1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// RUN: %target-typecheck-verify-swift
/// The function composition operator is the only user-defined operator that
/// operates on functions. That's why the exact precedence does not matter
/// right now.
infix operator ∘ : CompositionPrecedence
// The character is U+2218 RING OPERATOR.
//
// Confusables:
//
// U+00B0 DEGREE SIGN
// U+02DA RING ABOVE
// U+25CB WHITE CIRCLE
// U+25E6 WHITE BULLET
precedencegroup CompositionPrecedence {
associativity: left
higherThan: TernaryPrecedence
}
/// Compose functions.
///
/// (g ∘ f)(x) == g(f(x))
///
/// - Returns: a function that applies ``g`` to the result of applying ``f``
/// to the argument of the new function.
public func ∘<T, U, V>(g: @escaping (U) -> V, f: @escaping (T) -> U) -> ((T) -> V) {
return { g(f($0)) }
}
infix operator ∖ : AdditionPrecedence
infix operator ∖= : AssignmentPrecedence
infix operator ∪ : AdditionPrecedence
infix operator ∪= : AssignmentPrecedence
infix operator ∩ : MultiplicationPrecedence
infix operator ∩= : AssignmentPrecedence
infix operator ⨁ : AdditionPrecedence
infix operator ⨁= : AssignmentPrecedence
infix operator ∈ : ComparisonPrecedence
infix operator ∉ : ComparisonPrecedence
infix operator ⊂ : ComparisonPrecedence
infix operator ⊄ : ComparisonPrecedence
infix operator ⊆ : ComparisonPrecedence
infix operator ⊈ : ComparisonPrecedence
infix operator ⊃ : ComparisonPrecedence
infix operator ⊅ : ComparisonPrecedence
infix operator ⊇ : ComparisonPrecedence
infix operator ⊉ : ComparisonPrecedence
/// - Returns: The relative complement of `lhs` with respect to `rhs`.
public func ∖ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Set<T>
where S.Iterator.Element == T {
return lhs.subtracting(rhs)
}
/// Assigns the relative complement between `lhs` and `rhs` to `lhs`.
public func ∖= <T, S: Sequence>(lhs: inout Set<T>, rhs: S)
where S.Iterator.Element == T {
lhs.subtract(rhs)
}
/// - Returns: The union of `lhs` and `rhs`.
public func ∪ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Set<T>
where S.Iterator.Element == T {
return lhs.union(rhs)
}
/// Assigns the union of `lhs` and `rhs` to `lhs`.
public func ∪= <T, S: Sequence>(lhs: inout Set<T>, rhs: S)
where S.Iterator.Element == T {
lhs.formUnion(rhs)
}
/// - Returns: The intersection of `lhs` and `rhs`.
public func ∩ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Set<T>
where S.Iterator.Element == T {
return lhs.intersection(rhs)
}
/// Assigns the intersection of `lhs` and `rhs` to `lhs`.
public func ∩= <T, S: Sequence>(lhs: inout Set<T>, rhs: S)
where S.Iterator.Element == T {
lhs.formIntersection(rhs)
}
/// - Returns: A set with elements in `lhs` or `rhs` but not in both.
public func ⨁ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Set<T>
where S.Iterator.Element == T {
return lhs.symmetricDifference(rhs)
}
/// Assigns to `lhs` the set with elements in `lhs` or `rhs` but not in both.
public func ⨁= <T, S: Sequence>(lhs: inout Set<T>, rhs: S)
where S.Iterator.Element == T {
lhs.formSymmetricDifference(rhs)
}
/// - Returns: True if `x` is in the set.
public func ∈ <T>(x: T, rhs: Set<T>) -> Bool {
return rhs.contains(x)
}
/// - Returns: True if `x` is not in the set.
public func ∉ <T>(x: T, rhs: Set<T>) -> Bool {
return !rhs.contains(x)
}
/// - Returns: True if `lhs` is a strict subset of `rhs`.
public func ⊂ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return lhs.isStrictSubset(of: rhs)
}
/// - Returns: True if `lhs` is not a strict subset of `rhs`.
public func ⊄ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return !lhs.isStrictSubset(of: rhs)
}
/// - Returns: True if `lhs` is a subset of `rhs`.
public func ⊆ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return lhs.isSubset(of: rhs)
}
/// - Returns: True if `lhs` is not a subset of `rhs`.
public func ⊈ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return !lhs.isSubset(of: rhs)
}
/// - Returns: True if `lhs` is a strict superset of `rhs`.
public func ⊃ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return lhs.isStrictSuperset(of: rhs)
}
/// - Returns: True if `lhs` is not a strict superset of `rhs`.
public func ⊅ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return !lhs.isStrictSuperset(of: rhs)
}
/// - Returns: True if `lhs` is a superset of `rhs`.
public func ⊇ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return lhs.isSuperset(of: rhs)
}
/// - Returns: True if `lhs` is not a superset of `rhs`.
public func ⊉ <T, S: Sequence>(lhs: Set<T>, rhs: S) -> Bool
where S.Iterator.Element == T {
return !lhs.isSuperset(of: rhs)
}
|