1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// -*- swift -*-
// RUN: %target-run-simple-swift
// REQUIRES: executable_test
import StdlibUnittest
import StdlibCollectionUnittest
import SwiftPrivate
var Algorithm = TestSuite("Algorithm")
// FIXME(prext): remove this conformance.
extension String.UnicodeScalarView : Equatable {}
// FIXME(prext): remove this function.
public func == (
lhs: String.UnicodeScalarView, rhs: String.UnicodeScalarView) -> Bool {
return Array(lhs) == Array(rhs)
}
// FIXME(prext): move this struct to the point of use.
Algorithm.test("min,max") {
// Identities are unique in this set.
let a1 = MinimalComparableValue(0, identity: 1)
let a2 = MinimalComparableValue(0, identity: 2)
let a3 = MinimalComparableValue(0, identity: 3)
let b1 = MinimalComparableValue(1, identity: 4)
let b2 = MinimalComparableValue(1, identity: 5)
_ = MinimalComparableValue(1, identity: 6)
let c1 = MinimalComparableValue(2, identity: 7)
let c2 = MinimalComparableValue(2, identity: 8)
let c3 = MinimalComparableValue(2, identity: 9)
// 2-arg min()
expectEqual(a1.identity, min(a1, b1).identity)
expectEqual(a1.identity, min(b1, a1).identity)
expectEqual(a1.identity, min(a1, a2).identity)
// 2-arg max()
expectEqual(c1.identity, max(c1, b1).identity)
expectEqual(c1.identity, max(b1, c1).identity)
expectEqual(c1.identity, max(c2, c1).identity)
// 3-arg min()
expectEqual(a1.identity, min(a1, b1, c1).identity)
expectEqual(a1.identity, min(b1, a1, c1).identity)
expectEqual(a1.identity, min(c1, b1, a1).identity)
expectEqual(a1.identity, min(c1, a1, b1).identity)
expectEqual(a1.identity, min(a1, a2, a3).identity)
expectEqual(a1.identity, min(a1, a2, b1).identity)
expectEqual(a1.identity, min(a1, b1, a2).identity)
expectEqual(a1.identity, min(b1, a1, a2).identity)
// 3-arg max()
expectEqual(c1.identity, max(c1, b1, a1).identity)
expectEqual(c1.identity, max(a1, c1, b1).identity)
expectEqual(c1.identity, max(b1, a1, c1).identity)
expectEqual(c1.identity, max(b1, c1, a1).identity)
expectEqual(c1.identity, max(c3, c2, c1).identity)
expectEqual(c1.identity, max(c2, c1, b1).identity)
expectEqual(c1.identity, max(c2, b1, c1).identity)
expectEqual(c1.identity, max(b1, c2, c1).identity)
// 4-arg min()
expectEqual(a1.identity, min(a1, b1, a2, b2).identity)
expectEqual(a1.identity, min(b1, a1, a2, b2).identity)
expectEqual(a1.identity, min(c1, b1, b2, a1).identity)
expectEqual(a1.identity, min(c1, b1, a1, a2).identity)
// 4-arg max()
expectEqual(c1.identity, max(c2, b1, c1, b2).identity)
expectEqual(c1.identity, max(b1, c2, c1, b2).identity)
expectEqual(c1.identity, max(a1, b1, b2, c1).identity)
expectEqual(c1.identity, max(a1, b1, c2, c1).identity)
}
Algorithm.test("sorted/strings") {
expectEqual(
["Banana", "apple", "cherry"],
["apple", "Banana", "cherry"].sorted())
let s = ["apple", "Banana", "cherry"].sorted() {
$0.count > $1.count
}
expectEqual(["Banana", "cherry", "apple"], s)
}
// A wrapper around Array<T> that disables any type-specific algorithm
// optimizations and forces bounds checking on.
struct A<T> : MutableCollection, RandomAccessCollection {
typealias Indices = CountableRange<Int>
init(_ a: Array<T>) {
impl = a
}
var startIndex: Int {
return 0
}
var endIndex: Int {
return impl.count
}
func makeIterator() -> Array<T>.Iterator {
return impl.makeIterator()
}
subscript(i: Int) -> T {
get {
expectTrue(i >= 0 && i < impl.count)
return impl[i]
}
set (x) {
expectTrue(i >= 0 && i < impl.count)
impl[i] = x
}
}
subscript(r: Range<Int>) -> Array<T>.SubSequence {
get {
expectTrue(r.lowerBound >= 0 && r.lowerBound <= impl.count)
expectTrue(r.upperBound >= 0 && r.upperBound <= impl.count)
return impl[r]
}
set (x) {
expectTrue(r.lowerBound >= 0 && r.lowerBound <= impl.count)
expectTrue(r.upperBound >= 0 && r.upperBound <= impl.count)
impl[r] = x
}
}
var impl: Array<T>
}
func randomArray() -> A<Int> {
let count = Int.random(in: 0 ..< 50)
let array = (0 ..< count).map { _ in Int.random(in: .min ... .max) }
return A(array)
}
Algorithm.test("invalidOrderings") {
withInvalidOrderings {
let a = randomArray()
_blackHole(a.sorted(by: $0))
}
withInvalidOrderings {
var a: A<Int>
a = randomArray()
let lt = $0
let first = a.first
_ = a.partition(by: { !lt($0, first!) })
}
/*
// FIXME: Disabled due to <rdar://problem/17734737> Unimplemented:
// abstraction difference in l-value
withInvalidOrderings {
var a = randomArray()
var pred = $0
_insertionSort(&a, a.indices, &pred)
}
*/
}
// The routine is based on http://www.cs.dartmouth.edu/~doug/mdmspe.pdf
func makeQSortKiller(_ len: Int) -> [Int] {
var candidate: Int = 0
var keys = [Int: Int]()
func Compare(_ x: Int, y : Int) -> Bool {
if keys[x] == nil && keys[y] == nil {
if (x == candidate) {
keys[x] = keys.count
} else {
keys[y] = keys.count
}
}
if keys[x] == nil {
candidate = x
return true
}
if keys[y] == nil {
candidate = y
return false
}
return keys[x]! > keys[y]!
}
var ary = [Int](repeating: 0, count: len)
var ret = [Int](repeating: 0, count: len)
for i in 0..<len { ary[i] = i }
ary = ary.sorted(by: Compare)
for i in 0..<len {
ret[ary[i]] = i
}
return ret
}
Algorithm.test("sorted/complexity") {
var ary: [Int] = []
// Check performance of sorting an array of repeating values.
var comparisons_100 = 0
ary = [Int](repeating: 0, count: 100)
ary.sort { comparisons_100 += 1; return $0 < $1 }
var comparisons_1000 = 0
ary = [Int](repeating: 0, count: 1000)
ary.sort { comparisons_1000 += 1; return $0 < $1 }
expectTrue(comparisons_1000/comparisons_100 < 20)
// Try to construct 'bad' case for quicksort, on which the algorithm
// goes quadratic.
comparisons_100 = 0
ary = makeQSortKiller(100)
ary.sort { comparisons_100 += 1; return $0 < $1 }
comparisons_1000 = 0
ary = makeQSortKiller(1000)
ary.sort { comparisons_1000 += 1; return $0 < $1 }
expectTrue(comparisons_1000/comparisons_100 < 20)
}
Algorithm.test("sorted/return type") {
let _: Array = ([5, 4, 3, 2, 1] as ArraySlice).sorted()
}
runAllTests()
|