File: EventLoopFuture%2BAssumeIsolated.swift

package info (click to toggle)
swiftlang 6.1.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,532 kB
  • sloc: cpp: 9,901,743; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (528 lines) | stat: -rw-r--r-- 23,396 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2024 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//

/// A struct wrapping an ``EventLoop`` that ensures all calls to any method on this struct
/// are coming from the event loop.
@usableFromInline
struct IsolatedEventLoop {
    @usableFromInline
    let _wrapped: EventLoop

    @inlinable
    internal init(_ eventLoop: EventLoop) {
        self._wrapped = eventLoop
    }

    /// Submit a given task to be executed by the `EventLoop`
    @inlinable
    func execute(_ task: @escaping () -> Void) {
        self._wrapped.assertInEventLoop()
        let unsafeTransfer = UnsafeTransfer(task)
        self._wrapped.execute {
            unsafeTransfer.wrappedValue()
        }
    }

    /// Submit a given task to be executed by the `EventLoop`. Once the execution is complete the returned `EventLoopFuture` is notified.
    ///
    /// - parameters:
    ///     - task: The closure that will be submitted to the `EventLoop` for execution.
    /// - returns: `EventLoopFuture` that is notified once the task was executed.
    @inlinable
    func submit<T>(_ task: @escaping () throws -> T) -> EventLoopFuture<T> {
        self._wrapped.assertInEventLoop()
        let unsafeTransfer = UnsafeTransfer(task)
        return self._wrapped.submit {
            try unsafeTransfer.wrappedValue()
        }
    }

    /// Schedule a `task` that is executed by this `EventLoop` at the given time.
    ///
    /// - parameters:
    ///     - task: The synchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
    /// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
    ///            on the completion of the task.
    ///
    /// - note: You can only cancel a task before it has started executing.
    @discardableResult
    @inlinable
    func scheduleTask<T>(
        deadline: NIODeadline,
        _ task: @escaping () throws -> T
    ) -> Scheduled<T> {
        self._wrapped.assertInEventLoop()
        let unsafeTransfer = UnsafeTransfer(task)
        return self._wrapped.scheduleTask(deadline: deadline) {
            try unsafeTransfer.wrappedValue()
        }
    }

    /// Schedule a `task` that is executed by this `EventLoop` after the given amount of time.
    ///
    /// - parameters:
    ///     - task: The synchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
    /// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
    ///            on the completion of the task.
    ///
    /// - note: You can only cancel a task before it has started executing.
    /// - note: The `in` value is clamped to a maximum when running on a Darwin-kernel.
    @discardableResult
    @inlinable
    func scheduleTask<T>(
        in delay: TimeAmount,
        _ task: @escaping () throws -> T
    ) -> Scheduled<T> {
        self._wrapped.assertInEventLoop()
        let unsafeTransfer = UnsafeTransfer(task)
        return self._wrapped.scheduleTask(in: delay) {
            try unsafeTransfer.wrappedValue()
        }
    }

    /// Schedule a `task` that is executed by this `EventLoop` at the given time.
    ///
    /// - Note: The `T` must be `Sendable` since the isolation domains of the event loop future returned from `task` and
    /// this event loop might differ.
    ///
    /// - parameters:
    ///     - task: The asynchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
    /// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
    ///            on the full execution of the task, including its returned `EventLoopFuture`.
    ///
    /// - note: You can only cancel a task before it has started executing.
    @discardableResult
    @inlinable
    func flatScheduleTask<T: Sendable>(
        deadline: NIODeadline,
        file: StaticString = #file,
        line: UInt = #line,
        _ task: @escaping () throws -> EventLoopFuture<T>
    ) -> Scheduled<T> {
        self._wrapped.assertInEventLoop()
        let unsafeTransfer = UnsafeTransfer(task)
        return self._wrapped.flatScheduleTask(deadline: deadline, file: file, line: line) {
            try unsafeTransfer.wrappedValue()
        }
    }

    /// Returns the wrapped event loop.
    @inlinable
    func nonisolated() -> any EventLoop {
        return self._wrapped
    }
}
extension EventLoop {
    /// Assumes the calling context is isolated to the event loop.
    @usableFromInline
    func assumeIsolated() -> IsolatedEventLoop {
        IsolatedEventLoop(self)
    }
}

extension EventLoopFuture {
    /// A struct wrapping an ``EventLoopFuture`` that ensures all calls to any method on this struct
    /// are coming from the event loop of the future.
    @usableFromInline
    struct Isolated {
        @usableFromInline
        let _wrapped: EventLoopFuture<Value>

        /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback,
        /// which will provide a new `EventLoopFuture`.
        ///
        /// This allows you to dynamically dispatch new asynchronous tasks as phases in a
        /// longer series of processing steps. Note that you can use the results of the
        /// current `EventLoopFuture<Value>` when determining how to dispatch the next operation.
        ///
        /// This works well when you have APIs that already know how to return `EventLoopFuture`s.
        /// You can do something with the result of one and just return the next future:
        ///
        /// ```
        /// let d1 = networkRequest(args).future()
        /// let d2 = d1.flatMap { t -> EventLoopFuture<NewValue> in
        ///     . . . something with t . . .
        ///     return netWorkRequest(args)
        /// }
        /// d2.whenSuccess { u in
        ///     NSLog("Result of second request: \(u)")
        /// }
        /// ```
        ///
        /// Note: In a sense, the `EventLoopFuture<NewValue>` is returned before it's created.
        ///
        /// - parameters:
        ///     - callback: Function that will receive the value of this `EventLoopFuture` and return
        ///         a new `EventLoopFuture`.
        /// - returns: A future that will receive the eventual value.
        @inlinable
        func flatMap<NewValue: Sendable>(
            _ callback: @escaping (Value) -> EventLoopFuture<NewValue>
        ) -> EventLoopFuture<NewValue>.Isolated {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.flatMap {
                unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
        /// performs a synchronous computation and returns a new value of type `NewValue`. The provided
        /// callback may optionally `throw`.
        ///
        /// Operations performed in `flatMapThrowing` should not block, or they will block the entire
        /// event loop. `flatMapThrowing` is intended for use when you have a data-driven function that
        /// performs a simple data transformation that can potentially error.
        ///
        /// If your callback function throws, the returned `EventLoopFuture` will error.
        ///
        /// - parameters:
        ///     - callback: Function that will receive the value of this `EventLoopFuture` and return
        ///         a new value lifted into a new `EventLoopFuture`.
        /// - returns: A future that will receive the eventual value.
        @inlinable
        func flatMapThrowing<NewValue>(
            _ callback: @escaping (Value) throws -> NewValue
        ) -> EventLoopFuture<NewValue>.Isolated {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.flatMapThrowing {
                try unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
        /// may recover from the error and returns a new value of type `Value`. The provided callback may optionally `throw`,
        /// in which case the `EventLoopFuture` will be in a failed state with the new thrown error.
        ///
        /// Operations performed in `flatMapErrorThrowing` should not block, or they will block the entire
        /// event loop. `flatMapErrorThrowing` is intended for use when you have the ability to synchronously
        /// recover from errors.
        ///
        /// If your callback function throws, the returned `EventLoopFuture` will error.
        ///
        /// - parameters:
        ///     - callback: Function that will receive the error value of this `EventLoopFuture` and return
        ///         a new value lifted into a new `EventLoopFuture`.
        /// - returns: A future that will receive the eventual value or a rethrown error.
        @inlinable
        func flatMapErrorThrowing(
            _ callback: @escaping (Error) throws -> Value
        ) -> EventLoopFuture<Value>.Isolated {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.flatMapErrorThrowing {
                try unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
        /// performs a synchronous computation and returns a new value of type `NewValue`.
        ///
        /// Operations performed in `map` should not block, or they will block the entire event
        /// loop. `map` is intended for use when you have a data-driven function that performs
        /// a simple data transformation that cannot error.
        ///
        /// If you have a data-driven function that can throw, you should use `flatMapThrowing`
        /// instead.
        ///
        /// ```
        /// let future1 = eventually()
        /// let future2 = future1.map { T -> U in
        ///     ... stuff ...
        ///     return u
        /// }
        /// let future3 = future2.map { U -> V in
        ///     ... stuff ...
        ///     return v
        /// }
        /// ```
        ///
        /// - parameters:
        ///     - callback: Function that will receive the value of this `EventLoopFuture` and return
        ///         a new value lifted into a new `EventLoopFuture`.
        /// - returns: A future that will receive the eventual value.
        @inlinable
        func map<NewValue>(
            _ callback: @escaping (Value) -> (NewValue)
        ) -> EventLoopFuture<NewValue>.Isolated {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.map {
                unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
        /// may recover from the error by returning an `EventLoopFuture<NewValue>`. The callback is intended to potentially
        /// recover from the error by returning a new `EventLoopFuture` that will eventually contain the recovered
        /// result.
        ///
        /// If the callback cannot recover it should return a failed `EventLoopFuture`.
        ///
        /// - Note: The `Value` must be `Sendable` since the isolation domains of this future and the future returned from the callback
        /// might differ i.e. they might be bound to different event loops.
        ///
        /// - parameters:
        ///     - callback: Function that will receive the error value of this `EventLoopFuture` and return
        ///         a new value lifted into a new `EventLoopFuture`.
        /// - returns: A future that will receive the recovered value.
        @inlinable
        func flatMapError(
            _ callback: @escaping (Error) -> EventLoopFuture<Value>
        ) -> EventLoopFuture<Value>.Isolated where Value: Sendable {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.flatMapError {
                unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
        /// performs a synchronous computation and returns either a new value (of type `NewValue`) or
        /// an error depending on the `Result` returned by the closure.
        ///
        /// Operations performed in `flatMapResult` should not block, or they will block the entire
        /// event loop. `flatMapResult` is intended for use when you have a data-driven function that
        /// performs a simple data transformation that can potentially error.
        ///
        ///
        /// - parameters:
        ///     - body: Function that will receive the value of this `EventLoopFuture` and return
        ///         a new value or error lifted into a new `EventLoopFuture`.
        /// - returns: A future that will receive the eventual value.
        @inlinable
        func flatMapResult<NewValue, SomeError: Error>(
            _ body: @escaping (Value) -> Result<NewValue, SomeError>
        ) -> EventLoopFuture<NewValue>.Isolated {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(body)
            return self._wrapped.flatMapResult {
                unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
        /// can recover from the error and return a new value of type `Value`. The provided callback may not `throw`,
        /// so this function should be used when the error is always recoverable.
        ///
        /// Operations performed in `recover` should not block, or they will block the entire
        /// event loop. `recover` is intended for use when you have the ability to synchronously
        /// recover from errors.
        ///
        /// - parameters:
        ///     - callback: Function that will receive the error value of this `EventLoopFuture` and return
        ///         a new value lifted into a new `EventLoopFuture`.
        /// - returns: A future that will receive the recovered value.
        @inlinable
        func recover(
            _ callback: @escaping (Error) -> Value
        ) -> EventLoopFuture<Value>.Isolated {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.recover {
                unsafeTransfer.wrappedValue($0)
            }.assumeIsolated()
        }

        /// Adds an observer callback to this `EventLoopFuture` that is called when the
        /// `EventLoopFuture` has a success result.
        ///
        /// An observer callback cannot return a value, meaning that this function cannot be chained
        /// from. If you are attempting to create a computation pipeline, consider `map` or `flatMap`.
        /// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
        /// in the body of this function, consider using `cascade` instead.
        ///
        /// - parameters:
        ///     - callback: The callback that is called with the successful result of the `EventLoopFuture`.
        @inlinable
        func whenSuccess(_ callback: @escaping (Value) -> Void) {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.whenSuccess {
                unsafeTransfer.wrappedValue($0)
            }
        }

        /// Adds an observer callback to this `EventLoopFuture` that is called when the
        /// `EventLoopFuture` has a failure result.
        ///
        /// An observer callback cannot return a value, meaning that this function cannot be chained
        /// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
        /// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
        /// in the body of this function, consider using `cascade` instead.
        ///
        /// - parameters:
        ///     - callback: The callback that is called with the failed result of the `EventLoopFuture`.
        @inlinable
        func whenFailure(_ callback: @escaping (Error) -> Void) {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.whenFailure {
                unsafeTransfer.wrappedValue($0)
            }
        }

        /// Adds an observer callback to this `EventLoopFuture` that is called when the
        /// `EventLoopFuture` has any result.
        ///
        /// - parameters:
        ///     - callback: The callback that is called when the `EventLoopFuture` is fulfilled.
        @inlinable
        func whenComplete(
            _ callback: @escaping (Result<Value, Error>) -> Void
        ) {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.whenComplete {
                unsafeTransfer.wrappedValue($0)
            }
        }

        /// Adds an observer callback to this `EventLoopFuture` that is called when the
        /// `EventLoopFuture` has any result.
        ///
        /// - parameters:
        ///     - callback: the callback that is called when the `EventLoopFuture` is fulfilled.
        /// - returns: the current `EventLoopFuture`
        @inlinable
        func always(
            _ callback: @escaping (Result<Value, Error>) -> Void
        ) -> EventLoopFuture<Value> {
            self._wrapped.eventLoop.assertInEventLoop()
            let unsafeTransfer = UnsafeTransfer(callback)
            return self._wrapped.always {
                unsafeTransfer.wrappedValue($0)
            }
        }

        /// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
        ///
        /// Unwraps a future returning a new `EventLoopFuture` with either: the value passed in the `orReplace`
        /// parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
        /// ```
        /// promise.futureResult.unwrap(orReplace: 42).wait()
        /// ```
        ///
        /// - parameters:
        ///     - orReplace: the value of the returned `EventLoopFuture` when then resolved future's value is `Optional.some()`.
        /// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and the value passed in the `orReplace` parameter.
        @inlinable
        func unwrap<NewValue>(
            orReplace replacement: NewValue
        ) -> EventLoopFuture<NewValue>.Isolated where Value == Optional<NewValue> {
            return self.map { (value) -> NewValue in
                guard let value = value else {
                    return replacement
                }
                return value
            }
        }

        /// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
        ///
        /// Unwraps a future returning a new `EventLoopFuture` with either: the value returned by the closure passed in
        /// the `orElse` parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
        /// ```
        /// var x = 2
        /// promise.futureResult.unwrap(orElse: { x * 2 }).wait()
        /// ```
        ///
        /// - parameters:
        ///     - orElse: a closure that returns the value of the returned `EventLoopFuture` when then resolved future's value
        ///         is `Optional.some()`.
        /// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and with the value returned by the closure
        ///     passed in the `orElse` parameter.
        @inlinable
        func unwrap<NewValue>(
            orElse callback: @escaping () -> NewValue
        ) -> EventLoopFuture<NewValue>.Isolated where Value == Optional<NewValue> {
            return self.map { (value) -> NewValue in
                guard let value = value else {
                    return callback()
                }
                return value
            }
        }

        /// Returns the wrapped event loop future.
        @inlinable
        func nonisolated() -> EventLoopFuture<Value> {
            return self._wrapped
        }
    }

    /// Assumes the calling context is isolated to the future's event loop.
    @usableFromInline
    func assumeIsolated() -> Isolated {
        self.eventLoop.assertInEventLoop()
        return Isolated(_wrapped: self)
    }
}


extension EventLoopPromise {
    /// A struct wrapping an ``EventLoopPromise`` that ensures all calls to any method on this struct
    /// are coming from the event loop of the promise.
    @usableFromInline
    struct Isolated {
        @usableFromInline
        let _wrapped: EventLoopPromise<Value>


        /// Deliver a successful result to the associated `EventLoopFuture<Value>` object.
        ///
        /// - parameters:
        ///     - value: The successful result of the operation.
        @inlinable
        func succeed(_ value: Value) {
            self._wrapped.futureResult.eventLoop.assertInEventLoop()
            self._wrapped._setValue(value: .success(value))._run()
        }

        /// Complete the promise with the passed in `Result<Value, Error>`.
        ///
        /// This method is equivalent to invoking:
        /// ```
        /// switch result {
        /// case .success(let value):
        ///     promise.succeed(value)
        /// case .failure(let error):
        ///     promise.fail(error)
        /// }
        /// ```
        ///
        /// - parameters:
        ///     - result: The result which will be used to succeed or fail this promise.
        @inlinable
        func completeWith(_ result: Result<Value, Error>) {
            self._wrapped.futureResult.eventLoop.assertInEventLoop()
            self._wrapped._setValue(value: result)._run()
        }

        /// Returns the wrapped event loop promise.
        @inlinable
        func nonisolated() -> EventLoopPromise<Value> {
            return self._wrapped
        }
    }

    /// Assumes the calling context is isolated to the promise's event loop.
    @usableFromInline
    func assumeIsolated() -> Isolated {
        self.futureResult.eventLoop.assertInEventLoop()
        return Isolated(_wrapped: self)
    }
}