1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2022 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import Atomics
import Dispatch
import _NIODataStructures
import NIOCore
import NIOConcurrencyHelpers
/// An `EventLoop` that is thread safe and whose execution is fully controlled
/// by the user.
///
/// Unlike more complex `EventLoop`s, such as `SelectableEventLoop`, the `NIOAsyncTestingEventLoop`
/// has no proper eventing mechanism. Instead, reads and writes are fully controlled by the
/// entity that instantiates the `NIOAsyncTestingEventLoop`. This property makes `NIOAsyncTestingEventLoop`
/// of limited use for many application purposes, but highly valuable for testing and other
/// kinds of mocking. Unlike `EmbeddedEventLoop`, `NIOAsyncTestingEventLoop` is fully thread-safe and
/// safe to use from within a Swift concurrency context.
///
/// Unlike `EmbeddedEventLoop`, `NIOAsyncTestingEventLoop` does require that user tests appropriately
/// enforce thread safety. Used carefully it is possible to safely operate the event loop without
/// explicit synchronization, but it is recommended to use `executeInContext` in any case where it's
/// necessary to ensure that the event loop is not making progress.
///
/// Time is controllable on an `NIOAsyncTestingEventLoop`. It begins at `NIODeadline.uptimeNanoseconds(0)`
/// and may be advanced by a fixed amount by using `advanceTime(by:)`, or advanced to a point in
/// time with `advanceTime(to:)`.
///
/// If users wish to perform multiple tasks at once on an `NIOAsyncTestingEventLoop`, it is recommended that they
/// use `executeInContext` to perform the operations. For example:
///
/// ```
/// await loop.executeInContext {
/// // All three of these will be queued up simultaneously, and no other code can
/// // get between them.
/// loop.execute { firstTask() }
/// loop.execute { secondTask() }
/// loop.execute { thirdTask() }
/// }
/// ```
///
/// There is a tricky requirement around waiting for `EventLoopFuture`s when working with this
/// event loop. Simply calling `.wait()` from the test thread will never complete. This is because
/// `wait` calls `loop.execute` under the hood, and that callback cannot execute without calling
/// `loop.run()`.
@available(macOS 10.15, iOS 13.0, watchOS 6.0, tvOS 13.0, *)
public final class NIOAsyncTestingEventLoop: EventLoop, @unchecked Sendable {
// This type is `@unchecked Sendable` because of the use of `taskNumber`. This
// variable is only used from within `queue`, but the compiler cannot see that.
/// The current "time" for this event loop. This is an amount in nanoseconds.
/// As we need to access this from any thread, we store this as an atomic.
private let _now = ManagedAtomic<UInt64>(0)
internal var now: NIODeadline {
return NIODeadline.uptimeNanoseconds(self._now.load(ordering: .relaxed))
}
/// This is used to derive an identifier for this loop.
private var thisLoopID: ObjectIdentifier {
return ObjectIdentifier(self)
}
/// A dispatch specific that we use to determine whether we are on the queue for this
/// "event loop".
private static let inQueueKey = DispatchSpecificKey<ObjectIdentifier>()
// Our scheduledTaskCounter needs to be an atomic because we're going to access it from
// arbitrary threads. This is required by the EventLoop protocol and cannot be avoided.
// Specifically, Scheduled<T> creation requires us to be able to define the cancellation
// operation, so the task ID has to be created early.
private let scheduledTaskCounter = ManagedAtomic<UInt64>(0)
private var scheduledTasks = PriorityQueue<EmbeddedScheduledTask>()
/// Keep track of where promises are allocated to ensure we can identify their source if they leak.
private let _promiseCreationStore = PromiseCreationStore()
// The number of the next task to be created. We track the order so that when we execute tasks
// scheduled at the same time, we may do so in the order in which they were submitted for
// execution.
//
// This can only be accessed from `queue`
private var taskNumber = UInt64(0)
/// The queue on which we run all our operations.
private let queue = DispatchQueue(label: "io.swiftnio.AsyncEmbeddedEventLoop")
// This function must only be called on queue.
private func nextTaskNumber() -> UInt64 {
dispatchPrecondition(condition: .onQueue(self.queue))
defer {
self.taskNumber += 1
}
return self.taskNumber
}
/// - see: `EventLoop.inEventLoop`
public var inEventLoop: Bool {
return DispatchQueue.getSpecific(key: Self.inQueueKey) == self.thisLoopID
}
/// Initialize a new `NIOAsyncTestingEventLoop`.
public init() {
self.queue.setSpecific(key: Self.inQueueKey, value: self.thisLoopID)
}
private func removeTask(taskID: UInt64) {
dispatchPrecondition(condition: .onQueue(self.queue))
self.scheduledTasks.removeFirst { $0.id == taskID }
}
private func insertTask<ReturnType>(
taskID: UInt64,
deadline: NIODeadline,
promise: EventLoopPromise<ReturnType>,
task: @escaping () throws -> ReturnType
) {
dispatchPrecondition(condition: .onQueue(self.queue))
let task = EmbeddedScheduledTask(id: taskID, readyTime: deadline, insertOrder: self.nextTaskNumber(), task: {
do {
promise.succeed(try task())
} catch let err {
promise.fail(err)
}
}, promise.fail)
self.scheduledTasks.push(task)
}
/// - see: `EventLoop.scheduleTask(deadline:_:)`
@discardableResult
public func scheduleTask<T>(deadline: NIODeadline, _ task: @escaping () throws -> T) -> Scheduled<T> {
let promise: EventLoopPromise<T> = self.makePromise()
let taskID = self.scheduledTaskCounter.loadThenWrappingIncrement(ordering: .relaxed)
let scheduled = Scheduled(promise: promise, cancellationTask: {
if self.inEventLoop {
self.removeTask(taskID: taskID)
} else {
self.queue.async {
self.removeTask(taskID: taskID)
}
}
})
if self.inEventLoop {
self.insertTask(taskID: taskID, deadline: deadline, promise: promise, task: task)
} else {
self.queue.async {
self.insertTask(taskID: taskID, deadline: deadline, promise: promise, task: task)
}
}
return scheduled
}
/// - see: `EventLoop.scheduleTask(in:_:)`
@discardableResult
public func scheduleTask<T>(in: TimeAmount, _ task: @escaping () throws -> T) -> Scheduled<T> {
return self.scheduleTask(deadline: self.now + `in`, task)
}
/// On an `NIOAsyncTestingEventLoop`, `execute` will simply use `scheduleTask` with a deadline of _now_. Unlike with the other operations, this will
/// immediately execute, to eliminate a common class of bugs.
public func execute(_ task: @escaping () -> Void) {
if self.inEventLoop {
self.scheduleTask(deadline: self.now, task)
} else {
self.queue.async {
self.scheduleTask(deadline: self.now, task)
var tasks = CircularBuffer<EmbeddedScheduledTask>()
while let nextTask = self.scheduledTasks.peek() {
guard nextTask.readyTime <= self.now else {
break
}
// Now we want to grab all tasks that are ready to execute at the same
// time as the first.
while let candidateTask = self.scheduledTasks.peek(), candidateTask.readyTime == nextTask.readyTime {
tasks.append(candidateTask)
self.scheduledTasks.pop()
}
for task in tasks {
task.task()
}
tasks.removeAll(keepingCapacity: true)
}
}
}
}
/// Run all tasks that have previously been submitted to this `NIOAsyncTestingEventLoop`, either by calling `execute` or
/// events that have been enqueued using `scheduleTask`/`scheduleRepeatedTask`/`scheduleRepeatedAsyncTask` and whose
/// deadlines have expired.
///
/// - seealso: `NIOAsyncTestingEventLoop.advanceTime`.
public func run() async {
// Execute all tasks that are currently enqueued to be executed *now*.
await self.advanceTime(to: self.now)
}
/// Runs the event loop and moves "time" forward by the given amount, running any scheduled
/// tasks that need to be run.
public func advanceTime(by increment: TimeAmount) async {
await self.advanceTime(to: self.now + increment)
}
/// Runs the event loop and moves "time" forward to the given point in time, running any scheduled
/// tasks that need to be run.
///
/// - Note: If `deadline` is before the current time, the current time will not be advanced.
public func advanceTime(to deadline: NIODeadline) async {
await withCheckedContinuation { (continuation: CheckedContinuation<Void, Never>) in
self.queue.async {
let newTime = max(deadline, self.now)
var tasks = CircularBuffer<EmbeddedScheduledTask>()
while let nextTask = self.scheduledTasks.peek() {
guard nextTask.readyTime <= newTime else {
break
}
// Now we want to grab all tasks that are ready to execute at the same
// time as the first.
while let candidateTask = self.scheduledTasks.peek(), candidateTask.readyTime == nextTask.readyTime {
tasks.append(candidateTask)
self.scheduledTasks.pop()
}
// Set the time correctly before we call into user code, then
// call in for all tasks.
self._now.store(nextTask.readyTime.uptimeNanoseconds, ordering: .relaxed)
for task in tasks {
task.task()
}
tasks.removeAll(keepingCapacity: true)
}
// Finally ensure we got the time right.
self._now.store(newTime.uptimeNanoseconds, ordering: .relaxed)
continuation.resume()
}
}
}
/// Executes the given function in the context of this event loop. This is useful when it's necessary to be confident that an operation
/// is "blocking" the event loop. As long as you are executing, nothing else can execute in this loop.
///
/// While this call is running, no action can take place on the loop. This function can therefore be a good place to schedule a bunch
/// of tasks "at once", with a guarantee that none of them can progress. It's also useful if you have types that can only be safely
/// accessed from the event loop thread and want to be 100% sure of the thread-safety of accessing them.
///
/// Be careful not to try to spin the event loop again from within this callback, however. As long as this function is on the call
/// stack the `NIOAsyncTestingEventLoop` cannot progress, and so any attempt to progress it will block until this function returns.
public func executeInContext<ReturnType: Sendable>(_ task: @escaping @Sendable () throws -> ReturnType) async throws -> ReturnType {
try await withCheckedThrowingContinuation { (continuation: CheckedContinuation<ReturnType, Error>) in
self.queue.async {
do {
continuation.resume(returning: try task())
} catch {
continuation.resume(throwing: error)
}
}
}
}
internal func drainScheduledTasksByRunningAllCurrentlyScheduledTasks() {
var currentlyScheduledTasks = self.scheduledTasks
while let nextTask = currentlyScheduledTasks.pop() {
self._now.store(nextTask.readyTime.uptimeNanoseconds, ordering: .relaxed)
nextTask.task()
}
// Just fail all the remaining scheduled tasks. Despite having run all the tasks that were
// scheduled when we entered the method this may still contain tasks as running the tasks
// may have enqueued more tasks.
while let task = self.scheduledTasks.pop() {
task.fail(EventLoopError.shutdown)
}
}
private func _shutdownGracefully() {
dispatchPrecondition(condition: .onQueue(self.queue))
self.drainScheduledTasksByRunningAllCurrentlyScheduledTasks()
}
/// - see: `EventLoop.shutdownGracefully`
public func shutdownGracefully(queue: DispatchQueue, _ callback: @escaping (Error?) -> Void) {
self.queue.async {
self._shutdownGracefully()
queue.async {
callback(nil)
}
}
}
/// The concurrency-aware equivalent of `shutdownGracefully(queue:_:)`.
public func shutdownGracefully() async {
await withCheckedContinuation { (continuation: CheckedContinuation<Void, Never>) in
self.queue.async {
self._shutdownGracefully()
continuation.resume()
}
}
}
public func _preconditionSafeToWait(file: StaticString, line: UInt) {
dispatchPrecondition(condition: .notOnQueue(self.queue))
}
public func _promiseCreated(futureIdentifier: _NIOEventLoopFutureIdentifier, file: StaticString, line: UInt) {
self._promiseCreationStore.promiseCreated(futureIdentifier: futureIdentifier, file: file, line: line)
}
public func _promiseCompleted(futureIdentifier: _NIOEventLoopFutureIdentifier) -> (file: StaticString, line: UInt)? {
return self._promiseCreationStore.promiseCompleted(futureIdentifier: futureIdentifier)
}
public func _preconditionSafeToSyncShutdown(file: StaticString, line: UInt) {
dispatchPrecondition(condition: .notOnQueue(self.queue))
}
public func preconditionInEventLoop(file: StaticString, line: UInt) {
dispatchPrecondition(condition: .onQueue(self.queue))
}
public func preconditionNotInEventLoop(file: StaticString, line: UInt) {
dispatchPrecondition(condition: .notOnQueue(self.queue))
}
deinit {
precondition(scheduledTasks.isEmpty, "NIOAsyncTestingEventLoop freed with unexecuted scheduled tasks!")
}
}
// MARK: SerialExecutor conformance
#if compiler(>=5.9)
@available(macOS 14.0, iOS 17.0, watchOS 10.0, tvOS 17.0, *)
extension NIOAsyncTestingEventLoop: NIOSerialEventLoopExecutor { }
#endif
/// This is a thread-safe promise creation store.
///
/// We use this to keep track of where promises come from in the `NIOAsyncTestingEventLoop`.
private class PromiseCreationStore {
private let lock = NIOLock()
private var promiseCreationStore: [_NIOEventLoopFutureIdentifier: (file: StaticString, line: UInt)] = [:]
func promiseCreated(futureIdentifier: _NIOEventLoopFutureIdentifier, file: StaticString, line: UInt) {
precondition(_isDebugAssertConfiguration())
self.lock.withLock { () -> Void in
self.promiseCreationStore[futureIdentifier] = (file: file, line: line)
}
}
func promiseCompleted(futureIdentifier: _NIOEventLoopFutureIdentifier) -> (file: StaticString, line: UInt)? {
precondition(_isDebugAssertConfiguration())
return self.lock.withLock {
self.promiseCreationStore.removeValue(forKey: futureIdentifier)
}
}
deinit {
// We no longer need the lock here.
precondition(self.promiseCreationStore.isEmpty, "NIOAsyncTestingEventLoop freed with uncompleted promises!")
}
}
|