
// If `_base1` is empty, then `_base2.startIndex` is either a valid position
// of an element or equal to `_base2.endIndex`.
return _base1.isEmpty
? Index(second: _base2.startIndex)
: Index(first: _base1.startIndex)
}
public var endIndex: Index {
return Index(second: _base2.endIndex)
}
public subscript(i: Index) -> Base1.Element {
switch i._position {
case let .first(i):
return _base1[i]
case let .second(i):
return _base2[i]
}
}
public func index(after i: Index) -> Index {
switch i._position {
case let .first(i):
assert(i != _base1.endIndex)
let next = _base1.index(after: i)
return next == _base1.endIndex
? Index(second: _base2.startIndex)
: Index(first: next)
case let .second(i):
return Index(second: _base2.index(after: i))
}
}
}
extension Concatenation : BidirectionalCollection
where Base1: BidirectionalCollection, Base2: BidirectionalCollection
{
public func index(before i: Index) -> Index {
assert(i != startIndex, "Can't advance before startIndex")
switch i._position {
case let .first(i):
return Index(first: _base1.index(before: i))
case let .second(i):
return i == _base2.startIndex
? Index(first: _base1.index(before: _base1.endIndex))
: Index(second: _base2.index(before: i))
}
}
}
extension Concatenation : RandomAccessCollection
where Base1: RandomAccessCollection, Base2: RandomAccessCollection
{
public func index(_ i: Index, offsetBy n: Int) -> Index {
if n == 0 { return i }
return n > 0 ? _offsetForward(i, by: n) : _offsetBackward(i, by: -n)
}
internal func _offsetForward(
_ i: Index, by n: Int
) -> Index {
switch i._position {
case let .first(i):
let d: Int = _base1.distance(from: i, to: _base1.endIndex)
if n < d {
return Index(first: _base1.index(i, offsetBy: n))
} else {
return Index(
second: _base2.index(_base2.startIndex, offsetBy: n - d))
}
case let .second(i):
return Index(second: _base2.index(i, offsetBy: n))
}
}
internal func _offsetBackward(
_ i: Index, by n: Int
) -> Index {
switch i._position {
case let .first(i):
return Index(first: _base1.index(i, offsetBy: -n))
case let .second(i):
let d: Int = _base2.distance(from: _base2.startIndex, to: i)
if n <= d {
return Index(second: _base2.index(i, offsetBy: -n))
} else {
return Index(
first: _base1.index(_base1.endIndex, offsetBy: -(n - d)))
}
}
}
}
/// Returns a new collection that presents a view onto the elements of the
/// first collection and then the elements of the second collection.
func concatenate<S1: Sequence, S2: Sequence>(
_ first: S1,
_ second: S2)
-> Concatenation<S1, S2> where S1.Element == S2.Element
{
return Concatenation(_base1: first, base2: second)
}
extension Sequence {
func followed<S: Sequence>(by other: S) -> Concatenation<Self, S>
where Element == S.Element
{
return concatenate(self, other)
}
}
//===--- RotatedCollection ------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A rotated view onto a collection.
public struct RotatedCollection<Base : Collection> : Collection {
let _base: Base
let _indices: Concatenation<Base.Indices, Base.Indices>
init(_base: Base, shiftingToStart i: Base.Index) {
self._base = _base
self._indices = concatenate(_base.indices[i...], _base.indices[..<i])
}
/// A position in a rotated collection.
public struct Index : Comparable {
internal let _index:
Concatenation<Base.Indices, Base.Indices>.Index
public static func < (lhs: Index, rhs: Index) -> Bool {
return lhs._index < rhs._index
}
}
public var startIndex: Index {
return Index(_index: _indices.startIndex)
}
public var endIndex: Index {
return Index(_index: _indices.endIndex)
}
public subscript(i: Index) -> Base.SubSequence.Element {
return _base[_indices[i._index]]
}
public func index(after i: Index) -> Index {
return Index(_index: _indices.index(after: i._index))
}
public func index(_ i: Index, offsetBy n: Int) -> Index {
return Index(_index: _indices.index(i._index, offsetBy: n))
}
public func distance(from start: Index, to end: Index) -> Int {
return _indices.distance(from: start._index, to: end._index)
}
/// The shifted position of the base collection's `startIndex`.
public var shiftedStartIndex: Index {
return Index(
_index: Concatenation<Base.Indices, Base.Indices>.Index(
second: _indices._base2.startIndex)
)
}
public func rotated(shiftingToStart i: Index) -> RotatedCollection<Base> {
return RotatedCollection(_base: _base, shiftingToStart: _indices[i._index])
}
}
extension RotatedCollection : BidirectionalCollection
where Base : BidirectionalCollection {
public func index(before i: Index) -> Index {
return Index(_index: _indices.index(before: i._index))
}
}
extension RotatedCollection : RandomAccessCollection
where Base : RandomAccessCollection {}
extension Collection {
/// Returns a view of this collection with the elements reordered such the
/// element at the given position ends up first.
///
/// The subsequence of the collection up to `i` is shifted to after the
/// subsequence starting at `i`. The order of the elements within each
/// partition is otherwise unchanged.
///
/// let a = [10, 20, 30, 40, 50, 60, 70]
/// let r = a.rotated(shiftingToStart: 3)
/// // r.elementsEqual([40, 50, 60, 70, 10, 20, 30])
///
/// - Parameter i: The position in the collection that should be first in the
/// result. `i` must be a valid index of the collection.
/// - Returns: A rotated view on the elements of this collection, such that
/// the element at `i` is first.
func rotated(shiftingToStart i: Index) -> RotatedCollection<Self> {
return RotatedCollection(_base: self, shiftingToStart: i)
}
}
//===--- Stable Partition -------------------------------------------------===//
//===----------------------------------------------------------------------===//
extension MutableCollectionAlgorithms {
/// Moves all elements satisfying `isSuffixElement` into a suffix of the
/// collection, preserving their relative order, and returns the start of the
/// resulting suffix.
///
/// - Complexity: O(n) where n is the number of elements.
@discardableResult
mutating func stablePartition(
isSuffixElement: (Element) throws -> Bool
) rethrows -> Index {
return try stablePartition(count: count, isSuffixElement: isSuffixElement)
}
/// Moves all elements satisfying `isSuffixElement` into a suffix of the
/// collection, preserving their relative order, and returns the start of the
/// resulting suffix.
///
/// - Complexity: O(n) where n is the number of elements.
/// - Precondition: `n == self.count`
fileprivate mutating func stablePartition(
count n: Int, isSuffixElement: (Element) throws-> Bool
) rethrows -> Index {
if n == 0 { return startIndex }
if n == 1 {
return try isSuffixElement(self[startIndex]) ? startIndex : endIndex
}
let h = n / 2, i = index(startIndex, offsetBy: h)
let j = try self[..<i].stablePartition(
count: h, isSuffixElement: isSuffixElement)
let k = try self[i...].stablePartition(
count: n - h, isSuffixElement: isSuffixElement)
return self[j..<k].rotate(shiftingToStart: i)
}
}
extension Collection {
func stablyPartitioned(
isSuffixElement p: (Element) -> Bool
) -> [Element] {
var a = Array(self)
a.stablePartition(isSuffixElement: p)
return a
}
}
extension LazyCollectionProtocol
where Element == Elements.Element, Elements: Collection {
func stablyPartitioned(
isSuffixElement p: (Element) -> Bool
) -> LazyCollection<[Element]> {
return elements.stablyPartitioned(isSuffixElement: p).lazy
}
}
extension Collection {
/// Returns the index of the first element in the collection
/// that matches the predicate.
///
/// The collection must already be partitioned according to the
/// predicate, as if `self.partition(by: predicate)` had already
/// been called.
///
/// - Efficiency: At most log(N) invocations of `predicate`, where
/// N is the length of `self`. At most log(N) index offsetting
/// operations if `self` conforms to `RandomAccessCollection`;
/// at most N such operations otherwise.
func partitionPoint(
where predicate: (Element) throws -> Bool
) rethrows -> Index {
var n = distance(from: startIndex, to: endIndex)
var l = startIndex
while n > 0 {
let half = n / 2
let mid = index(l, offsetBy: half)
if try predicate(self[mid]) {
n = half
} else {
l = index(after: mid)
n -= half + 1
}
}
return l
}
}
//===--- Minimal subset of StdlibUnittest for standalone testing ----------===//
//===----------------------------------------------------------------------===//
#if !USE_STDLIBUNITTEST
class TestSuite {
let name: String
var tests: [(name: String, body: ()->())] = []
static var all: [TestSuite] = []
init(_ name: String) {
self.name = name
TestSuite.all.append(self)
}
func test(_ name: String, body: @escaping ()->()) {
tests.append((name, body))
}
}
func runAllTests() {
for s in TestSuite.all {
for (testName, f) in s.tests {
print("\(s.name)/\(testName)...")
f()
print("done.")
}
}
}
func expectEqual<T : Equatable>(
_ expected: T, _ x: T, file: StaticString = #file, line: UInt = #line
) {
precondition(
x == expected, "Expected \(x) == \(expected)", file: file, line: line)
}
func expectGE<T: Comparable>(
_ a: T, _ b: T, _ message: @autoclosure ()->String = "",
file: StaticString = #file, line: UInt = #line
) {
precondition(a >= b, message(), file: file, line: line)
}
func expectLE<T: Comparable>(
_ a: T, _ b: T, _ message: @autoclosure ()->String = "",
file: StaticString = #file, line: UInt = #line
) {
precondition(a <= b, message(), file: file, line: line)
}
#endif
//===--- Tests ------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
func address<T>(_ p: UnsafePointer<T>) -> UInt { return UInt(bitPattern: p )}
var suite = TestSuite("Algorithms")
suite.test("reverseSubrange") {
for l in 0..<10 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a[..<p]
for q in p...l {
let suffix = a[q...]
var b = a
b.reserveCapacity(b.count) // guarantee unique storage
let id = address(b)
b[p..<q].reverse()
expectEqual(
b,
Array([prefix, ArraySlice(a[p..<q].reversed()), suffix].joined()))
expectEqual(address(b), id)
}
}
}
}
suite.test("rotate") {
for l in 0..<11 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a[..<p]
for q in p...l {
let suffix = a[q...]
for m in p...q {
var b = a
b.reserveCapacity(b.count) // guarantee unique storage
let id = address(b)
let r = b[p..<q].rotate(shiftingToStart: m)
let rotated = Array([prefix, a[m..<q], a[p..<m], suffix].joined())
expectEqual(b, rotated)
expectEqual(r, a.index(p, offsetBy: a[m..<q].count))
expectEqual(address(b), id)
}
}
var b = a
b.rotate(shiftingToStart: p)
expectEqual(b, Array(a.rotated(shiftingToStart: p)))
}
}
}
suite.test("rotateRandomAccess") {
for l in 0..<11 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a[..<p]
for q in p...l {
let suffix = a[q...]
for m in p...q {
var b = a
b.reserveCapacity(b.count) // guarantee unique storage
let id = address(b)
let r = b[p..<q].rotateRandomAccess(shiftingToStart: m)
let rotated = Array([prefix, a[m..<q], a[p..<m], suffix].joined())
expectEqual(b, rotated)
expectEqual(r, a.index(p, offsetBy: a[m..<q].count))
expectEqual(address(b), id)
}
}
var b = a
b.rotateRandomAccess(shiftingToStart: p)
expectEqual(b, Array(a.rotated(shiftingToStart: p)))
}
}
}
suite.test("concatenate") {
for x in 0...6 {
for y in 0...x {
let r1 = 0..<y
let r2 = y..<x
expectEqual(Array(0..<x), Array(concatenate(r1, r2)))
}
}
let c1 = concatenate([1, 2, 3, 4, 5], 6...10)
let c2 = concatenate(1...5, [6, 7, 8, 9, 10])
expectEqual(Array(1...10), Array(c1))
expectEqual(Array(1...10), Array(c2))
let h = "Hello, "
let w = "world!"
let hw = concatenate(h, w)
expectEqual("Hello, world!", String(hw))
let run = (1...).prefix(10).followed(by: 20...)
expectEqual(Array(run.prefix(20)), Array(1...10) + (20..<30))
}
suite.test("stablePartition") {
// FIXME: add test for stability
for l in 0..<13 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a[..<p]
for q in p...l {
let suffix = a[q...]
let subrange = a[p..<q]
for modulus in 1...5 {
let f = { $0 % modulus != 0 }
let notf = { !f($0) }
var b = a
b.reserveCapacity(b.count) // guarantee unique storage
let id = address(b)
var r = b[p..<q].stablePartition(isSuffixElement: f)
expectEqual(b[..<p], prefix)
expectEqual(b.suffix(from:q), suffix)
expectEqual(b[p..<r], ArraySlice(subrange.filter(notf)))
expectEqual(b[r..<q], ArraySlice(subrange.filter(f)))
expectEqual(address(b), id)
b = a
r = b[p..<q].stablePartition(isSuffixElement: notf)
expectEqual(b[..<p], prefix)
expectEqual(b.suffix(from:q), suffix)
expectEqual(b[p..<r], ArraySlice(subrange.filter(f)))
expectEqual(b[r..<q], ArraySlice(subrange.filter(notf)))
}
}
for modulus in 1...5 {
let f = { $0 % modulus != 0 }
let notf = { !f($0) }
var b = a
var r = b.stablePartition(isSuffixElement: f)
expectEqual(b[..<r], ArraySlice(a.filter(notf)))
expectEqual(b[r...], ArraySlice(a.filter(f)))
b = a
r = b.stablePartition(isSuffixElement: notf)
expectEqual(b[..<r], ArraySlice(a.filter(f)))
expectEqual(b[r...], ArraySlice(a.filter(notf)))
}
}
}
}
suite.test("partitionPoint") {
for i in 0..<7 {
for j in i..<11 {
for k in i...j {
let p = (i..<j).partitionPoint { $0 >= k }
expectGE(p, i, "\(p) >= \(i)")
expectLE(p, j, "\(p) <= \(j)")
expectEqual(p, k)
}
}
}
}
runAllTests()
|