File: pound_assert.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (733 lines) | stat: -rw-r--r-- 20,020 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// RUN: %target-swift-frontend -enable-experimental-static-assert -emit-sil %s -verify
// REQUIRES: asserts
// REQUIRES: swift_in_compiler

//===----------------------------------------------------------------------===//
// Basic function calls and control flow
//===----------------------------------------------------------------------===//

func isOne(_ x: Int) -> Bool {
  return x == 1
}

func test_assertionSuccess() {
  #assert(isOne(1))
  #assert(isOne(1), "1 is not 1")
}

func test_assertionFailure() {
  #assert(isOne(2)) // expected-error{{assertion failed}}
  #assert(isOne(2), "2 is not 1") // expected-error{{2 is not 1}}
}

func test_nonConstant() {
  #assert(isOne(Int(readLine()!)!)) // expected-error{{#assert condition not constant}}
    // expected-note@-1 {{encountered call to 'isOne(_:)' where the 1st argument is not a constant}}
  #assert(isOne(Int(readLine()!)!), "input is not 1") // expected-error{{#assert condition not constant}}
    // expected-note@-1 {{encountered call to 'isOne(_:)' where the 1st argument is not a constant}}
}

func loops1(a: Int) -> Int {
  var x = 42
  while x <= 42 {
    x += a
  } // expected-note {{found loop here}}
  return x
}

func loops2(a: Int) -> Int {
  var x = 42
  for i in 0 ... a {
    x += i
  }
  return x
}

func infiniteLoop() -> Int {
  // expected-note @+1 {{found loop here}}
  while true {}
  return 1
}

func test_loops() {
  // expected-error @+2 {{#assert condition not constant}}
  // expected-note @+1 {{control-flow loop found during evaluation}}
  #assert(loops1(a: 20000) > 42)

  // expected-error @+2 {{#assert condition not constant}}
  // expected-note @+1 {{encountered operation not supported by the evaluator}}
  #assert(loops2(a: 20000) > 42)

  // expected-error @+2 {{#assert condition not constant}}
  // expected-note @+1 {{control-flow loop found during evaluation}}
  #assert(infiniteLoop() == 1)
}

func conditional(_ x: Int) -> Int {
  if x < 0 {
    return 0
  } else {
    return x
  }
}

func test_conditional() {
  #assert(conditional(-5) == 0)
  #assert(conditional(5) == 5)

  // expected-error @+1 {{assertion failed}}
  #assert(conditional(-5) == 1)
  // expected-error @+1 {{assertion failed}}
  #assert(conditional(5) == 1)
}

//===----------------------------------------------------------------------===//
// Top-level evaluation
//===----------------------------------------------------------------------===//

func test_topLevelEvaluation(topLevelArgument: Int) {
  let topLevelConst = 1
  #assert(topLevelConst == 1)

  // The #assert successfully sees the value of this `var` even though it is
  // mutable because DiagnosticConstantPropagation propagates its value.
  var topLevelVar = 1 // expected-warning {{never mutated}}
  #assert(topLevelVar == 1)

  // expected-note @+1 {{cannot evaluate top-level value as constant here}}
  var topLevelVarConditionallyMutated = 1
  if topLevelVarConditionallyMutated < 0 {
    topLevelVarConditionallyMutated += 1
  }
  // expected-error @+1 {{#assert condition not constant}}
  #assert(topLevelVarConditionallyMutated == 1)

  // expected-error @+1 {{#assert condition not constant}}
  #assert(topLevelArgument == 1)
    // expected-note@-1 {{cannot evaluate expression as constant here}}
}

//===----------------------------------------------------------------------===//
// Integers
//===----------------------------------------------------------------------===//

func test_trapsAndOverflows() {
  // The error message below is generated by the traditional constant folder.
  // The interpreter responsible for #assert does not generate an overflow
  // error because the traditional constant folder replaces the condition with
  // a constant before the #assert interpreter sees it.
  // expected-error @+1 {{arithmetic operation '124 + 92' (on type 'Int8') results in an overflow}}
  #assert((124 as Int8) + 92 < 42)

  // One error message below is generated by the traditional constant folder.
  // The interpreter responsible for #assert does generate an additional error
  // message.
  // expected-error @+2 {{integer literal '123231' overflows when stored into 'Int8'}}
  // expected-error @+1 {{#assert condition not constant}}
  #assert(Int8(123231) > 42)
  // expected-note @-1 {{integer overflow detected}}

  // The error message below is generated by the traditional constant folder.
  // The interpreter responsible for #assert does not generate an overflow
  // error because the traditional constant folder replaces the condition with
  // a constant before the #assert interpreter sees it.
  // expected-error @+2 {{arithmetic operation '124 + 8' (on type 'Int8') results in an overflow}}
  // expected-error @+1 {{assertion failed}}
  #assert(Int8(124) + 8 > 42)
}

// Calling this stops the traditional mandatory constant folder from folding
// the arithmetic before ConstExpr.cpp gets it.
func identity(_ x: Int) -> Int {
  return x
}

func test_integerArithmetic() {
  #assert(identity(1) + 1 == 2)
  #assert(identity(1) - 1 == 0)
  #assert(identity(2) * 2 == 4)
  #assert(identity(10) / 10 == 1)
  #assert(identity(10) % 7 == 3)
  #assert(identity(1) < 2)
  #assert(identity(1) <= 1)
  #assert(identity(2) > 1)
  #assert(identity(1) >= 1)
}

//===----------------------------------------------------------------------===//
// Custom structs and tuples
//===----------------------------------------------------------------------===//

struct CustomStruct {
  let x: (Int, Int)
  let y: Int
}

func test_CustomStruct() {
  let cs = CustomStruct(x: (1, 2), y: 3)
  #assert(cs.x.0 == 1)
  #assert(cs.x.1 == 2)
  #assert(cs.y == 3)
}

//===----------------------------------------------------------------------===//
// Mutation
//===----------------------------------------------------------------------===//

struct InnerStruct {
  var a, b: Int
}

struct MutableStruct {
  var x: InnerStruct
  var y: Int
}

func addOne(to target: inout Int) {
  target += 1
}

func callInout() -> Bool {
  var myMs = MutableStruct(x: InnerStruct(a: 1, b: 2), y: 3)
  addOne(to: &myMs.x.a)
  addOne(to: &myMs.y)
  return (myMs.x.a + myMs.x.b + myMs.y) == 8
}

func replaceAggregate() -> Bool {
  var myMs = MutableStruct(x: InnerStruct(a: 1, b: 2), y: 3)
  myMs.x = InnerStruct(a: 10, b: 20)
  return myMs.x.a == 10 && myMs.x.b == 20 && myMs.y == 3
}

func shouldNotAlias() -> Bool {
  var x = 1
  var y = x
  x += 1
  y += 2
  return x == 2 && y == 3
}

func invokeMutationTests() {
  #assert(callInout())
  #assert(replaceAggregate())
  #assert(shouldNotAlias())
}

//===----------------------------------------------------------------------===//
// Evaluating generic functions
//===----------------------------------------------------------------------===//

func genericAdd<T: Numeric>(_ a: T, _ b: T) -> T {
  return a + b
}

func test_genericAdd() {
  #assert(genericAdd(1, 1) == 2)
}

func test_tupleAsGeneric() {
  func identity<T>(_ t: T) -> T {
    return t
  }
  #assert(identity((1, 2)) == (1, 2))
}

//===----------------------------------------------------------------------===//
// Reduced testcase propagating substitutions around.
//===----------------------------------------------------------------------===//
protocol SubstitutionsP {
  init<T: SubstitutionsP>(something: T)

  func get() -> Int
}

struct SubstitutionsX : SubstitutionsP {
  var state : Int
  init<T: SubstitutionsP>(something: T) {
    state = something.get()
  }
  func get() -> Int {
    fatalError()
  }

  func getState() -> Int {
    return state
  }
}

struct SubstitutionsY : SubstitutionsP {
  init() {}
  init<T: SubstitutionsP>(something: T) {
  }

  func get() -> Int {
    return 123
  }
}
func substitutionsF<T: SubstitutionsP>(_: T.Type) -> T {
  return T(something: SubstitutionsY())
}

func testProto() {
  #assert(substitutionsF(SubstitutionsX.self).getState() == 123)
}

//===----------------------------------------------------------------------===//
// Structs with generics
//===----------------------------------------------------------------------===//

// Test 1
struct S<X, Y> {
  func method<Z>(_ z: Z) -> Int {
    return 0
  }
}

func callerOfSMethod<U, V, W>(_ s: S<U, V>, _ w: W) -> Int {
  return s.method(w)
}

func toplevel() {
  let s = S<Int, Float>()
  #assert(callerOfSMethod(s, -1) == 0)
}

// Test 2: test a struct method returning its generic argument.
struct S2<X> {
  func method<Z>(_ z: Z) -> Z {
    return z
  }
}

func callerOfS2Method<U, V>(_ s: S2<U>, _ v: V) -> V {
  return s.method(v)
}

func testStructMethodReturningGenericParam() {
  let s = S2<Float>()
  #assert(callerOfS2Method(s, -1) == -1)
}

//===----------------------------------------------------------------------===//
// Test that the order in which the generic parameters are declared doesn't
// affect the interpreter.
//===----------------------------------------------------------------------===//

protocol Proto {
  func amethod<U>(_ u: U) -> Int
}

func callMethod<U, T: Proto>(_ a: T, _ u: U) -> Int {
  return a.amethod(u)
}

// Test 1
struct Sp : Proto {
  func amethod<U>(_ u: U) -> Int {
    return 0
  }
}

func testProtocolMethod() {
  let s = Sp()
  #assert(callMethod(s, 10) == 0)
}

// Test 2
struct GenericS<P>: Proto {
  func amethod<U>(_ u: U) -> Int {
    return 12
  }
}

func testProtocolMethodForGenericStructs() {
  let s = GenericS<Int>()
  #assert(callMethod(s, 10) == 12)
}

// Test 3 (with generic fields)
struct GenericS2<P: Equatable>: Proto {
  var fld1: P
  var fld2: P

  init(_ p: P, _ q: P) {
    fld1 = p
    fld2 = q
  }

  func amethod<U>(_ u: U) -> Int {
    if (fld1 == fld2) {
      return 15
    }
    return 0
  }
}

func testProtocolMethodForStructsWithGenericFields() {
  let s = GenericS2<Int>(1, 1)
  #assert(callMethod(s, 10) == 15)
}

//===----------------------------------------------------------------------===//
// Structs with generics and protocols with associated types.
//===----------------------------------------------------------------------===//

protocol ProtoWithAssocType {
  associatedtype U

  func amethod(_ u: U) -> U
}

struct St<X, Y> : ProtoWithAssocType {
  typealias U = X

  func amethod(_ x: X) -> X {
    return x
  }
}

func callerOfStMethod<P, Q>(_ s: St<P, Q>, _ p: P) -> P {
  return s.amethod(p)
}

func testProtoWithAssocTypes() {
  let s = St<Int, Float>()
  #assert(callerOfStMethod(s, 11) == 11)
}

// Test 2: test a protocol method returning its generic argument.
protocol ProtoWithGenericMethod {
  func amethod<U>(_ u: U) -> U
}


struct SProtoWithGenericMethod<X> : ProtoWithGenericMethod {
  func amethod<Z>(_ z: Z) -> Z {
    return z
  }
}

func callerOfGenericProtoMethod<S: ProtoWithGenericMethod, V>(_ s: S,
                                                              _ v: V) -> V {
  return s.amethod(v)
}

func testProtoWithGenericMethod() {
  let s = SProtoWithGenericMethod<Float>()
  #assert(callerOfGenericProtoMethod(s, -1) == -1)
}

//===----------------------------------------------------------------------===//
// Converting a struct instance to protocol instance is not supported yet.
// This requires handling init_existential_addr instruction. Once they are
// supported, the following static assert must pass. For now, a workaround is
// to use generic parameters with protocol constraints in the interpretable
// code fragments.
//===----------------------------------------------------------------------===//

protocol ProtoSimple {
  func amethod() -> Int
}

func callProtoSimpleMethod(_ p: ProtoSimple) -> Int {
  return p.amethod()
}

struct SPsimp : ProtoSimple {
  func amethod() -> Int {
    return 0
  }
}

func testStructPassedAsProtocols() {
  let s = SPsimp()
  #assert(callProtoSimpleMethod(s) == 0) // expected-error {{#assert condition not constant}}
    // expected-note@-1 {{encountered call to 'callProtoSimpleMethod(_:)' where the 1st argument is not a constant}}
}

//===----------------------------------------------------------------------===//
// Strings
//===----------------------------------------------------------------------===//

struct ContainsString {
  let x: Int
  let str: String
}

// Test string initialization

func stringInitEmptyTopLevel() {
  let c = ContainsString(x: 1, str: "")
  #assert(c.x == 1)
}

func stringInitNonEmptyTopLevel() {
  let c = ContainsString(x: 1, str: "hello world")
  #assert(c.x == 1)
}

// Test string equality (==)

func emptyString() -> String {
  return ""
}

func asciiString() -> String {
  return "test string"
}

func dollarSign() -> String {
  return "dollar sign: \u{24}"
}

func flag() -> String {
  return "flag: \u{1F1FA}\u{1F1F8}"
}

func compareWithIdenticalStrings() {
  #assert(emptyString() == "")
  #assert(asciiString() == "test string")
  #assert(dollarSign() == "dollar sign: $")
  #assert(flag() == "flag: 🇺🇸")
}

func compareWithUnequalStrings() {
  #assert(emptyString() == "Nonempty") // expected-error {{assertion failed}}
  #assert(asciiString() == "")         // expected-error {{assertion failed}}
  #assert(dollarSign() == flag())      // expected-error {{assertion failed}}
  #assert(flag() == "flag: \u{1F496}") // expected-error {{assertion failed}}
}

// Test string appends (+=)

// String.+= when used at the top-level of #assert cannot be folded as the
// interpreter cannot extract the relevant instructions to interpret.
// (This is because append is a mutating function and there will be more than
// one writer to the string.) Nonetheless, flow-sensitive uses of String.+=
// will be interpretable.
func testStringAppendTopLevel() {
  var a = "a"
  a += "b"
  #assert(a == "ab")  // expected-error {{#assert condition not constant}}
                      // expected-note@-1 {{operation with invalid operands encountered during evaluation}}
  // Note: the operands to the equals operation are invalid as the variable
  // `a` is uninitialized when the call is made. This is due to imprecision
  // in the top-level evaluation mode.
}

func appendedAsciiString() -> String {
  var str = "test "
  str += "string"
  return str
}

func appendedDollarSign() -> String {
  var d = "dollar sign: "
  d += "\u{24}"
  return d
}

func appendedFlag() -> String {
  var flag = "\u{1F1FA}"
  flag += "\u{1F1F8}"
  return flag
}

func testStringAppend() {
  #assert(appendedAsciiString() == asciiString())
  #assert(appendedDollarSign() == dollarSign())
  #assert(appendedFlag() == "🇺🇸")

  #assert(appendedAsciiString() == "") // expected-error {{assertion failed}}
  #assert(appendedDollarSign() == "")  // expected-error {{assertion failed}}
  #assert(appendedFlag() == "")        // expected-error {{assertion failed}}
}

func conditionalAppend(_ b: Bool, _ str1: String, _ str2: String) -> String {
  let suffix = "One"
  var result = ""
  if b {
    result = str1
    result += suffix
  } else {
    result = str2
    result += suffix
  }
  return result
}

func testConditionalAppend() {
  let first = "first"
  let second = "second"
  #assert(conditionalAppend(true, first, second) == "firstOne")
  #assert(conditionalAppend(false, first, second) == "secondOne")
}

struct ContainsMutableString {
  let x: Int
  var str: String
}

func appendOfStructProperty() -> ContainsMutableString {
  var c = ContainsMutableString(x: 0, str: "broken")
  c.str += " arrow"
  return c
}

func testAppendOfStructProperty() {
  #assert(appendOfStructProperty().str == "broken arrow")
}

//===----------------------------------------------------------------------===//
// Enums and optionals.
//===----------------------------------------------------------------------===//
func isNil(_ x: Int?) -> Bool {
  return x == nil
}

#assert(isNil(nil))
#assert(!isNil(3))

public enum Pet {
  case bird
  case cat(Int)
  case dog(Int, Int)
  case fish
}

public func weighPet(pet: Pet) -> Int {
  switch pet {
  case .bird: return 3
  case let .cat(weight): return weight
  case let .dog(w1, w2): return w1+w2
  default: return 1
  }
}

#assert(weighPet(pet: .bird) == 3)
#assert(weighPet(pet: .fish) == 1)
#assert(weighPet(pet: .cat(2)) == 2)
// expected-error @+1 {{assertion failed}}
#assert(weighPet(pet: .cat(2)) == 3)
#assert(weighPet(pet: .dog(9, 10)) == 19)

// Test indirect enums.
indirect enum IntExpr {
  case int(_ value: Int)
  case add(_ lhs: IntExpr, _ rhs: IntExpr)
  case multiply(_ lhs: IntExpr, _ rhs: IntExpr)
}

func evaluate(intExpr: IntExpr) -> Int {
  switch intExpr {
  case .int(let value):
    return value
  case .add(let lhs, let rhs):
    return evaluate(intExpr: lhs) + evaluate(intExpr: rhs)
  case .multiply(let lhs, let rhs):
    return evaluate(intExpr: lhs) * evaluate(intExpr: rhs)
  }
}

// TODO: The constant evaluator can't handle indirect enums yet.
// expected-error @+2 {{#assert condition not constant}}
// expected-note @+1 {{encountered call to 'evaluate(intExpr:)' where the 1st argument is not a constant}}
#assert(evaluate(intExpr: .int(5)) == 5)
// expected-error @+2 {{#assert condition not constant}}
// expected-note @+1 {{encountered call to 'evaluate(intExpr:)' where the 1st argument is not a constant}}
#assert(evaluate(intExpr: .add(.int(5), .int(6))) == 11)
// expected-error @+2 {{#assert condition not constant}}
// expected-note @+1 {{encountered call to 'evaluate(intExpr:)' where the 1st argument is not a constant}}
#assert(evaluate(intExpr: .add(.multiply(.int(2), .int(2)), .int(3))) == 7)

// Test address-only enums.
protocol IntContainerProtocol {
  var value: Int { get }
}

struct IntContainer : IntContainerProtocol {
  let value: Int
}

enum AddressOnlyEnum<T: IntContainerProtocol> {
  case double(_ value: T)
  case triple(_ value: T)
}

func evaluate<T>(addressOnlyEnum: AddressOnlyEnum<T>) -> Int {
  switch addressOnlyEnum {
  case .double(let value):
    return 2 * value.value
  case .triple(let value):
    return 3 * value.value
  }
}

#assert(evaluate(addressOnlyEnum: .double(IntContainer(value: 1))) == 2)
#assert(evaluate(addressOnlyEnum: .triple(IntContainer(value: 1))) == 3)

//===----------------------------------------------------------------------===//
// Arrays
//===----------------------------------------------------------------------===//

// When the const-evaluator evaluates this struct, it forces evaluation of the
// `arr` value.
struct ContainsArray {
  let x: Int
  let arr: [Int]
}

func arrayInitEmptyTopLevel() {
  let c = ContainsArray(x: 1, arr: Array())
  #assert(c.x == 1)
}

func arrayInitEmptyLiteralTopLevel() {
  // TODO: More work necessary for array initialization using literals to work
  // at the top level.
  // expected-note@+1 {{encountered call to 'ContainsArray.init(x:arr:)' where the 2nd argument is not a constant}}
  let c = ContainsArray(x: 1, arr: [])
  // expected-error @+1 {{#assert condition not constant}}
  #assert(c.x == 1)
}

func arrayInitLiteral() {
  // TODO: More work necessary for array initialization using literals to work
  // at the top level.
  // expected-note @+1 {{encountered call to 'ContainsArray.init(x:arr:)' where the 2nd argument is not a constant}}
  let c = ContainsArray(x: 1, arr: [2, 3, 4])
  // expected-error @+1 {{#assert condition not constant}}
  #assert(c.x == 1)
}

func arrayInitNonConstantElementTopLevel(x: Int) {
  // expected-note @+1 {{encountered call to 'ContainsArray.init(x:arr:)' where the 2nd argument is not a constant}}
  let c = ContainsArray(x: 1, arr: [x])
  // expected-error @+1 {{#assert condition not constant}}
  #assert(c.x == 1)
}

func arrayInitEmptyFlowSensitive() -> ContainsArray {
  return ContainsArray(x: 1, arr: Array())
}

func invokeArrayInitEmptyFlowSensitive() {
  #assert(arrayInitEmptyFlowSensitive().x == 1)
}

func arrayInitEmptyLiteralFlowSensitive() -> ContainsArray {
  return ContainsArray(x: 1, arr: [])
}

func invokeArrayInitEmptyLiteralFlowSensitive() {
  #assert(arrayInitEmptyLiteralFlowSensitive().x == 1)
}

func arrayInitLiteralFlowSensitive() -> ContainsArray {
  return ContainsArray(x: 1, arr: [2, 3, 4])
}

func invokeArrayInitLiteralFlowSensitive() {
  #assert(arrayInitLiteralFlowSensitive().x == 1)
}