1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftDiagnostics
import SwiftOperators
import SwiftSyntax
/// Evaluate the condition of an `#if`.
/// - Parameters:
/// - condition: The condition to evaluate, which we assume has already been
/// folded according to the logical operators table.
/// - configuration: The configuration against which the condition will be
/// evaluated.
/// - Throws: Throws if an error occurs occur during evaluation that prevents
/// this function from forming a valid result. The error will
/// also be provided to the diagnostic handler before doing so.
/// - Returns: A pair of Boolean values and any diagnostics produced during the
/// evaluation. The first Boolean describes whether the condition holds with
/// the given build configuration. The second Boolean described whether
/// the build condition's failure implies that we shouldn't
/// diagnose syntax errors in blocks where the check fails.
func evaluateIfConfig(
condition: ExprSyntax,
configuration: some BuildConfiguration
) -> (active: Bool, syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
var extraDiagnostics: [Diagnostic] = []
/// Record the error before returning the given value.
func recordError(
_ error: any Error,
at node: some SyntaxProtocol
) -> (active: Bool, syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
return (
active: false,
syntaxErrorsAllowed: true,
diagnostics: extraDiagnostics + error.asDiagnostics(at: node)
)
}
/// Record an if-config evaluation error before returning it. Use this for
/// every 'throw' site in this evaluation.
func recordError(
_ error: IfConfigDiagnostic
) -> (active: Bool, syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
return recordError(error, at: error.syntax)
}
/// Check a configuration condition, translating any thrown error into an
/// appropriate diagnostic for the handler before rethrowing it.
func checkConfiguration(
at node: some SyntaxProtocol,
body: () throws -> (Bool, Bool)
) -> (active: Bool, syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
do {
let (active, syntaxErrorsAllowed) = try body()
return (active, syntaxErrorsAllowed, extraDiagnostics)
} catch let error {
return recordError(error, at: node)
}
}
// Boolean literals evaluate as-is
if let boolLiteral = condition.as(BooleanLiteralExprSyntax.self) {
return (
active: boolLiteral.literalValue,
syntaxErrorsAllowed: false,
diagnostics: extraDiagnostics
)
}
// Integer literals aren't allowed, but we recognize them.
if let intLiteral = condition.as(IntegerLiteralExprSyntax.self),
(intLiteral.literal.text == "0" || intLiteral.literal.text == "1")
{
let result = intLiteral.literal.text == "1"
return (
active: result,
syntaxErrorsAllowed: false,
diagnostics: [
IfConfigDiagnostic.integerLiteralCondition(
syntax: condition,
replacement: result
).asDiagnostic
]
)
}
// Declaration references are for custom compilation flags.
if let identExpr = condition.as(DeclReferenceExprSyntax.self),
let ident = identExpr.simpleIdentifier?.name
{
if let targetOSDiagnostic = diagnoseLikelyTargetOSTest(at: identExpr, name: ident) {
extraDiagnostics.append(targetOSDiagnostic)
}
// Evaluate the custom condition. If the build configuration cannot answer this query, fail.
return checkConfiguration(at: identExpr) {
(active: try configuration.isCustomConditionSet(name: ident), syntaxErrorsAllowed: false)
}
}
// Logical '!'.
if let prefixOp = condition.as(PrefixOperatorExprSyntax.self) {
// If this isn't '!', complain.
guard prefixOp.operator.text == "!" else {
return recordError(.badPrefixOperator(syntax: condition))
}
let (innerActive, innerSyntaxErrorsAllowed, innerDiagnostics) = evaluateIfConfig(
condition: prefixOp.expression,
configuration: configuration
)
return (active: !innerActive, syntaxErrorsAllowed: innerSyntaxErrorsAllowed, diagnostics: innerDiagnostics)
}
// Logical '&&' and '||'.
if let binOp = condition.as(InfixOperatorExprSyntax.self),
let op = binOp.operator.as(BinaryOperatorExprSyntax.self)
{
// If this is neither && nor ||, it was already diagnosed as part of
// operator folding. Just return this as inactive.
guard op.operator.text == "&&" || op.operator.text == "||" else {
return (active: false, syntaxErrorsAllowed: true, diagnostics: extraDiagnostics)
}
// Check whether this was likely to be a check for targetEnvironment(simulator).
if binOp.isOutermostIfCondition,
let targetEnvironmentDiag = diagnoseLikelySimulatorEnvironmentTest(binOp)
{
extraDiagnostics.append(targetEnvironmentDiag)
}
// Evaluate the left-hand side.
let (lhsActive, lhsSyntaxErrorsAllowed, lhsDiagnostics) = evaluateIfConfig(
condition: binOp.leftOperand,
configuration: configuration
)
// Determine whether we already know the result. We might short-circuit the
// evaluation, depending on whether we need to produce validation
// diagnostics for the right-hand side.
let shortCircuitResult: Bool?
switch (lhsActive, op.operator.text) {
case (true, "||"): shortCircuitResult = true
case (false, "&&"): shortCircuitResult = false
default: shortCircuitResult = nil
}
// If we are supposed to short-circuit and the left-hand side of this
// operator permits syntax errors when it fails, stop now: we shouldn't
// process the right-hand side at all.
if let isActive = shortCircuitResult, lhsSyntaxErrorsAllowed {
return (
active: isActive,
syntaxErrorsAllowed: lhsSyntaxErrorsAllowed,
diagnostics: extraDiagnostics + lhsDiagnostics
)
}
// Process the right-hand side. If we already know the answer, then
// avoid performing any build configuration queries that might cause
// side effects.
let rhsActive: Bool
let rhsSyntaxErrorsAllowed: Bool
let rhsDiagnostics: [Diagnostic]
if shortCircuitResult != nil {
(rhsActive, rhsSyntaxErrorsAllowed, rhsDiagnostics) = evaluateIfConfig(
condition: binOp.rightOperand,
configuration: CanImportSuppressingBuildConfiguration(other: configuration)
)
} else {
(rhsActive, rhsSyntaxErrorsAllowed, rhsDiagnostics) = evaluateIfConfig(
condition: binOp.rightOperand,
configuration: configuration
)
}
switch op.operator.text {
case "||":
return (
active: lhsActive || rhsActive,
syntaxErrorsAllowed: lhsSyntaxErrorsAllowed && rhsSyntaxErrorsAllowed,
diagnostics: extraDiagnostics + lhsDiagnostics + rhsDiagnostics
)
case "&&":
return (
active: lhsActive && rhsActive,
syntaxErrorsAllowed: lhsSyntaxErrorsAllowed || rhsSyntaxErrorsAllowed,
diagnostics: extraDiagnostics + lhsDiagnostics + rhsDiagnostics
)
default:
fatalError("prevented by condition for getting here")
}
}
// Look through parentheses.
if let tuple = condition.as(TupleExprSyntax.self), tuple.isParentheses,
let element = tuple.elements.first
{
return evaluateIfConfig(
condition: element.expression,
configuration: configuration
)
}
// Call syntax is for operations.
if let call = condition.as(FunctionCallExprSyntax.self),
let fnName = call.calledExpression.simpleIdentifierExpr?.name,
let fn = IfConfigFunctions(rawValue: fnName)
{
/// Perform a check for an operation that takes a single identifier argument.
func doSingleIdentifierArgumentCheck(
_ body: (String) throws -> Bool,
role: String
) -> (active: Bool, syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
// Ensure that we have a single argument that is a simple identifier.
guard let argExpr = call.arguments.singleUnlabeledExpression,
var arg = argExpr.simpleIdentifierExpr?.name
else {
return recordError(
.requiresUnlabeledArgument(name: fnName, role: role, syntax: ExprSyntax(call))
)
}
// The historical "macabi" environment has been renamed to "macCatalyst".
if role == "environment" && arg == "macabi" {
extraDiagnostics.append(
IfConfigDiagnostic.macabiIsMacCatalyst(syntax: argExpr)
.asDiagnostic
)
arg = "macCatalyst"
}
return checkConfiguration(at: argExpr) {
(active: try body(arg), syntaxErrorsAllowed: fn.syntaxErrorsAllowed)
}
}
/// Perform a check for a version constraint as used in the "swift" or "compiler" version checks.
func doVersionComparisonCheck(
_ actualVersion: VersionTuple
) -> (active: Bool, syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
// Ensure that we have a single unlabeled argument that is either >= or < as a prefix
// operator applied to a version.
guard let argExpr = call.arguments.singleUnlabeledExpression,
let unaryArg = argExpr.as(PrefixOperatorExprSyntax.self)
else {
return recordError(
.requiresUnlabeledArgument(
name: fnName,
role: "version comparison (>= or <= a version)",
syntax: ExprSyntax(call)
)
)
}
// Parse the version.
let opToken = unaryArg.operator
guard let version = VersionTuple(parsing: unaryArg.expression.trimmedDescription) else {
return recordError(.invalidVersionOperand(name: fnName, syntax: unaryArg.expression))
}
switch opToken.text {
case ">=":
return (
active: actualVersion >= version,
syntaxErrorsAllowed: fn.syntaxErrorsAllowed,
diagnostics: extraDiagnostics
)
case "<":
return (
active: actualVersion < version,
syntaxErrorsAllowed: fn.syntaxErrorsAllowed,
diagnostics: extraDiagnostics
)
default:
return recordError(.unsupportedVersionOperator(name: fnName, operator: opToken))
}
}
switch fn {
case .hasAttribute:
return doSingleIdentifierArgumentCheck(configuration.hasAttribute, role: "attribute")
case .hasFeature:
return doSingleIdentifierArgumentCheck(configuration.hasFeature, role: "feature")
case .os:
return doSingleIdentifierArgumentCheck(configuration.isActiveTargetOS, role: "operating system")
case .arch:
return doSingleIdentifierArgumentCheck(configuration.isActiveTargetArchitecture, role: "architecture")
case .targetEnvironment:
return doSingleIdentifierArgumentCheck(configuration.isActiveTargetEnvironment, role: "environment")
case ._runtime:
return doSingleIdentifierArgumentCheck(configuration.isActiveTargetRuntime, role: "runtime")
case ._ptrauth:
return doSingleIdentifierArgumentCheck(
configuration.isActiveTargetPointerAuthentication,
role: "pointer authentication scheme"
)
case .defined:
guard let argExpr = call.arguments.singleUnlabeledExpression,
let arg = argExpr.simpleIdentifierExpr?.name
else {
return recordError(.unknownExpression(condition))
}
extraDiagnostics.append(
IfConfigDiagnostic.unexpectedDefined(syntax: condition, argument: arg).asDiagnostic
)
return checkConfiguration(at: condition) {
(active: try configuration.isCustomConditionSet(name: arg), syntaxErrorsAllowed: false)
}
case ._endian:
// Ensure that we have a single argument that is a simple identifier.
guard let argExpr = call.arguments.singleUnlabeledExpression,
let arg = argExpr.simpleIdentifierExpr?.name
else {
return recordError(
.requiresUnlabeledArgument(
name: fnName,
role: "endianness ('big' or 'little')",
syntax: ExprSyntax(call)
)
)
}
// The argument needs to be either "little" or "big". Otherwise, we assume
// it fails.
let isActive: Bool
if let expectedEndianness = Endianness(rawValue: arg) {
isActive = configuration.endianness == expectedEndianness
} else {
// Complain about unknown endianness
extraDiagnostics.append(
IfConfigDiagnostic.endiannessDoesNotMatch(syntax: argExpr, argument: arg)
.asDiagnostic
)
isActive = false
}
return (
active: isActive,
syntaxErrorsAllowed: fn.syntaxErrorsAllowed,
diagnostics: extraDiagnostics
)
case ._pointerBitWidth, ._hasAtomicBitWidth:
// Ensure that we have a single argument that is a simple identifier, which
// is an underscore followed by an integer.
guard let argExpr = call.arguments.singleUnlabeledExpression,
let arg = argExpr.simpleIdentifierExpr?.name,
let argFirst = arg.first,
argFirst == "_",
let expectedBitWidth = Int(arg.dropFirst())
else {
return recordError(
.requiresUnlabeledArgument(
name: fnName,
role: "bit width ('_' followed by an integer)",
syntax: ExprSyntax(call)
)
)
}
let active: Bool
if fn == ._pointerBitWidth {
active = configuration.targetPointerBitWidth == expectedBitWidth
} else if fn == ._hasAtomicBitWidth {
active = configuration.targetAtomicBitWidths.contains(expectedBitWidth)
} else {
fatalError("extraneous case above not handled")
}
return (active: active, syntaxErrorsAllowed: fn.syntaxErrorsAllowed, diagnostics: extraDiagnostics)
case .swift:
return doVersionComparisonCheck(configuration.languageVersion)
case .compiler:
return doVersionComparisonCheck(configuration.compilerVersion)
case ._compiler_version:
// Argument is a single unlabeled argument containing a string
// literal.
guard let argExpr = call.arguments.singleUnlabeledExpression,
let stringLiteral = argExpr.as(StringLiteralExprSyntax.self),
stringLiteral.segments.count == 1,
let segment = stringLiteral.segments.first,
case .stringSegment(let stringSegment) = segment
else {
return doVersionComparisonCheck(configuration.compilerVersion)
}
let versionString = stringSegment.content.text
let expectedVersion: VersionTuple
do {
expectedVersion = try VersionTuple.parseCompilerBuildVersion(
versionString,
argExpr,
extraDiagnostics: &extraDiagnostics
)
} catch {
return recordError(error, at: stringSegment.content)
}
return (
active: configuration.compilerVersion >= expectedVersion,
syntaxErrorsAllowed: fn.syntaxErrorsAllowed,
diagnostics: extraDiagnostics
)
case .canImport:
// Retrieve the first argument, which must not have a label. This is
// the module import path.
guard let firstArg = call.arguments.first,
firstArg.label == nil
else {
return recordError(.canImportMissingModule(syntax: ExprSyntax(call)))
}
if call.arguments.count > 2 {
return recordError(.canImportTwoParameters(syntax: ExprSyntax(call)))
}
// Extract the import path.
let importPath: [(TokenSyntax, String)]
do {
importPath = try extractImportPath(firstArg.expression)
} catch {
return recordError(error, at: firstArg.expression)
}
// If there is a second argument, it shall have the label _version or
// _underlyingVersion.
let version: CanImportVersion
if let secondArg = call.arguments.dropFirst().first {
if secondArg.label?.text != "_version" && secondArg.label?.text != "_underlyingVersion" {
return recordError(.canImportLabel(syntax: secondArg.expression))
}
let versionText: String
if let stringLiteral = secondArg.expression.as(StringLiteralExprSyntax.self),
stringLiteral.segments.count == 1,
let firstSegment = stringLiteral.segments.first,
case .stringSegment(let stringSegment) = firstSegment
{
versionText = stringSegment.content.text
} else {
versionText = secondArg.expression.trimmedDescription
}
guard var versionTuple = VersionTuple(parsing: versionText) else {
return recordError(
.invalidVersionOperand(name: "canImport", syntax: secondArg.expression)
)
}
// Remove excess components from the version,
if versionTuple.components.count > 4 {
// Remove excess components.
versionTuple.components.removeSubrange(4...)
// Warn that we did this.
extraDiagnostics.append(
IfConfigDiagnostic.ignoredTrailingComponents(
version: versionTuple,
syntax: secondArg.expression
).asDiagnostic
)
}
if secondArg.label?.text == "_version" {
version = .version(versionTuple)
} else {
assert(secondArg.label?.text == "_underlyingVersion")
version = .underlyingVersion(versionTuple)
}
} else {
version = .unversioned
}
return checkConfiguration(at: call) {
(
active: try configuration.canImport(
importPath: importPath,
version: version
),
syntaxErrorsAllowed: fn.syntaxErrorsAllowed
)
}
}
}
return recordError(.unknownExpression(condition))
}
extension SyntaxProtocol {
/// Determine whether this expression node is an "outermost" #if condition,
/// meaning that it is not nested within some kind of expression like && or
/// ||.
fileprivate var isOutermostIfCondition: Bool {
// If there is no parent, it's the outermost condition.
guard let parent = self.parent else {
return true
}
// If we hit the #if condition clause, it's the outermost condition.
if parent.is(IfConfigClauseSyntax.self) {
return true
}
// We found an infix operator, so this is not an outermost #if condition.
if parent.is(InfixOperatorExprSyntax.self) {
return false
}
// Keep looking up the syntax tree.
return parent.isOutermostIfCondition
}
}
/// Given an expression with the expected form A.B.C, extract the import path
/// ["A", "B", "C"] from it with the token syntax nodes for each name.
/// Throws an error if the expression doesn't match this form.
private func extractImportPath(_ expression: some ExprSyntaxProtocol) throws -> [(TokenSyntax, String)] {
// Member access.
if let memberAccess = expression.as(MemberAccessExprSyntax.self),
let base = memberAccess.base,
let memberName = memberAccess.declName.simpleIdentifier?.name
{
return try extractImportPath(base) + [(memberAccess.declName.baseName, memberName)]
}
// Declaration reference.
if let declRef = expression.as(DeclReferenceExprSyntax.self),
let name = declRef.simpleIdentifier?.name
{
return [(declRef.baseName, name)]
}
throw IfConfigDiagnostic.expectedModuleName(syntax: ExprSyntax(expression))
}
/// Determine whether the given condition only involves disjunctions that
/// check the given config function against one of the provided values.
///
/// For example, this will match a condition like `os(iOS) || os(tvOS)`
/// when passed `IfConfigFunctions.os` and `["iOS", "tvOS"]`.
private func isConditionDisjunction(
_ condition: some ExprSyntaxProtocol,
function: IfConfigFunctions,
anyOf values: [String]
) -> Bool {
// Recurse into disjunctions. Both sides need to match.
if let binOp = condition.as(InfixOperatorExprSyntax.self),
let op = binOp.operator.as(BinaryOperatorExprSyntax.self),
op.operator.text == "||"
{
return isConditionDisjunction(binOp.leftOperand, function: function, anyOf: values)
&& isConditionDisjunction(binOp.rightOperand, function: function, anyOf: values)
}
// Look through parentheses.
if let tuple = condition.as(TupleExprSyntax.self), tuple.isParentheses,
let element = tuple.elements.first
{
return isConditionDisjunction(element.expression, function: function, anyOf: values)
}
// If we have a call to this function, check whether the argument is one of
// the acceptable values.
if let call = condition.as(FunctionCallExprSyntax.self),
let fnName = call.calledExpression.simpleIdentifierExpr?.name,
let callFn = IfConfigFunctions(rawValue: fnName),
callFn == function,
let argExpr = call.arguments.singleUnlabeledExpression,
let arg = argExpr.simpleIdentifierExpr?.name
{
return values.contains(arg)
}
return false
}
/// If this binary operator looks like it could be replaced by a
/// targetEnvironment(simulator) check, produce a diagnostic that does so.
///
/// For example, this checks for conditions like:
///
/// ```
/// #if (os(iOS) || os(tvOS)) && (arch(i386) || arch(x86_64))
/// ```
///
/// which should be replaced with
///
/// ```
/// #if targetEnvironment(simulator)
/// ```
private func diagnoseLikelySimulatorEnvironmentTest(
_ binOp: InfixOperatorExprSyntax
) -> Diagnostic? {
guard let op = binOp.operator.as(BinaryOperatorExprSyntax.self),
op.operator.text == "&&"
else {
return nil
}
func isSimulatorPlatformOSTest(_ condition: ExprSyntax) -> Bool {
return isConditionDisjunction(condition, function: .os, anyOf: ["iOS", "tvOS", "watchOS"])
}
func isSimulatorPlatformArchTest(_ condition: ExprSyntax) -> Bool {
return isConditionDisjunction(condition, function: .arch, anyOf: ["i386", "x86_64"])
}
guard
(isSimulatorPlatformOSTest(binOp.leftOperand) && isSimulatorPlatformArchTest(binOp.rightOperand))
|| (isSimulatorPlatformOSTest(binOp.rightOperand) && isSimulatorPlatformArchTest(binOp.leftOperand))
else {
return nil
}
return IfConfigDiagnostic.likelySimulatorPlatform(syntax: ExprSyntax(binOp)).asDiagnostic
}
/// If this identifier looks like it is a `TARGET_OS_*` compilation condition,
/// produce a diagnostic that suggests replacing it with the `os(*)` syntax.
///
/// For example, this checks for conditions like:
///
/// ```
/// #if TARGET_OS_IOS
/// ```
///
/// which should be replaced with
///
/// ```
/// #if os(iOS)
/// ```
private func diagnoseLikelyTargetOSTest(
at reference: DeclReferenceExprSyntax,
name: String
) -> Diagnostic? {
let prefix = "TARGET_OS_"
guard name.hasPrefix(prefix) else { return nil }
let osName = String(name.dropFirst(prefix.count))
if unmappedTargetOSNames.contains(osName) {
return IfConfigDiagnostic.likelyTargetOS(syntax: ExprSyntax(reference), replacement: nil).asDiagnostic
}
guard let replacement = targetOSNameMap[osName] else { return nil }
return IfConfigDiagnostic.likelyTargetOS(syntax: ExprSyntax(reference), replacement: replacement).asDiagnostic
}
// TARGET_OS_* macros that don’t have a direct Swift equivalent
private let unmappedTargetOSNames = ["WIN32", "UNIX", "MAC", "IPHONE", "EMBEDDED"]
private let targetOSNameMap: [String: ExprSyntax] = [
"WINDOWS": "os(Windows)",
"LINUX": "os(Linux)",
"OSX": "os(macOS)",
"IOS": "os(iOS)",
"MACCATALYST": "targetEnvironment(macCatalyst)",
"TV": "os(tvOS)",
"WATCH": "os(watchOS)",
"VISION": "os(visionOS)",
"SIMULATOR": "targetEnvironment(simulator)",
]
extension IfConfigClauseSyntax {
/// Fold the operators within an #if condition, turning sequence expressions
/// involving the various allowed operators (&&, ||, !) into well-structured
/// binary operators.
static func foldOperators(
_ condition: some ExprSyntaxProtocol
) -> (folded: ExprSyntax, diagnostics: [Diagnostic]) {
var foldingDiagnostics: [Diagnostic] = []
let foldedCondition = OperatorTable.logicalOperators.foldAll(condition) { error in
// Replace the "unknown infix operator" diagnostic with a custom one
// that mentions that only '&&' and '||' are allowed.
if case .missingOperator(_, referencedFrom: let syntax) = error,
let binOp = syntax.parent?.as(BinaryOperatorExprSyntax.self)
{
foldingDiagnostics.append(
IfConfigDiagnostic.badInfixOperator(syntax: ExprSyntax(binOp)).asDiagnostic
)
return
}
foldingDiagnostics.append(contentsOf: error.asDiagnostics(at: condition))
}.cast(ExprSyntax.self)
return (folded: foldedCondition, diagnostics: foldingDiagnostics)
}
/// Determine whether the given expression, when used as the condition in
/// an inactive `#if` clause, implies that syntax errors are permitted within
/// that region.
@_spi(Compiler)
public static func syntaxErrorsAllowed(
_ condition: some ExprSyntaxProtocol
) -> (syntaxErrorsAllowed: Bool, diagnostics: [Diagnostic]) {
let (foldedCondition, foldingDiagnostics) = IfConfigClauseSyntax.foldOperators(condition)
return (
!foldingDiagnostics.isEmpty || foldedCondition.allowsSyntaxErrorsFolded,
foldingDiagnostics
)
}
}
extension ExprSyntaxProtocol {
/// Determine whether this expression, when used as a condition within a #if
/// that evaluates false, implies that the code contained in that `#if`
///
/// Check whether of allowsSyntaxErrors(_:) that assumes that inputs have
/// already been operator-folded.
var allowsSyntaxErrorsFolded: Bool {
// Logical '!'.
if let prefixOp = self.as(PrefixOperatorExprSyntax.self),
prefixOp.operator.text == "!"
{
return prefixOp.expression.allowsSyntaxErrorsFolded
}
// Logical '&&' and '||'.
if let binOp = self.as(InfixOperatorExprSyntax.self),
let op = binOp.operator.as(BinaryOperatorExprSyntax.self)
{
switch op.operator.text {
case "&&":
return binOp.leftOperand.allowsSyntaxErrorsFolded || binOp.rightOperand.allowsSyntaxErrorsFolded
case "||":
return binOp.leftOperand.allowsSyntaxErrorsFolded && binOp.rightOperand.allowsSyntaxErrorsFolded
default:
return false
}
}
// Look through parentheses.
if let tuple = self.as(TupleExprSyntax.self), tuple.isParentheses,
let element = tuple.elements.first
{
return element.expression.allowsSyntaxErrorsFolded
}
// Call syntax is for operations.
if let call = self.as(FunctionCallExprSyntax.self),
let fnName = call.calledExpression.simpleIdentifierExpr?.name,
let fn = IfConfigFunctions(rawValue: fnName)
{
return fn.syntaxErrorsAllowed
}
return false
}
}
/// Build configuration adaptor that suppresses calls to canImport, which
/// can have side effects. This is somewhat of a hack for the compiler.
private struct CanImportSuppressingBuildConfiguration<Other: BuildConfiguration>: BuildConfiguration {
var other: Other
func isCustomConditionSet(name: String) throws -> Bool {
return try other.isCustomConditionSet(name: name)
}
func hasFeature(name: String) throws -> Bool {
return try other.hasFeature(name: name)
}
func hasAttribute(name: String) throws -> Bool {
return try other.hasAttribute(name: name)
}
func canImport(importPath: [(TokenSyntax, String)], version: CanImportVersion) throws -> Bool {
return false
}
func isActiveTargetOS(name: String) throws -> Bool {
return try other.isActiveTargetOS(name: name)
}
func isActiveTargetArchitecture(name: String) throws -> Bool {
return try other.isActiveTargetArchitecture(name: name)
}
func isActiveTargetEnvironment(name: String) throws -> Bool {
return try other.isActiveTargetEnvironment(name: name)
}
func isActiveTargetRuntime(name: String) throws -> Bool {
return try other.isActiveTargetRuntime(name: name)
}
func isActiveTargetPointerAuthentication(name: String) throws -> Bool {
return try other.isActiveTargetPointerAuthentication(name: name)
}
var targetPointerBitWidth: Int { return other.targetPointerBitWidth }
var targetAtomicBitWidths: [Int] { return other.targetAtomicBitWidths }
var endianness: Endianness { return other.endianness }
var languageVersion: VersionTuple { return other.languageVersion }
var compilerVersion: VersionTuple { return other.compilerVersion }
}
|