1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
|
//===--- HomotopyReduction.cpp - Higher-dimensional term rewriting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the algorithm for computing a minimal set of rules from
// a confluent rewrite system. A minimal set of rules is:
//
// 1) Large enough that computing the confluent completion produces the original
// rewrite system;
//
// 2) Small enough that no further rules can be deleted without changing the
// resulting confluent rewrite system.
//
// The main entry point here is RewriteSystem::minimizeRewriteSystem().
//
// Redundant rules are detected by analyzing the set of rewrite loops computed
// by the completion procedure. See RewriteLoop.cpp for a discussion of rewrite
// loops.
//
// If a rewrite rule appears exactly once in a loop and without context, the
// loop witnesses a redundancy; the rewrite rule is equivalent to traveling
// around the loop "in the other direction". This rewrite rule and the
// corresponding rewrite loop can be deleted.
//
// Any occurrence of the rule in the remaining loops is replaced with the
// alternate definition obtained by splitting the loop that witnessed the
// redundancy.
//
// Iterating this process eventually produces a minimal set of rewrite rules.
//
// For a description of the general algorithm, see "A Homotopical Completion
// Procedure with Applications to Coherence of Monoids",
// https://hal.inria.fr/hal-00818253.
//
// Note that in the world of Swift, rewrite rules for introducing associated
// type symbols are marked 'permanent'; they are always re-added when a new
// rewrite system is built from a minimal generic signature, so instead of
// deleting them it is better to leave them in place in case it allows other
// rules to be deleted instead.
//
// Also, for a conformance rule (V.[P] => V) to be redundant, a stronger
// condition is needed than appearing once in a loop and without context;
// the rule must not be a _minimal conformance_. The algorithm for computing
// minimal conformances is implemented in MinimalConformances.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "PropertyMap.h"
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// If a rewrite loop contains an explicit rule in empty context, propagate the
/// explicit bit to all other rules appearing in empty context within the same
/// loop.
///
/// When computing minimal conformances we prefer to eliminate non-explicit
/// rules, as a heuristic to ensure that minimized conformance requirements
/// remain in the same protocol as originally written, in cases where they can
/// be moved between protocols.
///
/// However, conformance rules can also be written in a non-canonical way.
///
/// Most conformance requirements are non-canonical, since the original
/// requirements use unresolved types. For example, a requirement 'Self.X.Y : Q'
/// inside a protocol P will lower to a rewrite rule
///
/// [P].X.Y.[Q] => [P].X.Y
///
/// Completion will then add a new rule that looks something like this, using
/// associated type symbols:
///
/// [P:X].[P2:Y].[Q] => [P:X].[P2:Y]
///
/// Furthermore, if [P:X].[P2:Y] simplies to some other term, such as [P:Z],
/// there will be yet another rule added by completion:
///
/// [P:Z].[Q] => [P:Z]
///
/// The new rules are related to the original rule via rewrite loops where
/// both rules appear in empty context. This algorithm will propagate the
/// explicit bit from the original rule to the canonical rule.
void RewriteSystem::propagateExplicitBits() {
for (const auto &loop : Loops) {
auto rulesInEmptyContext =
loop.findRulesAppearingOnceInEmptyContext(*this);
bool sawExplicitRule = false;
for (unsigned ruleID : rulesInEmptyContext) {
const auto &rule = getRule(ruleID);
if (rule.isExplicit())
sawExplicitRule = true;
}
if (sawExplicitRule) {
for (unsigned ruleID : rulesInEmptyContext) {
auto &rule = getRule(ruleID);
if (!rule.isPermanent() && !rule.isExplicit())
rule.markExplicit();
}
}
}
}
/// Find concrete type or superclass rules where the right hand side occurs as a
/// proper prefix of one of its substitutions.
///
/// eg, (T.[concrete: G<T.[P:A]>] => T).
void RewriteSystem::computeRecursiveRules() {
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant())
continue;
auto optSymbol = rule.isPropertyRule();
if (!optSymbol)
continue;
auto kind = optSymbol->getKind();
if (kind != Symbol::Kind::ConcreteType &&
kind != Symbol::Kind::Superclass) {
continue;
}
auto rhs = rule.getRHS();
for (auto term : optSymbol->getSubstitutions()) {
if (term.size() > rhs.size() &&
std::equal(rhs.begin(), rhs.end(), term.begin())) {
RecursiveRules.push_back(ruleID);
rule.markRecursive();
break;
}
}
}
}
/// Find a rule to delete by looking through all loops for rewrite rules appearing
/// once in empty context. Returns a pair consisting of a loop ID and a rule ID,
/// otherwise returns None.
///
/// Minimization performs three passes over the rewrite system.
///
/// 1) First, rules that are not conformance rules are deleted, with
/// \p redundantConformances equal to nullptr.
///
/// 2) Second, minimal conformances are computed.
///
/// 3) Finally, redundant conformance rules are deleted, with
/// \p redundantConformances equal to the set of conformance rules that are
/// not minimal conformances.
std::optional<std::pair<unsigned, unsigned>>
RewriteSystem::findRuleToDelete(EliminationPredicate isRedundantRuleFn) {
SmallVector<std::pair<unsigned, unsigned>, 2> redundancyCandidates;
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
// Delete loops that don't contain any rewrite rules in empty context,
// since such loops do not yield any elimination candidates.
if (!loop.isUseful(*this)) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting useless loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
loop.markDeleted();
continue;
}
for (unsigned ruleID : loop.findRulesAppearingOnceInEmptyContext(*this)) {
redundancyCandidates.emplace_back(loopID, ruleID);
}
}
std::optional<std::pair<unsigned, unsigned>> found;
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "\n";
}
for (const auto &pair : redundancyCandidates) {
unsigned loopID = pair.first;
unsigned ruleID = pair.second;
const auto &loop = Loops[loopID];
const auto &rule = getRule(ruleID);
// We should not find a rule that has already been marked redundant
// here; it should have already been replaced with a rewrite path
// in all homotopy generators.
ASSERT(!rule.isRedundant());
// Associated type introduction rules are 'permanent'. They're
// not worth eliminating since they are re-added every time; it
// is better to find other candidates to eliminate in the same
// loop instead.
if (rule.isPermanent())
continue;
// Homotopy reduction runs multiple passes with different filters to
// prioritize the deletion of certain rules ahead of others. Apply
// the filter now.
if (!isRedundantRuleFn(loopID, ruleID)) {
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Skipping rule " << rule << " from loop #"
<< loopID << "\n";
}
continue;
}
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Candidate rule " << rule << " from loop #"
<< loopID << "\n";
}
if (!found) {
found = pair;
continue;
}
// 'rule' is the candidate rule; 'otherRule' is the best rule to eliminate
// we've found so far.
const auto &otherRule = getRule(found->second);
const auto &otherLoop = Loops[found->first];
{
// If one of the rules was a concrete unification projection, prefer to
// eliminate the *other* rule.
//
// For example, if 'X.T == G<U, V>' is implied by the conformance on X,
// and the following three rules are defined in the current protocol:
//
// a) X.T == G<Int, W>
// b) X.U == Int
// c) X.V == W
//
// Then we can either eliminate a) alone, or b) and c). Since b) and c)
// are projections, they are "simpler", and we would rather keep both and
// eliminate a).
unsigned projectionCount = loop.getProjectionCount(*this);
unsigned otherProjectionCount = otherLoop.getProjectionCount(*this);
if (projectionCount != otherProjectionCount) {
if (projectionCount < otherProjectionCount)
found = pair;
continue;
}
}
{
// If one of the rules is a concrete type requirement, prefer to
// eliminate the *other* rule.
bool ruleIsConcrete = rule.getLHS().back().hasSubstitutions();
bool otherRuleIsConcrete = otherRule.getLHS().back().hasSubstitutions();
if (ruleIsConcrete != otherRuleIsConcrete) {
if (otherRuleIsConcrete)
found = pair;
continue;
}
}
{
// If both are concrete type requirements, prefer to eliminate the
// one with the more deeply nested type.
unsigned ruleNesting = rule.getNesting();
unsigned otherRuleNesting = otherRule.getNesting();
if (ruleNesting != otherRuleNesting) {
if (ruleNesting > otherRuleNesting)
found = pair;
continue;
}
}
{
// Otherwise, perform a shortlex comparison on (LHS, RHS).
std::optional<int> comparison = rule.compare(otherRule, Context);
if (!comparison.has_value()) {
// Two rules (T.[C] => T) and (T.[C'] => T) are incomparable if
// C and C' are superclass, concrete type or concrete conformance
// symbols.
continue;
}
if (*comparison == 0) {
// Given two rewrite loops that both eliminate the same rule, prefer
// the one that was not recorded by substitution simplification;
// substitution simplification rules contain the projections in
// context, which then prevents the projections from being eliminated.
//
// An example is if you have two rules implied by conformances on X,
//
// a) X.T == G<Y>
// b) X.T == G<Z>
//
// then the induced rule Y == Z is a projection.
//
// The rule X.T == G<Z> can be eliminated with a loop that begins at
// X.T.[concrete: G<Y>] followed by a decomposition and rewrite of
// Y into Z, finally followed by an inverse decomposition back to
// X.T.[concrete: G<Z>].
//
// However, if we can eliminate G<Y> via some other loop, we prefer
// to do that, since that might *also* allow us to eliminate Y == Z.
unsigned decomposeCount = loop.getDecomposeCount(*this);
unsigned otherDecomposeCount = otherLoop.getDecomposeCount(*this);
if (decomposeCount != otherDecomposeCount) {
if (decomposeCount < otherDecomposeCount)
found = pair;
continue;
}
}
if (*comparison > 0) {
// Otherwise, if the new rule is less canonical than the best one so
// far, it becomes the new candidate for elimination.
found = pair;
continue;
}
}
}
return found;
}
/// Delete a rewrite rule that is known to be redundant, replacing all
/// occurrences of the rule in all loops with the replacement path.
void RewriteSystem::deleteRule(unsigned ruleID,
const RewritePath &replacementPath) {
// Replace all occurrences of the rule with the replacement path in
// all remaining rewrite loops.
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
bool changed = loop.Path.replaceRuleWithPath(ruleID, replacementPath);
if (!changed)
continue;
if (Context.getASTContext().LangOpts.EnableRequirementMachineLoopNormalization) {
loop.computeNormalForm(*this);
}
// The loop's path has changed, so we must invalidate the cached
// result of findRulesAppearingOnceInEmptyContext().
loop.markDirty();
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Updated loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
}
// Record the redundant rule along with its replacement path.
RedundantRules.emplace_back(ruleID, replacementPath);
}
void RewriteSystem::performHomotopyReduction(
EliminationPredicate isRedundantRuleFn) {
while (true) {
auto optPair = findRuleToDelete(isRedundantRuleFn);
// If no redundant rules remain which can be eliminated by this pass, stop.
if (!optPair)
break;
unsigned loopID = optPair->first;
unsigned ruleID = optPair->second;
auto &loop = Loops[loopID];
auto replacementPath = loop.Path.splitCycleAtRule(ruleID);
loop.markDeleted();
auto &rule = getRule(ruleID);
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting rule " << rule << " from loop #"
<< loopID << "\n";
llvm::dbgs() << "* Replacement path: ";
MutableTerm mutTerm(getRule(ruleID).getLHS());
replacementPath.dump(llvm::dbgs(), mutTerm, *this);
llvm::dbgs() << "\n";
}
rule.markRedundant();
deleteRule(ruleID, replacementPath);
}
}
/// Use the loops to delete redundant rewrite rules via a series of Tietze
/// transformations, updating and simplifying existing loops as each rule
/// is deleted.
///
/// Redundant rules are mutated to set their isRedundant() bit.
void RewriteSystem::minimizeRewriteSystem(const PropertyMap &map) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-----------------------------\n";
llvm::dbgs() << "- Minimizing rewrite system -\n";
llvm::dbgs() << "-----------------------------\n";
}
ASSERT(Complete);
ASSERT(!Minimized);
ASSERT(!Frozen);
Minimized = 1;
propagateExplicitBits();
if (Context.getASTContext().LangOpts.EnableRequirementMachineLoopNormalization) {
for (auto &loop : Loops) {
loop.computeNormalForm(*this);
}
}
// First pass:
// - Eliminate all LHS-simplified non-conformance rules.
// - Eliminate all RHS-simplified and substitution-simplified rules.
//
// An example of a conformance rule that is LHS-simplified but not
// RHS-simplified is (T.[P] => T) where T is irreducible, but there
// is a rule (V.[P] => V) for some V with T == U.V.
//
// Such conformance rules can still be minimal, as part of a hack to
// maintain compatibility with the GenericSignatureBuilder's minimization
// algorithm.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "------------------------------\n";
llvm::dbgs() << "First pass: simplified rules -\n";
llvm::dbgs() << "------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isLHSSimplified() &&
!rule.isAnyConformanceRule())
return true;
if (rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
return true;
return false;
});
// Second pass:
// - Eliminate all rules with unresolved symbols which were *not*
// simplified.
//
// Two examples of such rules:
//
// - (T.X => T.[P:X]) obtained from resolving the overlap between
// (T.[P] => T) and ([P].X => [P:X]).
//
// - (T.X.[concrete: C] => T.X) obtained from resolving the overlap
// between (T.[P] => T) and a protocol typealias rule
// ([P].X.[concrete: C] => [P].X).
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-------------------------------\n";
llvm::dbgs() << "Second pass: unresolved rules -\n";
llvm::dbgs() << "-------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.containsNameSymbols())
return true;
return false;
});
// Now compute a set of minimal conformances.
//
// FIXME: For now this just produces a set of redundant conformances, but
// it should actually output the canonical minimal conformance equation
// for each non-minimal conformance. We can then use information to
// compute conformance access paths, instead of the current "brute force"
// algorithm used for that purpose.
llvm::DenseSet<unsigned> redundantConformances;
computeMinimalConformances(map, redundantConformances);
// Third pass: Eliminate all non-minimal conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-------------------------------------------\n";
llvm::dbgs() << "Third pass: non-minimal conformance rules -\n";
llvm::dbgs() << "-------------------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isAnyConformanceRule() &&
redundantConformances.count(ruleID))
return true;
return false;
});
// Fourth pass: Eliminate all remaining redundant non-conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "----------------------------------------\n";
llvm::dbgs() << "Fourth pass: all other redundant rules -\n";
llvm::dbgs() << "----------------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &loop = Loops[loopID];
const auto &rule = getRule(ruleID);
if (rule.isProtocolTypeAliasRule())
return true;
if (!loop.hasConcreteTypeAliasRule(*this) &&
!rule.isAnyConformanceRule())
return true;
return false;
});
computeRecursiveRules();
// Check invariants after homotopy reduction.
verifyRewriteLoops();
verifyRedundantConformances(redundantConformances);
verifyMinimizedRules(redundantConformances);
if (Debug.contains(DebugFlags::RedundantRules)) {
llvm::dbgs() << "\nRedundant rules:\n";
for (const auto &pair : RedundantRules) {
const auto &rule = getRule(pair.first);
llvm::dbgs() << "- ("
<< rule.getLHS() << " => "
<< rule.getRHS() << ") ::== ";
MutableTerm lhs(rule.getLHS());
pair.second.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n";
if (Debug.contains(DebugFlags::RedundantRulesDetail)) {
llvm::dbgs() << "\n";
pair.second.dumpLong(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
}
}
/// Returns flags indicating if the rewrite system has unresolved or
/// conflicting rules in our minimization domain. If these flags are
/// set, we do not install this rewrite system in the rewrite context
/// after minimization. Instead, we will rebuild a new rewrite system
/// from the minimized requirements.
GenericSignatureErrors RewriteSystem::getErrors() const {
ASSERT(Complete);
ASSERT(Minimized);
GenericSignatureErrors result;
if (!ConflictingRules.empty())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
for (const auto &rule : getLocalRules()) {
if (rule.isPermanent())
continue;
// The conditional requirement inference feature imports new protocol
// components after the basic rewrite system is already built, so that's
// why we end up with imported rules that appear to be in the local rules
// slice. Those rules are well-formed, but their isRedundant() bit isn't
// set, so we must ignore them here.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
if (!rule.isRedundant() &&
!rule.isProtocolTypeAliasRule() &&
rule.containsNameSymbols())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
if (rule.isRecursive())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
if (!rule.isRedundant()) {
if (auto property = rule.isPropertyRule()) {
if (property->getKind() == Symbol::Kind::ConcreteConformance)
result |= GenericSignatureErrorFlags::HasConcreteConformances;
if (property->hasSubstitutions()) {
for (auto t : property->getSubstitutions()) {
if (t.containsNameSymbols())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
}
}
}
}
}
return result;
}
/// Collect all non-permanent, non-redundant rules whose domain is equal to
/// one of the protocols in the connected component represented by this
/// rewrite system.
///
/// These rules form the requirement signatures of these protocols.
llvm::DenseMap<const ProtocolDecl *, RewriteSystem::MinimizedProtocolRules>
RewriteSystem::getMinimizedProtocolRules() const {
ASSERT(Minimized);
ASSERT(!Protos.empty());
llvm::DenseMap<const ProtocolDecl *, MinimizedProtocolRules> rules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting())
continue;
const auto *proto = rule.getLHS().getRootProtocol();
if (!isInMinimizationDomain(proto))
continue;
if (rule.isProtocolTypeAliasRule())
rules[proto].TypeAliases.push_back(ruleID);
else if (!rule.containsNameSymbols())
rules[proto].Requirements.push_back(ruleID);
}
return rules;
}
/// Collect all non-permanent, non-redundant rules whose left hand side
/// begins with a generic parameter symbol.
///
/// These rules form the top-level generic signature for this rewrite system.
std::vector<unsigned>
RewriteSystem::getMinimizedGenericSignatureRules() const {
ASSERT(Minimized);
ASSERT(Protos.empty());
std::vector<unsigned> rules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting() ||
rule.containsNameSymbols()) {
continue;
}
if (rule.getLHS()[0].getKind() != Symbol::Kind::PackElement &&
rule.getLHS()[0].getKind() != Symbol::Kind::GenericParam)
continue;
rules.push_back(ruleID);
}
return rules;
}
/// Verify that each loop begins and ends at its basepoint.
void RewriteSystem::verifyRewriteLoops() const {
for (const auto &loop : Loops) {
loop.verify(*this);
}
}
/// Assert if homotopy reduction failed to eliminate a redundant conformance,
/// since this suggests a misunderstanding on my part.
void RewriteSystem::verifyRedundantConformances(
const llvm::DenseSet<unsigned> &redundantConformances) const {
for (unsigned ruleID : redundantConformances) {
const auto &rule = getRule(ruleID);
ASSERT(!rule.isPermanent() &&
"Permanent rule cannot be redundant");
ASSERT(!rule.isIdentityConformanceRule() &&
"Identity conformance cannot be redundant");
ASSERT(rule.isAnyConformanceRule() &&
"Redundant conformance is not a conformance rule?");
if (!rule.isRedundant()) {
llvm::errs() << "Homotopy reduction did not eliminate redundant "
<< "conformance?\n";
llvm::errs() << "(#" << ruleID << ") " << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
}
// Assert if homotopy reduction failed to eliminate a rewrite rule it was
// supposed to delete.
void RewriteSystem::verifyMinimizedRules(
const llvm::DenseSet<unsigned> &redundantConformances) const {
unsigned redundantRuleCount = 0;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
// Ignore the rewrite rule if it is not part of our minimization domain.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol())) {
if (rule.isRedundant()) {
llvm::errs() << "Redundant rule outside minimization domain: "
<< rule << "\n\n";
dump(llvm::errs());
abort();
}
continue;
}
// Note that sometimes permanent rules can be simplified, but they can never
// be redundant.
if (rule.isPermanent()) {
if (rule.isRedundant()) {
llvm::errs() << "Permanent rule is redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
continue;
}
if (rule.isRedundant())
++redundantRuleCount;
// LHS-simplified rules should be redundant, unless they're protocol
// conformance rules, which unfortunately might not be redundant, because
// we try to keep them in the original protocol definition for
// compatibility with the GenericSignatureBuilder's minimization algorithm.
if (rule.isLHSSimplified() &&
!rule.isRedundant() &&
!rule.isProtocolConformanceRule()) {
llvm::errs() << "Simplified rule is not redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
// RHS-simplified and substitution-simplified rules should be redundant.
if ((rule.isRHSSimplified() ||
rule.isSubstitutionSimplified()) &&
!rule.isRedundant()) {
llvm::errs() << "Simplified rule is not redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
if (rule.isRedundant() &&
rule.isAnyConformanceRule() &&
!rule.isRHSSimplified() &&
!rule.isSubstitutionSimplified() &&
!rule.containsNameSymbols() &&
!redundantConformances.count(ruleID)) {
llvm::errs() << "Minimal conformance is redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
if (RedundantRules.size() != redundantRuleCount) {
llvm::errs() << "Expected " << RedundantRules.size() << " redundant rules "
<< "but counted " << redundantRuleCount << "\n";
dump(llvm::errs());
abort();
}
// Replacement paths for redundant rules can only reference other redundant
// rules if those redundant rules were made redundant later, ie if they
// appear later in the array.
llvm::DenseSet<unsigned> laterRedundantRules;
for (const auto &pair : llvm::reverse(RedundantRules)) {
const auto &rule = getRule(pair.first);
if (!rule.isRedundant()) {
llvm::errs() << "Recorded replacement path for non-redundant rule "
<< rule << "\n";
dump(llvm::errs());
abort();
}
for (const auto &step : pair.second) {
if (step.Kind == RewriteStep::Rule) {
unsigned otherRuleID = step.getRuleID();
const auto &otherRule = getRule(otherRuleID);
if (otherRule.isRedundant() &&
!laterRedundantRules.count(otherRuleID)) {
llvm::errs() << "Redundant requirement path contains a redundant "
"rule " << otherRule << "\n";
dump(llvm::errs());
abort();
}
}
}
laterRedundantRules.insert(pair.first);
}
}
|