File: generic_specialization_loops_detection_with_loops.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (170 lines) | stat: -rw-r--r-- 5,391 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// RUN: %target-swift-frontend -O -emit-sil -enforce-exclusivity=unchecked -Xllvm -sil-print-generic-specialization-loops -Xllvm -sil-print-generic-specialization-info %s 2>&1 | %FileCheck --check-prefix=CHECK %s

// REQUIRES: swift_stdlib_no_asserts,optimized_stdlib

// Check that the generic specializer does not hang a compiler by
// creating and infinite loop of generic specializations.

// This is a complete set of expected detected generic specialization loops:
// CHECK-DAG: generic specialization loop{{.*}}testFoo7
// CHECK-DAG: generic specialization loop{{.*}}testFoo6
// CHECK-DAG: generic specialization loop{{.*}}foo3
// CHECK-DAG: generic specialization loop{{.*}}foo4
// CHECK-DAG: generic specialization loop{{.*}}bar4
// CHECK-DAG: generic specialization loop{{.*}}Something{{.*}}compoundValue

// CHECK-LABEL: sil_stage canonical

// Check that a specialization information for a specialized function was produced.
// CHECK-LABEL: // Generic specialization information for function $s044generic_specialization_loops_detection_with_C04foo4yyx_q_tr0_lFSi_SdTg5
// CHECK-NEXT:  // Caller: $s044generic_specialization_loops_detection_with_C011testFooBar4yyF
// CHECK-NEXT:  // Parent: $s044generic_specialization_loops_detection_with_C04foo4yyx_q_tr0_lF
// CHECK-NEXT:  // Substitutions: <Int, Double>

// Check that the compiler has produced a specialization information for a call-site that
// was inlined from a specialized generic function.
// CHECK-LABEL: // Generic specialization information for call-site $s044generic_specialization_loops_detection_with_C04foo4yyx_q_tr0_lFSaySays5UInt8VGG_SaySaySiGGTg5:
// CHECK-NEXT:  // Caller: $s044generic_specialization_loops_detection_with_C04foo4yyx_q_tr0_lFSi_SdTg5
// CHECK-NEXT:  // Parent: $s044generic_specialization_loops_detection_with_C04bar4yyx_q_tr0_lF
// CHECK-NEXT:  // Substitutions: <Array<UInt8>, Array<Int>>
// CHECK-NEXT:  //
// CHECK-NEXT:  // Caller: $s044generic_specialization_loops_detection_with_C011testFooBar4yyF
// CHECK-NEXT:  // Parent: $s044generic_specialization_loops_detection_with_C04foo4yyx_q_tr0_lF
// CHECK-NEXT:  // Substitutions: <Int, Double>
// CHECK-NEXT:  //
// CHECK-NEXT: apply %{{.*}}Array<Array<UInt8>>

// Check specializations of mutually recursive functions which
// may result in an infinite specialization loop.
public struct MyStruct<A, B> {
}

func foo3<T, S>(_ t: T, _ s: S) {
  bar3(s, t)
}

func bar3<T, S>(_ t: T, _ s: S) {
  foo3(t, MyStruct<T, S>())
}

public func testFooBar3() {
  foo3(1, 2.0)
}

// Check specializations of mutually recursive functions which
// may result in an infinite specialization loop.
public var g = 0
func foo4<T, S>(_ t: T, _ s: S) {
  // Here we have multiple call-sites of the same generic
  // functions inside the same caller.
  // Some of these call-sites use different generic type parameters.
  bar4([UInt8(1)], [t])
  if g > 0 {
    bar4(t, t)
  } else {
    bar4(t, s)
  }
}

func bar4<T, S>(_ t: T, _ s: S) {
  foo4([t], [s])
}

public func testFooBar4() {
  foo4(1, 2.0)
}

// This is an example of a deeply nested generics which
// may result in an infinite specialization loop.
class Something<T> {
   var somethingArray: Something<Array<T>>? = nil
   var somethingOptional: Something<Optional<T>>? = nil
   var value: T? = nil

   init() {
   }

   init(plainValue: T) {
      value = plainValue
   }

   init(compoundValue: T) {
      value = compoundValue
      somethingArray = Something<Array<T>>(compoundValue: [compoundValue])
      somethingOptional = Something<Optional<T>>(plainValue: compoundValue as T?)
   }

   func map<U>(_ f: (T) -> (U)) -> Something<U> {
      let somethingArrayU = somethingArray?.map { $0.map { f($0) } }
      let somethingOptionalU = somethingOptional?.map { $0.map { f($0) } }
      let valueU = value.map { f($0) }
      let s = Something<U>()
      s.value = valueU
      s.somethingArray = somethingArrayU
      s.somethingOptional = somethingOptionalU
      return s
   }
}

print(Something<Int8>(compoundValue: 0))
print(Something<Int8>(compoundValue: 0).map { Double($0) })

// Test more complex cases, where types of substitutions are partially
// contained in each other.
protocol P {
  associatedtype X: P
}

struct Start {}
struct Step<Param> {}

struct Outer<Param>: P {
  typealias X = Outer<Step<Param>>
}

func testFoo6<T: P>(_: T.Type) {
  testFoo6(T.X.self)
}

func testFoo7<T: P>(_: T.Type) {
  testFoo7(T.X.self)
}

struct Outer1<Param>: P {
  typealias X = Outer2<Param>
}

struct Outer2<Param>: P {
  typealias X = Outer3<Param>
}

struct Outer3<Param>: P {
  typealias X = Outer4<Param>
}

struct Outer4<Param>: P {
  typealias X = Outer5<Param>
}

struct Outer5<Param>: P {
  typealias X = Outer1<Step<Param>>
}

// T will look like:
// Outer<Start>
// Outer<Step<Start>>
// Outer<Step<Step<Start>>>
// ...
// As it can be seen, the substitution type is growing, but a type
// on each specialization iteration would not completely contain a type from
// the previous iteration. Instead, it partially contains it. That is,
// if all common structural prefixes are dropped, then it looks like:
//  Start
//  Step<Start>
//  Step<Step<Start>>
//  ...
//  And it can be easily seen that the type used by the new iteration contains
//  a type from the previous one.
testFoo6(Outer<Start>.self)
// Check a more complex, but similar idea.
testFoo7(Outer1<Start>.self)