1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
// RUN: %target-sil-opt -enable-sil-verify-all %s -jumpthread-simplify-cfg | %FileCheck %s
// Test dominator-based jump-threading with OSSA. This requires
// -jumpthread-simplify-cfg to enable dominator-based
// jump-threading.
sil_stage canonical
import Builtin
import Swift
import SwiftShims
// Includes an OSSA form of a test from simplify_cfg_opaque.sil
// ...along with new OSSA test cases.
class C {
@_hasStorage @_hasInitialValue var field: Int { get set }
init()
func method() -> Any
func f() -> FakeOptional<T>
}
sil @getC : $@convention(thin) () -> C
// Test multiple uses and cloned allocation.
//
// project_box and struct_extract_addr will be sunk into three
// different blocks, but only once per block.
struct S {
@_hasStorage @_hasInitialValue var x: Int { get set }
init(x: Int = 0)
init()
}
sil @doNothing : $@convention(thin) (@inout Int) -> ()
enum FakeOptional<T> {
case some(T)
case none
}
struct T {
let s: S
}
enum E {
case A
case B
case C
}
class Base { }
class Derived1 : Base { }
class Derived2 : Base { }
// Test that jump threading sinks a
// ref_tail_addr->index_addr->struct_element_addr chain and generates
// a phi for the index_addr's index operand.
//
// The retain on separate paths followed by a merged release, and
// target block with a conditional branch are necessary just to get
// jump threading to kick in.
//
// CHECK-LABEL: sil @testJumpThreadIndex : $@convention(thin) (__ContiguousArrayStorageBase, Builtin.Int64) -> Builtin.Int32 {
// CHECK: bb0(%0 : $__ContiguousArrayStorageBase, %1 : $Builtin.Int64):
// CHECK: cond_br undef, bb2, bb1
// CHECK: bb1:
// CHECK: apply
// CHECK: strong_retain
// CHECK: strong_release
// CHECK: [[IDX2:%.*]] = builtin "truncOrBitCast_Int64_Word"(%1 : $Builtin.Int64) : $Builtin.Word
// CHECK: br bb3([[IDX2]] : $Builtin.Word)
// CHECK: bb2:
// CHECK: apply
// CHECK: strong_retain
// CHECK: strong_release
// CHECK: [[IDX1:%.*]] = builtin "truncOrBitCast_Int64_Word"(%1 : $Builtin.Int64) : $Builtin.Word
// CHECK: br bb3([[IDX1]] : $Builtin.Word)
// CHECK: bb3([[PHI:%.*]] : $Builtin.Word):
// CHECK: [[TAIL:%.*]] = ref_tail_addr %0 : $__ContiguousArrayStorageBase, $Int32
// CHECK: [[ELT:%.*]] = index_addr [[TAIL]] : $*Int32, %14 : $Builtin.Word
// CHECK: [[ADR:%.*]] = struct_element_addr [[ELT]] : $*Int32, #Int32._value
// CHECK: load [[ADR]] : $*Builtin.Int32
// CHECK: cond_br undef, bb4, bb5
// CHECK-LABEL: } // end sil function 'testJumpThreadIndex'
sil @testJumpThreadIndex : $@convention(thin) (__ContiguousArrayStorageBase, Builtin.Int64) -> Builtin.Int32 {
bb0(%0 : $__ContiguousArrayStorageBase, %1 : $Builtin.Int64):
%f = function_ref @getC : $@convention(thin) () -> C
cond_br undef, bb1, bb2
bb1:
%c1 = apply %f() : $@convention(thin) ()->C
strong_retain %c1 : $C
br bb3(%c1 : $C)
bb2:
%c2 = apply %f() : $@convention(thin) ()->C
strong_retain %c2 : $C
br bb3(%c2 : $C)
bb3(%arg : $C):
strong_release %arg : $C
%tail = ref_tail_addr %0 : $__ContiguousArrayStorageBase, $Int32
%idx = builtin "truncOrBitCast_Int64_Word"(%1 : $Builtin.Int64) : $Builtin.Word
%elt = index_addr %tail : $*Int32, %idx : $Builtin.Word
%adr = struct_element_addr %elt : $*Int32, #Int32._value
br bb4
bb4:
%val = load %adr : $*Builtin.Int32
cond_br undef, bb4, bb5
bb5:
return %val : $Builtin.Int32
}
// CHECK-LABEL: sil @testMultiUse : $@convention(method) (Bool, @inout Int) -> () {
// CHECK: bb0(%0 : $Bool, %1 : $*Int):
// CHECK: cond_br %{{.*}}, bb1, bb2
// CHECK: bb1:
// CHECK: apply %{{.*}}(%1) : $@convention(thin) (@inout Int) -> ()
// CHECK: [[ALLOC2:%.*]] = alloc_box ${ var S }, var, name "s"
// CHECK: [[PROJ2:%.*]] = project_box [[ALLOC2]] : ${ var S }, 0
// CHECK: [[ADR2:%.*]] = struct_element_addr [[PROJ2]] : $*S, #S.x
// CHECK: store %{{.*}} to [[ADR2]] : $*Int
// CHECK: apply %{{.*}}([[ADR2]]) : $@convention(thin) (@inout Int) -> ()
// CHECK: br bb3([[ALLOC2]] : ${ var S })
// CHECK: bb2:
// CHECK: [[ALLOC1:%.*]] = alloc_box ${ var S }, var, name "s"
// CHECK: [[PROJ1:%.*]] = project_box [[ALLOC1]] : ${ var S }, 0
// CHECK: [[ADR1:%.*]] = struct_element_addr [[PROJ1]] : $*S, #S.x
// CHECK: store %{{.*}} to [[ADR1]] : $*Int
// CHECK: br bb3([[ALLOC1]] : ${ var S })
// CHECK: bb3([[BOXARG:%.*]] : ${ var S }):
// CHECK: [[PROJ3:%.*]] = project_box [[BOXARG]] : ${ var S }, 0
// CHECK: [[ADR3:%.*]] = struct_element_addr [[PROJ3]] : $*S, #S.x
// CHECK: apply %{{.*}}([[ADR3]]) : $@convention(thin) (@inout Int) -> ()
// CHECK: release_value [[BOXARG]] : ${ var S }
// CHECK-LABEL: } // end sil function 'testMultiUse'
sil @testMultiUse : $@convention(method) (Bool, @inout Int) -> () {
bb0(%0 : $Bool, %1 : $*Int):
%bool = struct_extract %0 : $Bool, #Bool._value
cond_br %bool, bb1, bb2
bb1:
%f1 = function_ref @doNothing : $@convention(thin) (@inout Int) -> ()
%call1 = apply %f1(%1) : $@convention(thin) (@inout Int) -> ()
br bb3
bb2:
br bb3
bb3:
%box3 = alloc_box ${ var S }, var, name "s"
%proj3 = project_box %box3 : ${ var S }, 0
%adr3 = struct_element_addr %proj3 : $*S, #S.x
cond_br %bool, bb4, bb5
bb4:
%i4 = load %1 : $*Int
store %i4 to %adr3 : $*Int
%f2 = function_ref @doNothing : $@convention(thin) (@inout Int) -> ()
%call2 = apply %f2(%adr3) : $@convention(thin) (@inout Int) -> ()
br bb6
bb5:
%i5 = load %1 : $*Int
store %i5 to %adr3 : $*Int
br bb6
bb6:
%f6 = function_ref @doNothing : $@convention(thin) (@inout Int) -> ()
%call6 = apply %f6(%adr3) : $@convention(thin) (@inout Int) -> ()
release_value %box3 : ${ var S }
%z = tuple ()
return %z : $()
}
// CHECK-LABEL: sil @test_jump_threading
// CHECK: bb5(%{{[0-9]+}} : $Builtin.Int64):
// CHECK-NEXT: br bb1
sil @test_jump_threading : $@convention(thin) (Builtin.Int1) -> () {
bb0(%0 : $Builtin.Int1):
cond_br %0, bb2, bb3
// Blocks are handled from last to first. Block bb1 is placed here so that its argument
// is not optimized before jump threading is done in bb2 and bb3.
bb1(%i4 : $Builtin.Int64):
%f3 = function_ref @get_condition : $@convention(thin) (Builtin.Int64) -> Builtin.Int1
%c1 = apply %f3(%i3) : $@convention(thin) (Builtin.Int64) -> Builtin.Int1
%i5 = integer_literal $Builtin.Int64, 27
cond_br %c1, bb1(%i5 : $Builtin.Int64), bb5
bb2:
%f1 = function_ref @get_int1 : $@convention(thin) () -> Builtin.Int64
%i1 = apply %f1() : $@convention(thin) () -> Builtin.Int64
br bb4(%i1 : $Builtin.Int64)
bb3:
%f2 = function_ref @get_int1 : $@convention(thin) () -> Builtin.Int64
%i2 = apply %f2() : $@convention(thin) () -> Builtin.Int64
br bb4(%i2 : $Builtin.Int64)
// Jump threading must not be done for this block because the argument %i3 is also
// used in bb1.
bb4(%i3 : $Builtin.Int64):
br bb1(%i3 : $Builtin.Int64)
bb5:
%r1 = tuple ()
return %r1 : $()
}
sil @get_int1 : $@convention(thin) () -> Builtin.Int64
sil @get_int2 : $@convention(thin) () -> Builtin.Int64
sil @get_condition : $@convention(thin) (Builtin.Int64) -> Builtin.Int1
public final class AA {
}
public final class BB {
@_hasStorage internal weak final var n: BB!
@_hasStorage internal final var o: AA!
}
// Test that SimplifyCFG does not hang when compiling an infinite loop with switch_enum.
// CHECK-LABEL: test_infinite_loop
sil hidden @test_infinite_loop : $@convention(method) (@owned BB) -> () {
bb0(%0 : $BB):
%31 = enum $Optional<BB>, #Optional.some!enumelt, %0 : $BB
br bb4(%31 : $Optional<BB>)
bb4(%36 : $Optional<BB>):
switch_enum %36 : $Optional<BB>, case #Optional.some!enumelt: bb6, default bb5
bb5:
br bb7
bb6:
%39 = unchecked_enum_data %36 : $Optional<BB>, #Optional.some!enumelt
%40 = ref_element_addr %39 : $BB, #BB.o
%41 = load %40 : $*Optional<AA>
release_value %41 : $Optional<AA>
br bb7
bb7:
switch_enum %36 : $Optional<BB>, case #Optional.none!enumelt: bb8, case #Optional.some!enumelt: bb9
bb8:
br bb4(%36 : $Optional<BB>)
bb9:
%48 = unchecked_enum_data %36 : $Optional<BB>, #Optional.some!enumelt
%49 = ref_element_addr %48 : $BB, #BB.n
%50 = load_weak %49 : $*@sil_weak Optional<BB>
release_value %36 : $Optional<BB>
switch_enum %50 : $Optional<BB>, case #Optional.some!enumelt: bb11, case #Optional.none!enumelt: bb10
bb10:
br bb4(%50 : $Optional<BB>)
bb11:
%54 = unchecked_enum_data %50 : $Optional<BB>, #Optional.some!enumelt
%55 = ref_to_raw_pointer %54 : $BB to $Builtin.RawPointer
%56 = ref_to_raw_pointer %0 : $BB to $Builtin.RawPointer
%57 = builtin "cmp_eq_RawPointer"(%55 : $Builtin.RawPointer, %56 : $Builtin.RawPointer) : $Builtin.Int1
cond_br %57, bb13, bb12
bb12:
br bb4(%50 : $Optional<BB>)
bb13:
release_value %50 : $Optional<BB>
strong_release %0 : $BB
%65 = tuple ()
return %65 : $()
}
sil @some_function : $@convention(thin) (AA) -> Optional<AA>
// Another test for checking that SimplifyCFG does not hang.
// CHECK-LABEL: test_other_infinite_loop
sil hidden @test_other_infinite_loop : $@convention(method) (@owned AA) -> () {
bb0(%5 : $AA):
strong_retain %5 : $AA
%6 = enum $Optional<AA>, #Optional.some!enumelt, %5 : $AA
br bb1(%6 : $Optional<AA>)
bb1(%8 : $Optional<AA>):
retain_value %8 : $Optional<AA>
switch_enum %8 : $Optional<AA>, case #Optional.some!enumelt: bb3, default bb2
bb2:
release_value %8 : $Optional<AA>
br bb6
bb3:
cond_br undef, bb4, bb5
bb4:
%85 = tuple ()
return %85 : $()
bb5:
br bb6
bb6:
switch_enum %8 : $Optional<AA>, case #Optional.none!enumelt: bb7, default bb8
bb7:
br bb9(%8 : $Optional<AA>)
bb8:
%23 = unchecked_enum_data %8 : $Optional<AA>, #Optional.some!enumelt
strong_retain %23 : $AA
%25 = function_ref @some_function : $@convention(thin) (AA) -> Optional<AA>
%26 = apply %25(%23) : $@convention(thin) (AA) -> Optional<AA>
strong_release %23 : $AA
br bb9(%26 : $Optional<AA>)
bb9(%29 : $Optional<AA>):
release_value %8 : $Optional<AA>
br bb1(%29 : $Optional<AA>)
}
// -----------------------------------------------------------------------------
// Test jump-threading through a non-pure address producer.
//
// BB3 cannot (currently) be cloned because the block cloner does not
// know how to sink address producers unless they are pure address
// projections. init_existential_addr is not a pure projection. It's
// address is transitively used outside bb3 via %17 =
// tuple_element_addr. Test that cloning is inhibited. If cloning did
// happen, then it would either need to sink init_existential_addr, or
// SSA would be incorrectly updated.
// Make BB3 is not jump-threaded. And init_existential_addr is not cloned
//
// CHECK-LABEL: sil hidden @nonPureAddressProducer : $@convention(method) (@guaranteed C) -> @out Any {
// CHECK: bb0(%0 : $*Any, %1 : $C):
// CHECK: switch_enum %{{.*}} : $FakeOptional<T>, case #FakeOptional.some!enumelt: bb1, case #FakeOptional.none!enumelt: bb2
// CHECK: bb3(%{{.*}} : $FakeOptional<Int64>):
// CHECK: init_existential_addr %0 : $*Any, $(FakeOptional<Int64>, FakeOptional<S>)
// CHECK: switch_enum %{{.*}} : $FakeOptional<T>, case #FakeOptional.some!enumelt: bb4, case #FakeOptional.none!enumelt: bb6
// CHECK-LABEL: } // end sil function 'nonPureAddressProducer'
sil hidden @nonPureAddressProducer : $@convention(method) (@guaranteed C) -> @out Any {
bb0(%0 : $*Any, %1 : $C):
%3 = class_method %1 : $C, #C.f : (C) -> () -> FakeOptional<T>, $@convention(method) (@guaranteed C) -> FakeOptional<T>
%4 = apply %3(%1) : $@convention(method) (@guaranteed C) -> FakeOptional<T>
switch_enum %4 : $FakeOptional<T>, case #FakeOptional.some!enumelt: bb1, case #FakeOptional.none!enumelt: bb2
bb1:
%7 = integer_literal $Builtin.Int64, 1
%8 = struct $Int64 (%7 : $Builtin.Int64)
%9 = enum $FakeOptional<Int64>, #FakeOptional.some!enumelt, %8 : $Int64
br bb3(%9 : $FakeOptional<Int64>)
bb2:
%11 = enum $FakeOptional<Int64>, #FakeOptional.none!enumelt
br bb3(%11 : $FakeOptional<Int64>)
bb3(%13 : $FakeOptional<Int64>):
%15 = init_existential_addr %0 : $*Any, $(FakeOptional<Int64>, FakeOptional<S>)
%16 = tuple_element_addr %15 : $*(FakeOptional<Int64>, FakeOptional<S>), 0
%17 = tuple_element_addr %15 : $*(FakeOptional<Int64>, FakeOptional<S>), 1
store %13 to %16 : $*FakeOptional<Int64>
switch_enum %4 : $FakeOptional<T>, case #FakeOptional.some!enumelt: bb4, case #FakeOptional.none!enumelt: bb6
bb4(%20 : $T):
%21 = struct_extract %20 : $T, #T.s
%22 = enum $FakeOptional<S>, #FakeOptional.some!enumelt, %21 : $S
store %22 to %17 : $*FakeOptional<S>
br bb5
bb5:
%25 = tuple ()
return %25 : $()
bb6:
%27 = enum $FakeOptional<S>, #FakeOptional.none!enumelt
store %27 to %17 : $*FakeOptional<S>
br bb5
}
// -----------------------------------------------------------------------------
// Test select_enum correctness
// -----------------------------------------------------------------------------
// Two select_enum instructions must not be considered as the same "condition",
// even if they have the same enum operand.
// This test checks that SimplifyCFG does not remove a dominated terminator with
// such a condition.
// CHECK-LABEL: sil @test_cond_br
// CHECK: select_enum
// CHECK: cond_br
// CHECK: integer_literal $Builtin.Int64, 1
// CHECK: select_enum
// CHECK: cond_br
// CHECK: integer_literal $Builtin.Int64, 2
// CHECK: integer_literal $Builtin.Int64, 3
// CHECK: return
sil @test_cond_br : $@convention(thin) (E) -> Builtin.Int64 {
bb0(%0 : $E):
%t1 = integer_literal $Builtin.Int1, -1
%f1 = integer_literal $Builtin.Int1, 0
%s1 = select_enum %0 : $E, case #E.A!enumelt: %t1, default %f1 : $Builtin.Int1
cond_br %s1, bb1, bb2
bb1:
%i1 = integer_literal $Builtin.Int64, 1
br bb5(%i1 : $Builtin.Int64)
bb2:
%s2 = select_enum %0 : $E, case #E.B!enumelt: %t1, default %f1 : $Builtin.Int1
cond_br %s2, bb3, bb4
bb3:
%i2 = integer_literal $Builtin.Int64, 2
br bb5(%i2 : $Builtin.Int64)
bb4:
%i3 = integer_literal $Builtin.Int64, 3
br bb5(%i3 : $Builtin.Int64)
bb5(%a3 : $Builtin.Int64):
return %a3 : $Builtin.Int64
}
|