| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 
 | //===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Double Precision square root
#define EXP r28
#define A r1:0
#define AH r1
#define AL r0
#define SFSH r3:2
#define SF_S r3
#define SF_H r2
#define SFHALF_SONE r5:4
#define S_ONE r4
#define SFHALF r5
#define SF_D r6
#define SF_E r7
#define RECIPEST r8
#define SFRAD r9
#define FRACRAD r11:10
#define FRACRADH r11
#define FRACRADL r10
#define ROOT r13:12
#define ROOTHI r13
#define ROOTLO r12
#define PROD r15:14
#define PRODHI r15
#define PRODLO r14
#define P_TMP p0
#define P_EXP1 p1
#define NORMAL p2
#define SF_EXPBITS 8
#define SF_MANTBITS 23
#define DF_EXPBITS 11
#define DF_MANTBITS 52
#define DF_BIAS 0x3ff
#define DFCLASS_ZERO     0x01
#define DFCLASS_NORMAL   0x02
#define DFCLASS_DENORMAL 0x02
#define DFCLASS_INFINITE 0x08
#define DFCLASS_NAN      0x10
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG; .type __qdsp_##TAG,@function
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG; .type __hexagon_fast_##TAG,@function
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG; .type __hexagon_fast2_##TAG,@function
#define END(TAG) .size TAG,.-TAG
	.text
	.global __hexagon_sqrtdf2
	.type __hexagon_sqrtdf2,@function
	.global __hexagon_sqrt
	.type __hexagon_sqrt,@function
	Q6_ALIAS(sqrtdf2)
	Q6_ALIAS(sqrt)
	FAST_ALIAS(sqrtdf2)
	FAST_ALIAS(sqrt)
	FAST2_ALIAS(sqrtdf2)
	FAST2_ALIAS(sqrt)
	.type sqrt,@function
	.p2align 5
__hexagon_sqrtdf2:
__hexagon_sqrt:
	{
		PROD = extractu(A,#SF_MANTBITS+1,#DF_MANTBITS-SF_MANTBITS)
		EXP = extractu(AH,#DF_EXPBITS,#DF_MANTBITS-32)
		SFHALF_SONE = combine(##0x3f000004,#1)
	}
	{
		NORMAL = dfclass(A,#DFCLASS_NORMAL)		// Is it normal
		NORMAL = cmp.gt(AH,#-1)				// and positive?
		if (!NORMAL.new) jump:nt .Lsqrt_abnormal
		SFRAD = or(SFHALF,PRODLO)
	}
#undef NORMAL
.Ldenormal_restart:
	{
		FRACRAD = A
		SF_E,P_TMP = sfinvsqrta(SFRAD)
		SFHALF = and(SFHALF,#-16)
		SFSH = #0
	}
#undef A
#undef AH
#undef AL
#define ERROR r1:0
#define ERRORHI r1
#define ERRORLO r0
	// SF_E : reciprocal square root
	// SF_H : half rsqrt
	// sf_S : square root
	// SF_D : error term
	// SFHALF: 0.5
	{
		SF_S += sfmpy(SF_E,SFRAD):lib		// s0: root
		SF_H += sfmpy(SF_E,SFHALF):lib		// h0: 0.5*y0. Could also decrement exponent...
		SF_D = SFHALF
#undef SFRAD
#define SHIFTAMT r9
		SHIFTAMT = and(EXP,#1)
	}
	{
		SF_D -= sfmpy(SF_S,SF_H):lib		// d0: 0.5-H*S = 0.5-0.5*~1
		FRACRADH = insert(S_ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)	// replace upper bits with hidden
		P_EXP1 = cmp.gtu(SHIFTAMT,#0)
	}
	{
		SF_S += sfmpy(SF_S,SF_D):lib		// s1: refine sqrt
		SF_H += sfmpy(SF_H,SF_D):lib		// h1: refine half-recip
		SF_D = SFHALF
		SHIFTAMT = mux(P_EXP1,#8,#9)
	}
	{
		SF_D -= sfmpy(SF_S,SF_H):lib		// d1: error term
		FRACRAD = asl(FRACRAD,SHIFTAMT)		// Move fracrad bits to right place
		SHIFTAMT = mux(P_EXP1,#3,#2)
	}
	{
		SF_H += sfmpy(SF_H,SF_D):lib		// d2: rsqrt
		// cool trick: half of 1/sqrt(x) has same mantissa as 1/sqrt(x).
		PROD = asl(FRACRAD,SHIFTAMT)		// fracrad<<(2+exp1)
	}
	{
		SF_H = and(SF_H,##0x007fffff)
	}
	{
		SF_H = add(SF_H,##0x00800000 - 3)
		SHIFTAMT = mux(P_EXP1,#7,#8)
	}
	{
		RECIPEST = asl(SF_H,SHIFTAMT)
		SHIFTAMT = mux(P_EXP1,#15-(1+1),#15-(1+0))
	}
	{
		ROOT = mpyu(RECIPEST,PRODHI)		// root = mpyu_full(recipest,hi(fracrad<<(2+exp1)))
	}
#undef SFSH	// r3:2
#undef SF_H	// r2
#undef SF_S	// r3
#undef S_ONE	// r4
#undef SFHALF	// r5
#undef SFHALF_SONE	// r5:4
#undef SF_D	// r6
#undef SF_E	// r7
#define HL r3:2
#define LL r5:4
#define HH r7:6
#undef P_EXP1
#define P_CARRY0 p1
#define P_CARRY1 p2
#define P_CARRY2 p3
	// Iteration 0
	// Maybe we can save a cycle by starting with ERROR=asl(fracrad), then as we multiply
	// We can shift and subtract instead of shift and add?
	{
		ERROR = asl(FRACRAD,#15)
		PROD = mpyu(ROOTHI,ROOTHI)
		P_CARRY0 = cmp.eq(r0,r0)
	}
	{
		ERROR -= asl(PROD,#15)
		PROD = mpyu(ROOTHI,ROOTLO)
		P_CARRY1 = cmp.eq(r0,r0)
	}
	{
		ERROR -= lsr(PROD,#16)
		P_CARRY2 = cmp.eq(r0,r0)
	}
	{
		ERROR = mpyu(ERRORHI,RECIPEST)
	}
	{
		ROOT += lsr(ERROR,SHIFTAMT)
		SHIFTAMT = add(SHIFTAMT,#16)
		ERROR = asl(FRACRAD,#31)		// for next iter
	}
	// Iteration 1
	{
		PROD = mpyu(ROOTHI,ROOTHI)
		ERROR -= mpyu(ROOTHI,ROOTLO)	// amount is 31, no shift needed
	}
	{
		ERROR -= asl(PROD,#31)
		PROD = mpyu(ROOTLO,ROOTLO)
	}
	{
		ERROR -= lsr(PROD,#33)
	}
	{
		ERROR = mpyu(ERRORHI,RECIPEST)
	}
	{
		ROOT += lsr(ERROR,SHIFTAMT)
		SHIFTAMT = add(SHIFTAMT,#16)
		ERROR = asl(FRACRAD,#47)	// for next iter
	}
	// Iteration 2
	{
		PROD = mpyu(ROOTHI,ROOTHI)
	}
	{
		ERROR -= asl(PROD,#47)
		PROD = mpyu(ROOTHI,ROOTLO)
	}
	{
		ERROR -= asl(PROD,#16)		// bidir shr 31-47
		PROD = mpyu(ROOTLO,ROOTLO)
	}
	{
		ERROR -= lsr(PROD,#17)		// 64-47
	}
	{
		ERROR = mpyu(ERRORHI,RECIPEST)
	}
	{
		ROOT += lsr(ERROR,SHIFTAMT)
	}
#undef ERROR
#undef PROD
#undef PRODHI
#undef PRODLO
#define REM_HI r15:14
#define REM_HI_HI r15
#define REM_LO r1:0
#undef RECIPEST
#undef SHIFTAMT
#define TWOROOT_LO r9:8
	// Adjust Root
	{
		HL = mpyu(ROOTHI,ROOTLO)
		LL = mpyu(ROOTLO,ROOTLO)
		REM_HI = #0
		REM_LO = #0
	}
	{
		HL += lsr(LL,#33)
		LL += asl(HL,#33)
		P_CARRY0 = cmp.eq(r0,r0)
	}
	{
		HH = mpyu(ROOTHI,ROOTHI)
		REM_LO = sub(REM_LO,LL,P_CARRY0):carry
		TWOROOT_LO = #1
	}
	{
		HH += lsr(HL,#31)
		TWOROOT_LO += asl(ROOT,#1)
	}
#undef HL
#undef LL
#define REM_HI_TMP r3:2
#define REM_HI_TMP_HI r3
#define REM_LO_TMP r5:4
	{
		REM_HI = sub(FRACRAD,HH,P_CARRY0):carry
		REM_LO_TMP = sub(REM_LO,TWOROOT_LO,P_CARRY1):carry
#undef FRACRAD
#undef HH
#define ZERO r11:10
#define ONE r7:6
		ONE = #1
		ZERO = #0
	}
	{
		REM_HI_TMP = sub(REM_HI,ZERO,P_CARRY1):carry
		ONE = add(ROOT,ONE)
		EXP = add(EXP,#-DF_BIAS)			// subtract bias --> signed exp
	}
	{
				// If carry set, no borrow: result was still positive
		if (P_CARRY1) ROOT = ONE
		if (P_CARRY1) REM_LO = REM_LO_TMP
		if (P_CARRY1) REM_HI = REM_HI_TMP
	}
	{
		REM_LO_TMP = sub(REM_LO,TWOROOT_LO,P_CARRY2):carry
		ONE = #1
		EXP = asr(EXP,#1)				// divide signed exp by 2
	}
	{
		REM_HI_TMP = sub(REM_HI,ZERO,P_CARRY2):carry
		ONE = add(ROOT,ONE)
	}
	{
		if (P_CARRY2) ROOT = ONE
		if (P_CARRY2) REM_LO = REM_LO_TMP
								// since tworoot <= 2^32, remhi must be zero
#undef REM_HI_TMP
#undef REM_HI_TMP_HI
#define S_ONE r2
#define ADJ r3
		S_ONE = #1
	}
	{
		P_TMP = cmp.eq(REM_LO,ZERO)			// is the low part zero
		if (!P_TMP.new) ROOTLO = or(ROOTLO,S_ONE)	// if so, it's exact... hopefully
		ADJ = cl0(ROOT)
		EXP = add(EXP,#-63)
	}
#undef REM_LO
#define RET r1:0
#define RETHI r1
	{
		RET = convert_ud2df(ROOT)			// set up mantissa, maybe set inexact flag
		EXP = add(EXP,ADJ)				// add back bias
	}
	{
		RETHI += asl(EXP,#DF_MANTBITS-32)		// add exponent adjust
		jumpr r31
	}
#undef REM_LO_TMP
#undef REM_HI_TMP
#undef REM_HI_TMP_HI
#undef REM_LO
#undef REM_HI
#undef TWOROOT_LO
#undef RET
#define A r1:0
#define AH r1
#define AL r1
#undef S_ONE
#define TMP r3:2
#define TMPHI r3
#define TMPLO r2
#undef P_CARRY0
#define P_NEG p1
#define SFHALF r5
#define SFRAD r9
.Lsqrt_abnormal:
	{
		P_TMP = dfclass(A,#DFCLASS_ZERO)			// zero?
		if (P_TMP.new) jumpr:t r31
	}
	{
		P_TMP = dfclass(A,#DFCLASS_NAN)
		if (P_TMP.new) jump:nt .Lsqrt_nan
	}
	{
		P_TMP = cmp.gt(AH,#-1)
		if (!P_TMP.new) jump:nt .Lsqrt_invalid_neg
		if (!P_TMP.new) EXP = ##0x7F800001			// sNaN
	}
	{
		P_TMP = dfclass(A,#DFCLASS_INFINITE)
		if (P_TMP.new) jumpr:nt r31
	}
	// If we got here, we're denormal
	// prepare to restart
	{
		A = extractu(A,#DF_MANTBITS,#0)		// Extract mantissa
	}
	{
		EXP = add(clb(A),#-DF_EXPBITS)		// how much to normalize?
	}
	{
		A = asl(A,EXP)				// Shift mantissa
		EXP = sub(#1,EXP)			// Form exponent
	}
	{
		AH = insert(EXP,#1,#DF_MANTBITS-32)		// insert lsb of exponent
	}
	{
		TMP = extractu(A,#SF_MANTBITS+1,#DF_MANTBITS-SF_MANTBITS)	// get sf value (mant+exp1)
		SFHALF = ##0x3f000004						// form half constant
	}
	{
		SFRAD = or(SFHALF,TMPLO)			// form sf value
		SFHALF = and(SFHALF,#-16)
		jump .Ldenormal_restart				// restart
	}
.Lsqrt_nan:
	{
		EXP = convert_df2sf(A)				// if sNaN, get invalid
		A = #-1						// qNaN
		jumpr r31
	}
.Lsqrt_invalid_neg:
	{
		A = convert_sf2df(EXP)				// Invalid,NaNval
		jumpr r31
	}
END(__hexagon_sqrt)
END(__hexagon_sqrtdf2)
 |