| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 
 | //===--- CanonicalizeInstruction.cpp - canonical SIL peepholes ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// SSA-peephole transformations that yield a more canonical SIL representation.
///
/// A superset of simplifyInstruction.
///
//===----------------------------------------------------------------------===//
// CanonicalizeInstruction defines a default DEBUG_TYPE: "sil-canonicalize"
#include "swift/Basic/Assertions.h"
#include "swift/SILOptimizer/Utils/CanonicalizeInstruction.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// Tracing within the implementation can also be activated by the pass.
#define DEBUG_TYPE pass.debugType
// Vtable anchor.
CanonicalizeInstruction::~CanonicalizeInstruction() {}
// Helper to delete an instruction, or mark it for deletion.
//
// Return an iterator to the next non-deleted instruction. The incoming iterator
// may already have advanced beyond 'inst'.
static SILBasicBlock::iterator killInstruction(SILInstruction *inst,
                                               SILBasicBlock::iterator nextII,
                                               CanonicalizeInstruction &pass) {
  if (nextII == inst->getIterator())
    ++nextII;
  pass.killInstruction(inst);
  return nextII;
}
// Helper to delete, or mark for deletion, an instruction with potential debug
// or end of scope uses. All "real" uses must already be removed.
//
// fix_lifetime uses are not currently handled here. They are generally
// (incorrectly) treated as "incidental" uses, but no canonicalizations need
// them yet.
static SILBasicBlock::iterator
killInstAndIncidentalUses(SingleValueInstruction *inst,
                          SILBasicBlock::iterator nextII,
                          CanonicalizeInstruction &pass) {
  while (!inst->use_empty()) {
    auto *user = inst->use_begin()->getUser();
    assert(user->isDebugInstruction() || isEndOfScopeMarker(user));
    nextII = killInstruction(user, nextII, pass);
  }
  return killInstruction(inst, nextII, pass);
}
//===----------------------------------------------------------------------===//
//                          Instruction Simplification
//===----------------------------------------------------------------------===//
// If simplification is successful, return a valid iterator to the next
// instruction that wasn't erased.
static std::optional<SILBasicBlock::iterator>
simplifyAndReplace(SILInstruction *inst, CanonicalizeInstruction &pass) {
  // Erase the simplified instruction and any instructions that end its
  // scope. Nothing needs to be added to the worklist except for Result,
  // because the instruction and all non-replaced users will be deleted.
  pass.callbacks.resetHadCallbackInvocation();
  auto result = simplifyAndReplaceAllSimplifiedUsesAndErase(
      inst, pass.callbacks, &pass.deadEndBlocks);
  if (!pass.callbacks.hadCallbackInvocation())
    return std::nullopt;
  return result;
}
//===----------------------------------------------------------------------===//
//                        Canonicalize Memory Operations
//===----------------------------------------------------------------------===//
// Replace all uses of an original struct or tuple extract instruction with the
// given load instruction. The caller ensures that the load only loads the
// extracted field.
//
// \p extract has the form:
// (struct_extract (load %base), #field)
//
// \p loadInst has the form:
// (load (struct_element_addr %base, #field)
static void replaceUsesOfExtract(SingleValueInstruction *extract,
                                 LoadOperation loadInst,
                                 CanonicalizeInstruction &pass) {
  assert(extract->getType() == loadInst->getType());
  SingleValueInstruction *loadedVal = *loadInst;
  if (auto qual = loadInst.getOwnershipQualifier()) {
    if (*qual == LoadOwnershipQualifier::Copy) {
      // Borrow the load-copied subelement, with precisely the same scope as
      // the aggregate borrow.
      assert(extract->getNumOperands() == 1);
      auto *origBorrow = cast<BeginBorrowInst>(extract->getOperand(0));
      auto *newBorrow = SILBuilderWithScope(origBorrow)
                            .createBeginBorrow(loadInst->getLoc(), *loadInst);
      pass.notifyNewInstruction(newBorrow);
      assert(extract == origBorrow->getSingleNonEndingUse()->getUser());
      for (auto *origEnd : origBorrow->getEndBorrows()) {
        auto *endBorrow = SILBuilderWithScope(origEnd).createEndBorrow(
            origEnd->getLoc(), newBorrow);
        pass.notifyNewInstruction(endBorrow);
      }
      loadedVal = newBorrow;
    }
  }
  LLVM_DEBUG(llvm::dbgs() << "Replacing " << *extract << "    with "
                          << *loadedVal << "\n");
  extract->replaceAllUsesWith(loadedVal);
}
// Given a load with multiple struct_extracts/tuple_extracts and no other uses,
// canonicalize the load into several (struct_element_addr (load)) pairs.
//
// (struct_extract (load %base))
//   ->
// (load (struct_element_addr %base, #field)
static SILBasicBlock::iterator
splitAggregateLoad(LoadOperation loadInst, CanonicalizeInstruction &pass) {
  auto *block = loadInst->getParentBlock();
  auto *instBeforeLoad = loadInst->getPreviousInstruction();
  // Keep track of the next iterator after any newly added or to-be-deleted
  // instructions. This must be valid regardless of whether the pass immediately
  // deletes the instructions or simply records them for later deletion.
  auto nextII = std::next(loadInst->getIterator());
  bool needsBorrow;
  if (auto qual = loadInst.getOwnershipQualifier()) {
    switch (*qual) {
    case LoadOwnershipQualifier::Unqualified:
    case LoadOwnershipQualifier::Trivial:
      needsBorrow = false;
      break;
    case LoadOwnershipQualifier::Copy:
      needsBorrow = true;
      break;
    case LoadOwnershipQualifier::Take:
      // TODO: To handle a "take", we would need to generate additional destroys
      // for any fields that aren't already extracted. This would be
      // out-of-place for this transform, and I'm not sure if this a case that
      // needs to be handled in CanonicalizeInstruction.
      return nextII;
    }
  } else {
    // If we don't have a qual, we have a borrow.
    needsBorrow = false;
  }
  struct ProjInstPair {
    Projection proj;
    SingleValueInstruction *extract;
    // When sorting, just look at the projection and ignore the instruction.
    // Including the instruction address in the sort key would be
    // nondeterministic.
    bool operator<(const ProjInstPair &rhs) const { return proj < rhs.proj; }
  };
  // Add load projections to a projection list.
  llvm::SmallVector<ProjInstPair, 8> projections;
  llvm::SmallVector<BeginBorrowInst *, 8> borrows;
  llvm::SmallVector<SILInstruction *, 8> lifetimeEndingInsts;
  for (auto *use : getNonDebugUses(*loadInst)) {
    auto *user = use->getUser();
    if (needsBorrow) {
      if (auto *destroy = dyn_cast<DestroyValueInst>(user)) {
        lifetimeEndingInsts.push_back(destroy);
        continue;
      }
      auto *borrow = dyn_cast<BeginBorrowInst>(user);
      if (!borrow)
        return nextII;
      // The transformation below also assumes a single borrow use.
      auto *borrowedOper = borrow->getSingleNonEndingUse();
      if (!borrowedOper)
        return nextII;
      borrows.push_back(borrow);
      user = borrowedOper->getUser();
    } else {
      if (isa<EndBorrowInst>(user) &&
          !loadInst.getOwnershipQualifier().has_value()) {
        lifetimeEndingInsts.push_back(user);
        continue;
      }
    }
    // If we have any non SEI, TEI instruction, don't do anything here.
    if (!isa<StructExtractInst>(user) && !isa<TupleExtractInst>(user))
      return nextII;
    auto extract = cast<SingleValueInstruction>(user);
    projections.push_back({Projection(extract), extract});
  }
  // Sort the list so projections with the same value decl and tuples with the
  // same indices will be processed together. This makes it easy to reuse the
  // load from the first such projection for all subsequent projections on the
  // same value decl or index.
  std::sort(projections.begin(), projections.end());
  // If the original load is dead, then do not delete it before
  // diagnostics. Doing so would suppress DefiniteInitialization in cases like:
  //
  // struct S {
  //   let a: Int
  //   init() {
  //     _ = a // must be diagnosed as use before initialization
  //     a = 0
  //   }
  // }
  //
  // However, if the load has any projections, it must be deleted, otherwise
  // exclusivity checking is too strict:
  //
  // extension S {
  //   mutating func foo() {
  //     _ = a // Must be diagnosed as a read of self.a only not the whole self.
  //   }
  // }
  //
  // Also, avoid degrading debug info unless it is necessary for exclusivity
  // diagnostics.
  //
  // TODO: This logic subtly anticipates SILGen behavior. In the future, change
  // SILGen to avoid emitting the full load and never delete loads in Raw SIL.
  if (projections.empty() && loadInst->getModule().getStage() == SILStage::Raw)
    return nextII;
  // Create a new address projection instruction and load instruction for each
  // unique projection.
  Projection *lastProj = nullptr;
  std::optional<LoadOperation> lastNewLoad;
  for (auto &pair : projections) {
    auto &proj = pair.proj;
    auto *extract = pair.extract;
    // If this projection is the same as the last projection we processed, just
    // replace all uses of the projection with the load we created previously.
    if (lastProj && proj == *lastProj) {
      replaceUsesOfExtract(extract, *lastNewLoad, pass);
      nextII = killInstruction(extract, nextII, pass);
      continue;
    }
    // This is a unique projection. Create the new address projection and load.
    lastProj = &proj;
    // Insert new instructions before the original load.
    SILBuilderWithScope LoadBuilder(*loadInst);
    auto *projInst =
        proj.createAddressProjection(LoadBuilder, loadInst->getLoc(),
                                     loadInst->getOperand(0))
            .get();
    pass.notifyNewInstruction(projInst);
    // When loading a trivial subelement, convert ownership.
    std::optional<LoadOwnershipQualifier> loadOwnership =
        loadInst.getOwnershipQualifier();
    if (loadOwnership.has_value()) {
      if (*loadOwnership != LoadOwnershipQualifier::Unqualified &&
          projInst->getType().isTrivial(*projInst->getFunction()))
        loadOwnership = LoadOwnershipQualifier::Trivial;
    } else {
      if (projInst->getType().isTrivial(*projInst->getFunction()))
        loadOwnership = LoadOwnershipQualifier::Trivial;
    }
    if (loadOwnership) {
      lastNewLoad =
          LoadBuilder.createLoad(loadInst->getLoc(), projInst, *loadOwnership);
    } else {
      lastNewLoad = LoadBuilder.createLoadBorrow(loadInst->getLoc(), projInst);
    }
    pass.notifyNewInstruction(**lastNewLoad);
    if (loadOwnership) {
      if (*loadOwnership == LoadOwnershipQualifier::Copy) {
        // Destroy the loaded value wherever the aggregate load was destroyed.
        assert(loadInst.getOwnershipQualifier() ==
               LoadOwnershipQualifier::Copy);
        for (SILInstruction *destroy : lifetimeEndingInsts) {
          auto *newInst = SILBuilderWithScope(destroy).createDestroyValue(
              destroy->getLoc(), lastNewLoad->getLoadInst());
          pass.notifyNewInstruction(newInst);
        }
      }
    } else {
      for (SILInstruction *destroy : lifetimeEndingInsts) {
        auto *newInst = SILBuilderWithScope(destroy).createEndBorrow(
            destroy->getLoc(), **lastNewLoad);
        pass.notifyNewInstruction(newInst);
      }
    }
    replaceUsesOfExtract(extract, *lastNewLoad, pass);
    nextII = killInstruction(extract, nextII, pass);
  }
  // Preserve the original load's debug information.
  if (pass.preserveDebugInfo) {
    swift::salvageLoadDebugInfo(loadInst);
  }
  // Remove the now unused borrows.
  for (auto *borrow : borrows)
    nextII = killInstAndIncidentalUses(borrow, nextII, pass);
  // Erase the old load.
  for (auto *destroy : lifetimeEndingInsts)
    nextII = killInstruction(destroy, nextII, pass);
  // TODO: remove this hack to advance the iterator beyond debug_value and check
  // SILInstruction::isDeleted() in the caller instead.
  while (nextII != loadInst->getParent()->end()
         && nextII->isDebugInstruction()) {
    ++nextII;
  }
  deleteAllDebugUses(*loadInst, pass.getCallbacks());
  nextII = killInstAndIncidentalUses(*loadInst, nextII, pass);
  /// A change has been made; and the load instruction is deleted.  The caller
  /// should now process the instruction where the load was before.
  ///
  /// BEFORE TRANSFORM   |   AFTER TRANSFORM
  ///    prequel_2       |      prequel_2
  ///    prequel_1       |      prequel_1
  ///    load            |  +-> ???
  ///    sequel_1        |  |   ???
  ///    sequel_2        |  |   ???
  ///                       |
  ///                       The instruction the caller should process next.
  if (instBeforeLoad)
    return instBeforeLoad->getNextInstruction()->getIterator();
  else
    return block->begin();
}
// Given a store within a single property struct, recursively form the parent
// struct values and promote the store to the outer struct type.
//
// (store (struct_element_addr %base) object)
//   ->
// (store %base (struct object))
//
// TODO: supporting enums here would be very easy. The main thing is adding
// support in `createAggFromFirstLevelProjections`.
// Note: we will not be able to support tuples because we cannot have a
// single-element tuple.
static SILBasicBlock::iterator
broadenSingleElementStores(StoreInst *storeInst,
                           CanonicalizeInstruction &pass) {
  // Keep track of the next iterator after any newly added or to-be-deleted
  // instructions. This must be valid regardless of whether the pass immediately
  // deletes the instructions or simply records them for later deletion.
  auto nextII = std::next(storeInst->getIterator());
  auto *f = storeInst->getFunction();
  ProjectionPath projections(storeInst->getDest()->getType());
  SILValue op = storeInst->getDest();
  while (isa<StructElementAddrInst>(op)) {
    auto *inst = cast<SingleValueInstruction>(op);
    SILValue baseAddr = inst->getOperand(0);
    SILType baseAddrType = baseAddr->getType();
    auto *decl = baseAddrType.getStructOrBoundGenericStruct();
    assert(
      !decl->isResilient(f->getModule().getSwiftModule(),
                         f->getResilienceExpansion()) &&
        "This code assumes resilient structs can not have fragile fields. If "
        "this assert is hit, this has been changed. Please update this code.");
    // Bail if the store's destination is not a struct_element_addr or if the
    // store's destination (%base) is not a loadable type. If %base is not a
    // loadable type, we can't create it as a struct later on.
    // If our aggregate has unreferenced storage then we can never prove if it
    // actually has a single field.
    if (!baseAddrType.isLoadable(*f) ||
        baseAddrType.aggregateHasUnreferenceableStorage() ||
        decl->getStoredProperties().size() != 1)
      break;
    // If the struct is a move-only type, even though the single element in
    // the struct is trivial, the struct would be non-trivial. In this case, we
    // need a much more compelx analysis to determine the store ownership
    // qualifier. Such an analysis is not suitable in the canonicalize pass. So,
    // bail out.
    if (baseAddrType.isMoveOnly()) {
      break;
    }
    projections.push_back(Projection(inst));
    op = baseAddr;
  }
  // If we couldn't create a projection, bail.
  if (projections.empty())
    return nextII;
  // Now work our way back up. At this point we know all operations we are going
  // to do succeed (cast<SingleValueInst>, createAggFromFirstLevelProjections,
  // etc.) so we can omit null checks. We should not bail at this point (we
  // could create a double consume, or worse).
  SILBuilderWithScope builder(storeInst);
  SILValue result = storeInst->getSrc();
  SILValue storeAddr = storeInst->getDest();
  for (Projection proj : llvm::reverse(projections)) {
    storeAddr = cast<SingleValueInstruction>(storeAddr)->getOperand(0);
    result = proj.createAggFromFirstLevelProjections(
                     builder, storeInst->getLoc(),
                     storeAddr->getType().getObjectType(), {result})
                 .get();
  }
  // Store the new struct-wrapped value into the final base address.
  builder.createStore(storeInst->getLoc(), result, storeAddr,
                      storeInst->getOwnershipQualifier());
  // Erase the original store.
  return killInstruction(storeInst, nextII, pass);
}
//===----------------------------------------------------------------------===//
//                            Simple ARC Peepholes
//===----------------------------------------------------------------------===//
/// "dead" copies are removed in OSSA, but this may shorten object lifetimes,
/// changing program semantics in unexpected ways by releasing weak references
/// and running deinitializers early. This copy may be the only thing keeping a
/// variable's reference alive. But just because the copy's current SSA value
/// contains no other uses does not mean that there aren't other uses that still
/// correspond to the original variable whose lifetime is protected by this
/// copy. The only way to guarantee the lifetime of a variable is to use a
/// borrow scope--copy/destroy is insufficient by itself.
///
/// FIXME: This removes debug_value instructions aggressively as part of
/// SILGenCleanup. Instead, debug_values should be canonicalized before copy
/// elimination so that we never see the pattern:
///   %b = begin_borrow
///   %c = copy %b
///   end_borrow %b
///   debug_value %c
///
/// FIXME: Technically this should be guarded by a compiler flag like
/// -enable-copy-propagation until SILGen protects scoped variables by
/// borrow scopes.
static SILBasicBlock::iterator
eliminateSimpleCopies(CopyValueInst *cvi, CanonicalizeInstruction &pass) {
  auto next = std::next(cvi->getIterator());
  // Eliminate copies that only have destroy_value uses.
  SmallVector<DestroyValueInst *, 8> destroys;
  for (Operand *use : cvi->getUses()) {
    if (auto *dvi = dyn_cast<DestroyValueInst>(use->getUser())) {
      destroys.push_back(dvi);
      continue;
    }
    if (!pass.preserveDebugInfo && isa<DebugValueInst>(use->getUser())) {
      continue;
    }
    return next;
  }
  while (!destroys.empty()) {
    next = killInstruction(destroys.pop_back_val(), next, pass);
  }
  return killInstAndIncidentalUses(cvi, next, pass);
}
/// Unlike dead copy elimination, dead borrows can be safely removed because the
/// semantics of a borrow scope
static SILBasicBlock::iterator
eliminateSimpleBorrows(BeginBorrowInst *bbi, CanonicalizeInstruction &pass) {
  auto next = std::next(bbi->getIterator());
  // Lexical borrow scopes can only be eliminated under certain circumstances:
  // (1) They can never be eliminated if the module is in the raw stage, because
  //     they may be needed for diagnostic.
  // (2) They can never be eliminated if there is no enclosing lexical scope
  //     which guarantees the lifetime of the value.
  if (bbi->isLexical() && (bbi->getModule().getStage() == SILStage::Raw ||
                           !isNestedLexicalBeginBorrow(bbi)))
    return next;
    
  // Fixed borrow scopes can't be eliminated during the raw stage since they
  // control move checker behavior.
  if (bbi->isFixed() && bbi->getModule().getStage() == SILStage::Raw) {
    return next;
  }
  // Borrow scopes representing a VarDecl can't be eliminated during the raw
  // stage because they may be needed for diagnostics.
  if (bbi->isFromVarDecl() && bbi->getModule().getStage() == SILStage::Raw) {
    return next;
  }
  // We know that our borrow is completely within the lifetime of its base value
  // if the borrow is never reborrowed. We check for reborrows and do not
  // optimize such cases. Otherwise, we can eliminate our borrow and instead use
  // our operand.
  auto base = bbi->getOperand();
  auto baseOwnership = base->getOwnershipKind();
  SmallVector<EndBorrowInst *, 8> endBorrows;
  for (auto *use : getNonDebugUses(bbi)) {
    if (auto *ebi = dyn_cast<EndBorrowInst>(use->getUser())) {
      endBorrows.push_back(ebi);
      continue;
    }
    // Otherwise, if we have a use that is non-lifetime ending and can accept
    // our base ownership, continue.
    if (!use->isLifetimeEnding() && use->canAcceptKind(baseOwnership))
      continue;
    return next;
  }
  while (!endBorrows.empty()) {
    next = killInstruction(endBorrows.pop_back_val(), next, pass);
  }
  bbi->replaceAllUsesWith(base);
  pass.notifyHasNewUsers(base);
  return killInstruction(bbi, next, pass);
}
/// Delete any result having forwarding instruction that only has destroy_value
/// and debug_value uses.
static SILBasicBlock::iterator
eliminateUnneededForwardingUnarySingleValueInst(SingleValueInstruction *inst,
                                                CanonicalizeInstruction &pass) {
  auto next = std::next(inst->getIterator());
  if (isa<DropDeinitInst>(inst))
    return next;
  if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(inst)) {
    if (uedi->getOperand()->getType().isValueTypeWithDeinit())
      return next;
  }
  for (auto *use : getNonDebugUses(inst)) {
    if (auto *destroy = dyn_cast<DestroyValueInst>(use->getUser())) {
      if (destroy->isFullDeinitialization())
        continue;
    }
    return next;
  }
  deleteAllDebugUses(inst, pass.callbacks);
  SILValue op = inst->getOperand(0);
  inst->replaceAllUsesWith(op);
  pass.notifyHasNewUsers(op);
  return killInstruction(inst, next, pass);
}
static std::optional<SILBasicBlock::iterator>
tryEliminateUnneededForwardingInst(SILInstruction *i,
                                   CanonicalizeInstruction &pass) {
  assert(ForwardingInstruction::isa(i) &&
         "Must be an ownership forwarding inst");
  if (auto *svi = dyn_cast<SingleValueInstruction>(i))
    if (svi->getNumOperands() == 1)
      return eliminateUnneededForwardingUnarySingleValueInst(svi, pass);
  return std::nullopt;
}
//===----------------------------------------------------------------------===//
//                            Top-Level Entry Point
//===----------------------------------------------------------------------===//
SILBasicBlock::iterator
CanonicalizeInstruction::canonicalize(SILInstruction *inst) {
  if (auto nextII = simplifyAndReplace(inst, *this))
    return nextII.value();
  if (auto li = LoadOperation(inst)) {
    return splitAggregateLoad(li, *this);
  }
  if (auto *storeInst = dyn_cast<StoreInst>(inst)) {
    return broadenSingleElementStores(storeInst, *this);
  }
  if (auto *cvi = dyn_cast<CopyValueInst>(inst))
    return eliminateSimpleCopies(cvi, *this);
  if (auto *bbi = dyn_cast<BeginBorrowInst>(inst))
    return eliminateSimpleBorrows(bbi, *this);
  // If we have ownership and are not in raw SIL, eliminate unneeded forwarding
  // insts. We don't do this in raw SIL as not to disturb the codegen read by
  // diagnostics.
  //
  // TODO: fix tryEliminateUnneededForwardingInst to handle debug uses.
  auto *fn = inst->getFunction();
  if (!preserveDebugInfo && fn->hasOwnership()
      && fn->getModule().getStage() != SILStage::Raw) {
    if (ForwardingInstruction::isa(inst))
      if (auto newNext = tryEliminateUnneededForwardingInst(inst, *this))
        return *newNext;
  }
  // Skip ahead.
  return std::next(inst->getIterator());
}
 |