1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
//===--- BindingInferenceTests.cpp ----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SemaFixture.h"
#include "swift/AST/Expr.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace swift;
using namespace swift::unittest;
using namespace swift::constraints;
using namespace swift::constraints::inference;
TEST_F(SemaTest, TestIntLiteralBindingInference) {
ConstraintSystemOptions options;
options |= ConstraintSystemFlags::AllowUnresolvedTypeVariables;
ConstraintSystem cs(DC, options);
auto *intLiteral = IntegerLiteralExpr::createFromUnsigned(Context, 42, SourceLoc());
auto *literalTy = cs.createTypeVariable(cs.getConstraintLocator(intLiteral),
/*options=*/0);
cs.addConstraint(
ConstraintKind::LiteralConformsTo, literalTy,
Context.getProtocol(KnownProtocolKind::ExpressibleByIntegerLiteral)
->getDeclaredInterfaceType(),
cs.getConstraintLocator(intLiteral));
auto intTy = getStdlibType("Int");
{
auto bindings = cs.getBindingsFor(literalTy);
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
const auto &literal = bindings.Literals.front().second;
ASSERT_TRUE(literal.hasDefaultType());
ASSERT_TRUE(literal.getDefaultType()->isEqual(intTy));
ASSERT_FALSE(literal.isCovered());
}
// Make sure that coverage by direct bindings works as expected.
// First, let's attempt a binding which would match default type
// of the literal.
cs.addConstraint(ConstraintKind::Conversion, literalTy, intTy,
cs.getConstraintLocator(intLiteral));
{
auto bindings = cs.getBindingsFor(literalTy);
ASSERT_EQ(bindings.Bindings.size(), (unsigned)1);
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
ASSERT_TRUE(bindings.Bindings[0].BindingType->isEqual(intTy));
const auto &literal = bindings.Literals.front().second;
ASSERT_TRUE(literal.isCovered());
ASSERT_TRUE(literal.isDirectRequirement());
ASSERT_TRUE(literal.getDefaultType()->isEqual(intTy));
}
// Now let's use non-default type that conforms to
// `ExpressibleByIntegerLiteral` protocol.
auto *floatLiteralTy =
cs.createTypeVariable(cs.getConstraintLocator(intLiteral),
/*options=*/0);
auto floatTy = getStdlibType("Float");
// $T_float <conforms to> ExpressibleByIntegerLiteral
cs.addConstraint(
ConstraintKind::LiteralConformsTo, floatLiteralTy,
Context.getProtocol(KnownProtocolKind::ExpressibleByIntegerLiteral)
->getDeclaredInterfaceType(),
cs.getConstraintLocator(intLiteral));
// Float <convertible> $T_float
cs.addConstraint(ConstraintKind::Conversion, floatTy, floatLiteralTy,
cs.getConstraintLocator(intLiteral));
{
auto bindings = cs.getBindingsFor(floatLiteralTy);
ASSERT_EQ(bindings.Bindings.size(), (unsigned)1);
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
ASSERT_TRUE(bindings.Bindings[0].BindingType->isEqual(floatTy));
const auto &literal = bindings.Literals.front().second;
ASSERT_TRUE(literal.isCovered());
ASSERT_TRUE(literal.isDirectRequirement());
ASSERT_FALSE(literal.getDefaultType()->isEqual(floatTy));
}
// Let's test transitive literal requirement coverage,
// literal requirements are propagated up the subtype chain.
auto *otherTy = cs.createTypeVariable(cs.getConstraintLocator({}),
/*options=*/0);
cs.addConstraint(ConstraintKind::Subtype, floatLiteralTy, otherTy,
cs.getConstraintLocator({}));
{
auto bindings = cs.getBindingsFor(otherTy);
// Make sure that there are no direct bindings or protocol requirements.
ASSERT_EQ(bindings.Bindings.size(), (unsigned)0);
ASSERT_EQ(bindings.Literals.size(), (unsigned)0);
llvm::SmallDenseMap<TypeVariableType *, BindingSet> env;
env.insert({floatLiteralTy, cs.getBindingsFor(floatLiteralTy)});
bindings.finalize(env);
// Inferred a single transitive binding through `$T_float`.
ASSERT_EQ(bindings.Bindings.size(), (unsigned)1);
// Inferred literal requirement through `$T_float` as well.
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
const auto &literal = bindings.Literals.front().second;
ASSERT_TRUE(literal.isCovered());
ASSERT_FALSE(literal.isDirectRequirement());
ASSERT_FALSE(literal.getDefaultType()->isEqual(floatTy));
}
}
// Given a set of inferred protocol requirements, make sure that
// all of the expected types are present.
static void verifyProtocolInferenceResults(
const llvm::SmallPtrSetImpl<Constraint *> &protocols,
ArrayRef<Type> expectedTypes) {
ASSERT_TRUE(protocols.size() >= expectedTypes.size());
llvm::SmallPtrSet<Type, 2> inferredProtocolTypes;
for (auto *protocol : protocols)
inferredProtocolTypes.insert(protocol->getSecondType());
for (auto expectedTy : expectedTypes) {
ASSERT_TRUE(inferredProtocolTypes.count(expectedTy));
}
}
TEST_F(SemaTest, TestTransitiveProtocolInference) {
ConstraintSystemOptions options;
ConstraintSystem cs(DC, options);
auto *protocolTy1 = createProtocol("P1");
auto *protocolTy2 = createProtocol("P2");
auto *GPT1 = cs.createTypeVariable(cs.getConstraintLocator({}),
/*options=*/TVO_CanBindToNoEscape);
auto *GPT2 = cs.createTypeVariable(cs.getConstraintLocator({}),
/*options=*/TVO_CanBindToNoEscape);
cs.addConstraint(
ConstraintKind::ConformsTo, GPT1, protocolTy1,
cs.getConstraintLocator({}, LocatorPathElt::TypeParameterRequirement(
0, RequirementKind::Conformance)));
cs.addConstraint(
ConstraintKind::ConformsTo, GPT2, protocolTy2,
cs.getConstraintLocator({}, LocatorPathElt::TypeParameterRequirement(
0, RequirementKind::Conformance)));
// First, let's try inferring through a single conversion
// relationship.
{
auto *typeVar = cs.createTypeVariable(cs.getConstraintLocator({}),
/*options=*/0);
cs.addConstraint(ConstraintKind::Conversion, typeVar, GPT1,
cs.getConstraintLocator({}, LocatorPathElt::ContextualType(
CTP_Initialization)));
auto bindings = inferBindings(cs, typeVar);
ASSERT_TRUE(bindings.getConformanceRequirements().empty());
ASSERT_TRUE(bool(bindings.TransitiveProtocols));
verifyProtocolInferenceResults(*bindings.TransitiveProtocols,
{protocolTy1});
}
// Now, let's make sure that protocol requirements could be propagated
// down conversion/equality chains through multiple hops.
{
// GPT1 is a subtype of GPT2 and GPT2 is convertible to a target type
// variable, target should get both protocols inferred - P1 & P2.
auto *typeVar = cs.createTypeVariable(cs.getConstraintLocator({}),
/*options=*/0);
cs.addConstraint(ConstraintKind::Subtype, GPT1, GPT2,
cs.getConstraintLocator({}));
cs.addConstraint(ConstraintKind::Conversion, typeVar, GPT1,
cs.getConstraintLocator({}));
auto bindings = inferBindings(cs, typeVar);
ASSERT_TRUE(bindings.getConformanceRequirements().empty());
ASSERT_TRUE(bool(bindings.TransitiveProtocols));
verifyProtocolInferenceResults(*bindings.TransitiveProtocols,
{protocolTy1, protocolTy2});
}
}
/// Let's try a more complicated situation where there protocols
/// are inferred from multiple sources on different levels of
/// conversion chain.
///
/// (P1) T0 T4 (T3) T6 (P4)
/// \ / /
/// T3 = T1 (P2) = T5
/// \ /
/// T2
TEST_F(SemaTest, TestComplexTransitiveProtocolInference) {
ConstraintSystemOptions options;
ConstraintSystem cs(DC, options);
auto *protocolTy1 = createProtocol("P1");
auto *protocolTy2 = createProtocol("P2");
auto *protocolTy3 = createProtocol("P3");
auto *protocolTy4 = createProtocol("P4");
auto *nilLocator = cs.getConstraintLocator({});
auto typeVar0 = cs.createTypeVariable(nilLocator, /*options=*/0);
auto typeVar1 = cs.createTypeVariable(nilLocator, /*options=*/0);
auto typeVar2 = cs.createTypeVariable(nilLocator, /*options=*/0);
// Allow this type variable to be bound to l-value type to prevent
// it from being merged with the rest of the type variables.
auto typeVar3 =
cs.createTypeVariable(nilLocator, /*options=*/TVO_CanBindToLValue);
auto typeVar4 = cs.createTypeVariable(nilLocator, /*options=*/0);
auto typeVar5 =
cs.createTypeVariable(nilLocator, /*options=*/TVO_CanBindToLValue);
auto typeVar6 = cs.createTypeVariable(nilLocator, /*options=*/0);
cs.addConstraint(ConstraintKind::ConformsTo, typeVar0, protocolTy1,
nilLocator);
cs.addConstraint(ConstraintKind::ConformsTo, typeVar1, protocolTy2,
nilLocator);
cs.addConstraint(ConstraintKind::ConformsTo, typeVar4, protocolTy3,
nilLocator);
cs.addConstraint(ConstraintKind::ConformsTo, typeVar6, protocolTy4,
nilLocator);
// T3 <: T0, T3 <: T4
cs.addConstraint(ConstraintKind::Conversion, typeVar3, typeVar0, nilLocator);
cs.addConstraint(ConstraintKind::Conversion, typeVar3, typeVar4, nilLocator);
// T2 <: T3, T2 <: T1, T3 == T1
cs.addConstraint(ConstraintKind::Subtype, typeVar2, typeVar3, nilLocator);
cs.addConstraint(ConstraintKind::Conversion, typeVar2, typeVar1, nilLocator);
cs.addConstraint(ConstraintKind::UnresolvedMemberChainBase, typeVar3,
typeVar1, nilLocator);
// T1 == T5, T <: T6
cs.addConstraint(ConstraintKind::Equal, typeVar1, typeVar5, nilLocator);
cs.addConstraint(ConstraintKind::Conversion, typeVar5, typeVar6, nilLocator);
auto bindingsForT1 = inferBindings(cs, typeVar1);
auto bindingsForT2 = inferBindings(cs, typeVar2);
auto bindingsForT3 = inferBindings(cs, typeVar3);
auto bindingsForT5 = inferBindings(cs, typeVar5);
ASSERT_TRUE(bool(bindingsForT1.TransitiveProtocols));
verifyProtocolInferenceResults(*bindingsForT1.TransitiveProtocols,
{protocolTy1, protocolTy3, protocolTy4});
ASSERT_TRUE(bool(bindingsForT2.TransitiveProtocols));
verifyProtocolInferenceResults(
*bindingsForT2.TransitiveProtocols,
{protocolTy1, protocolTy2, protocolTy3, protocolTy4});
ASSERT_TRUE(bool(bindingsForT3.TransitiveProtocols));
verifyProtocolInferenceResults(
*bindingsForT3.TransitiveProtocols,
{protocolTy1, protocolTy2, protocolTy3, protocolTy4});
ASSERT_TRUE(bool(bindingsForT5.TransitiveProtocols));
verifyProtocolInferenceResults(
*bindingsForT5.TransitiveProtocols,
{protocolTy1, protocolTy2, protocolTy3, protocolTy4});
}
/// Let's try a situation where there protocols are inferred from
/// multiple sources on different levels of equivalence chain.
///
/// T0 = T1
/// = T2 (P0)
/// = T3 (P1)
TEST_F(SemaTest, TestTransitiveProtocolInferenceThroughEquivalenceChains) {
ConstraintSystemOptions options;
ConstraintSystem cs(DC, options);
auto *protocolTy0 = createProtocol("P0");
auto *protocolTy1 = createProtocol("P1");
auto *nilLocator = cs.getConstraintLocator({});
auto typeVar0 = cs.createTypeVariable(nilLocator, /*options=*/0);
// Allow this type variable to be bound to l-value type to prevent
// it from being merged with the rest of the type variables.
auto typeVar1 =
cs.createTypeVariable(nilLocator, /*options=*/TVO_CanBindToLValue);
auto typeVar2 = cs.createTypeVariable(nilLocator, /*options=*/0);
auto typeVar3 = cs.createTypeVariable(nilLocator, TVO_CanBindToLValue);
cs.addConstraint(ConstraintKind::Conversion, typeVar0, typeVar1, nilLocator);
cs.addConstraint(ConstraintKind::Equal, typeVar1, typeVar2, nilLocator);
cs.addConstraint(ConstraintKind::Equal, typeVar2, typeVar3, nilLocator);
cs.addConstraint(ConstraintKind::ConformsTo, typeVar2, protocolTy0, nilLocator);
cs.addConstraint(ConstraintKind::ConformsTo, typeVar3, protocolTy1, nilLocator);
auto bindings = inferBindings(cs, typeVar0);
ASSERT_TRUE(bool(bindings.TransitiveProtocols));
verifyProtocolInferenceResults(*bindings.TransitiveProtocols,
{protocolTy0, protocolTy1});
}
TEST_F(SemaTest, TestNoDoubleVoidClosureResultInference) {
ConstraintSystemOptions options;
ConstraintSystem cs(DC, options);
auto verifyInference = [&](TypeVariableType *typeVar, unsigned numExpected) {
auto bindings = cs.getBindingsFor(typeVar);
TypeVarBindingProducer producer(bindings);
llvm::SmallPtrSet<Type, 2> inferredTypes;
while (auto binding = producer()) {
ASSERT_TRUE(binding.has_value());
ASSERT_EQ(binding->getTypeVariable(), typeVar);
ASSERT_TRUE(inferredTypes.insert(binding->getType()).second);
}
ASSERT_EQ(inferredTypes.size(), numExpected);
};
auto *closureResultLoc =
cs.getConstraintLocator({}, ConstraintLocator::ClosureResult);
auto *closureResult = cs.createTypeVariable(closureResultLoc, /*options=*/0);
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Int"), closureResult,
closureResultLoc);
cs.addConstraint(ConstraintKind::Subtype, closureResult, getStdlibType("Void"),
closureResultLoc);
verifyInference(closureResult, 2);
auto closureResultWithTransitiveVoid = cs.createTypeVariable(closureResultLoc,
/*options=*/0);
auto contextualVar = cs.createTypeVariable({}, /*options=*/0);
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Void"),
contextualVar, cs.getConstraintLocator({}));
cs.addConstraint(ConstraintKind::Subtype, contextualVar,
closureResultWithTransitiveVoid, closureResultLoc);
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Int"),
closureResultWithTransitiveVoid, closureResultLoc);
verifyInference(closureResultWithTransitiveVoid, 2);
auto closureResultWithoutVoid =
cs.createTypeVariable(closureResultLoc, /*options=*/0);
// Supertype triggers `Void` inference
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Int"),
closureResultWithoutVoid, closureResultLoc);
cs.addConstraint(ConstraintKind::Subtype, closureResultWithoutVoid,
getStdlibType("String"), closureResultLoc);
verifyInference(closureResultWithoutVoid, 3);
}
TEST_F(SemaTest, TestSupertypeInferenceWithDefaults) {
ConstraintSystemOptions options;
ConstraintSystem cs(DC, options);
auto *genericArg = cs.createTypeVariable(
cs.getConstraintLocator({}, ConstraintLocator::GenericArgument),
/*options=*/0);
// KeyPath<String, Int> i.e. \.utf8.count or something similar
auto keyPath =
BoundGenericType::get(Context.getKeyPathDecl(), /*parent=*/Type(),
{getStdlibType("String"), getStdlibType("Int")});
cs.addConstraint(ConstraintKind::Conversion, keyPath, genericArg,
cs.getConstraintLocator({}));
cs.addConstraint(ConstraintKind::Defaultable, genericArg, Context.TheAnyType,
cs.getConstraintLocator({}));
auto bindings = cs.getBindingsFor(genericArg);
TypeVarBindingProducer producer(bindings);
llvm::SmallVector<Type, 4> inferredTypes;
while (auto binding = producer()) {
ASSERT_TRUE(binding.has_value());
inferredTypes.push_back(binding->getType());
}
// The inference should produce 4 types: KeyPath<String, Int>,
// PartialKeyPath<String>, AnyKeyPath and Any - in that order.
ASSERT_EQ(inferredTypes.size(), 4);
ASSERT_TRUE(inferredTypes[0]->isEqual(keyPath));
ASSERT_TRUE(inferredTypes[1]->isEqual(
BoundGenericType::get(Context.getPartialKeyPathDecl(),
/*parent=*/Type(), {getStdlibType("String")})));
ASSERT_TRUE(inferredTypes[2]->isEqual(getStdlibType("AnyKeyPath")));
ASSERT_TRUE(inferredTypes[3]->isEqual(Context.TheAnyType));
}
|