1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
|
//===--- SILIsolationInfo.cpp ---------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/SILIsolationInfo.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/AddressWalker.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
using namespace swift;
using namespace swift::PatternMatch;
static std::optional<ActorIsolation>
getGlobalActorInitIsolation(SILFunction *fn) {
auto block = fn->begin();
// Make sure our function has a single block. We should always have a single
// block today. Return nullptr otherwise.
if (block == fn->end() || std::next(block) != fn->end())
return {};
GlobalAddrInst *gai = nullptr;
if (!match(cast<SILInstruction>(block->getTerminator()),
m_ReturnInst(m_AddressToPointerInst(m_GlobalAddrInst(gai)))))
return {};
auto *globalDecl = gai->getReferencedGlobal()->getDecl();
if (!globalDecl)
return {};
// See if our globalDecl is specifically guarded.
return getActorIsolation(globalDecl);
}
class DeclRefExprAnalysis {
DeclRefExpr *result = nullptr;
// Be greedy with the small size so we very rarely allocate.
SmallVector<Expr *, 8> lookThroughExprs;
public:
bool compute(Expr *expr);
DeclRefExpr *getResult() const {
assert(result && "Not computed?!");
return result;
}
ArrayRef<Expr *> getLookThroughExprs() const {
assert(result && "Not computed?!");
return lookThroughExprs;
}
void print(llvm::raw_ostream &os) const {
if (!result) {
os << "DeclRefExprAnalysis: None.";
return;
}
os << "DeclRefExprAnalysis:\n";
result->dump(os);
os << "\n";
if (lookThroughExprs.size()) {
os << "LookThroughExprs:\n";
for (auto *expr : lookThroughExprs) {
expr->dump(os, 4);
}
}
}
SWIFT_DEBUG_DUMP { print(llvm::dbgs()); }
bool hasNonisolatedUnsafe() const {
// See if our initial member_ref_expr is actor instance isolated.
for (auto *expr : lookThroughExprs) {
// We can skip load expr.
if (isa<LoadExpr>(expr))
continue;
if (auto *mri = dyn_cast<MemberRefExpr>(expr)) {
if (mri->hasDecl()) {
auto isolation = swift::getActorIsolation(mri->getDecl().getDecl());
if (isolation.isNonisolatedUnsafe())
return true;
}
}
break;
}
return false;
}
};
bool DeclRefExprAnalysis::compute(Expr *expr) {
struct LocalWalker final : ASTWalker {
DeclRefExprAnalysis &parentAnalysis;
LocalWalker(DeclRefExprAnalysis &parentAnalysis)
: parentAnalysis(parentAnalysis) {}
PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
assert(!parentAnalysis.result && "Shouldn't have a result yet");
if (auto *dre = dyn_cast<DeclRefExpr>(expr)) {
parentAnalysis.result = dre;
return Action::Stop();
}
if (isa<CoerceExpr, MemberRefExpr, ImplicitConversionExpr, IdentityExpr>(
expr)) {
parentAnalysis.lookThroughExprs.push_back(expr);
return Action::Continue(expr);
}
return Action::Stop();
}
};
LocalWalker walker(*this);
if (auto *ae = dyn_cast<AssignExpr>(expr)) {
ae->getSrc()->walk(walker);
} else {
expr->walk(walker);
}
return result;
}
static SILIsolationInfo
inferIsolationInfoForTempAllocStack(AllocStackInst *asi) {
// We want to search for an alloc_stack that is not from a VarDecl and that is
// initially isolated along all paths to the same actor isolation. If they
// differ, then we emit a we do not understand error.
struct AddressWalkerState {
AllocStackInst *asi = nullptr;
SmallVector<Operand *, 8> indirectResultUses;
llvm::SmallSetVector<SILInstruction *, 8> writes;
Operand *sameBlockIndirectResultUses = nullptr;
};
struct AddressWalker final : TransitiveAddressWalker<AddressWalker> {
AddressWalkerState &state;
AddressWalker(AddressWalkerState &state) : state(state) {
assert(state.asi);
}
bool visitUse(Operand *use) {
// If we do not write to memory, then it is harmless.
if (!use->getUser()->mayWriteToMemory())
return true;
if (auto fas = FullApplySite::isa(use->getUser())) {
if (fas.isIndirectResultOperand(*use)) {
// If our indirect result use is in the same block...
auto *parentBlock = state.asi->getParent();
if (fas.getParent() == parentBlock) {
// If we haven't seen any indirect result use yet... just cache it
// and return true.
if (!state.sameBlockIndirectResultUses) {
state.sameBlockIndirectResultUses = use;
return true;
}
// If by walking from the alloc stack to the full apply site, we do
// not see the current sameBlockIndirectResultUses, we have a new
// newest use.
if (llvm::none_of(
llvm::make_range(state.asi->getIterator(),
fas->getIterator()),
[&](const SILInstruction &inst) {
return &inst ==
state.sameBlockIndirectResultUses->getUser();
})) {
state.sameBlockIndirectResultUses = use;
}
return true;
}
// If not, just stash it into the non-same block indirect result use
// array.
state.indirectResultUses.push_back(use);
return true;
}
}
state.writes.insert(use->getUser());
return true;
}
};
AddressWalkerState state;
state.asi = asi;
AddressWalker walker(state);
// If we fail to walk, emit an unknown patten error.
if (AddressUseKind::Unknown == std::move(walker).walk(asi)) {
return SILIsolationInfo();
}
// If we do not have any indirect result uses... we can just assign fresh.
if (!state.sameBlockIndirectResultUses && state.indirectResultUses.empty())
return SILIsolationInfo::getDisconnected(false /*isUnsafeNonIsolated*/);
// Otherwise, lets see if we had a same block indirect result.
if (state.sameBlockIndirectResultUses) {
// Check if this indirect result has a sending result. In such a case, we
// always return disconnected.
if (auto fas =
FullApplySite::isa(state.sameBlockIndirectResultUses->getUser())) {
if (fas.getSubstCalleeType()->hasSendingResult())
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
}
// If we do not have any writes in between the alloc stack and the
// initializer, then we have a good target. Otherwise, we just return
// AssignFresh.
if (llvm::none_of(
llvm::make_range(
asi->getIterator(),
state.sameBlockIndirectResultUses->getUser()->getIterator()),
[&](SILInstruction &inst) { return state.writes.count(&inst); })) {
auto isolationInfo =
SILIsolationInfo::get(state.sameBlockIndirectResultUses->getUser());
if (isolationInfo) {
return isolationInfo;
}
}
// If we did not find an isolation info, just do a normal assign fresh.
return SILIsolationInfo::getDisconnected(false /*is unsafe non isolated*/);
}
// Check if any of our writes are within the first block. This would
// automatically stop our search and we should assign fresh. Since we are
// going over the writes here, also setup a writeBlocks set.
auto *defBlock = asi->getParent();
BasicBlockSet writeBlocks(defBlock->getParent());
for (auto *write : state.writes) {
if (write->getParent() == defBlock)
return SILIsolationInfo::getDisconnected(false /*unsafe non isolated*/);
writeBlocks.insert(write->getParent());
}
// Ok, at this point we know that we do not have any indirect result uses in
// the def block and also we do not have any writes in that initial
// block. This sets us up for our global analysis. Our plan is as follows:
//
// 1. We are going to create a set of writeBlocks and a map from SILBasicBlock
// -> first indirect result block if there isn't a write before it.
//
// 2. We walk from our def block until we reach the first indirect result
// block. We stop processing successor if we find a write block successor that
// is not also an indirect result block. This makes sense since we earlier
// required that any notates indirect result block do not have any writes in
// between the indirect result and the beginning of the block.
llvm::SmallDenseMap<SILBasicBlock *, Operand *, 2> blockToOperandMap;
for (auto *use : state.indirectResultUses) {
// If our indirect result use has a write before it in the block, do not
// store it. It cannot be our indirect result initializer.
if (writeBlocks.contains(use->getParentBlock()) &&
llvm::any_of(
use->getParentBlock()->getRangeEndingAtInst(use->getUser()),
[&](SILInstruction &inst) { return state.writes.contains(&inst); }))
continue;
// Ok, we now know that there aren't any writes before us in the block. Now
// try to insert.
auto iter = blockToOperandMap.try_emplace(use->getParentBlock(), use);
// If we actually inserted, then we are done.
if (iter.second) {
continue;
}
// Otherwise, if we are before the current value, set us to be the value
// instead.
if (llvm::none_of(
use->getParentBlock()->getRangeEndingAtInst(use->getUser()),
[&](const SILInstruction &inst) {
return &inst == iter.first->second->getUser();
})) {
iter.first->getSecond() = use;
}
}
// Ok, we now have our data all setup.
BasicBlockWorklist worklist(asi->getFunction());
for (auto *succBlock : asi->getParentBlock()->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succBlock);
}
Operand *targetOperand = nullptr;
while (auto *next = worklist.pop()) {
// First check if this is one of our target blocks.
auto iter = blockToOperandMap.find(next);
// If this is our target blocks...
if (iter != blockToOperandMap.end()) {
// If we already have an assigned target block, make sure this is the same
// one. If it is, just continue. Otherwise, something happened we do not
// understand... assign fresh.
if (!targetOperand) {
targetOperand = iter->second;
continue;
}
if (targetOperand->getParentBlock() == iter->first) {
continue;
}
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
}
// Otherwise, see if this block is a write block. If so, we have a path to a
// write block that does not go through one of our blockToOperandMap
// blocks... return assign fresh.
if (writeBlocks.contains(next))
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
// Otherwise, visit this blocks successors if we have not yet visited them.
for (auto *succBlock : next->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succBlock);
}
}
// At this point, we know that we have a single indirect result use that
// dominates all writes and other indirect result uses. We can say that our
// alloc_stack temporary is that indirect result use's isolation.
if (auto fas = FullApplySite::isa(targetOperand->getUser())) {
if (fas.getSubstCalleeType()->hasSendingResult())
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
}
return SILIsolationInfo::get(targetOperand->getUser());
}
SILIsolationInfo SILIsolationInfo::get(SILInstruction *inst) {
if (auto fas = FullApplySite::isa(inst)) {
// Check if we have SIL based "faked" isolation crossings that we use for
// testing purposes.
//
// NOTE: Please do not use getWithIsolationCrossing in more places! We only
// want to use it here!
if (auto crossing = fas.getIsolationCrossing()) {
if (auto info = SILIsolationInfo::getWithIsolationCrossing(*crossing))
return info;
}
if (auto *isolatedOp = fas.getIsolatedArgumentOperandOrNullPtr()) {
// First look through ActorInstance agnostic values so we can find the
// type of the actual underlying actor (e.x.: copy_value,
// init_existential_ref, begin_borrow, etc).
auto actualIsolatedValue =
ActorInstance::lookThroughInsts(isolatedOp->get());
// First see if we have a .none enum inst. In such a case, we are actually
// on the nonisolated global queue.
if (auto *ei = dyn_cast<EnumInst>(actualIsolatedValue)) {
if (ei->getElement()->getParentEnum()->isOptionalDecl() &&
!ei->hasOperand()) {
// In this case, we have a .none so we are attempting to use the
// global queue. This means that the isolation effect of the
// function is disconnected since we are treating the function as
// nonisolated.
return SILIsolationInfo::getDisconnected(false);
}
}
// Then using that value, grab the AST type from the actual isolated
// value.
CanType selfASTType = actualIsolatedValue->getType().getASTType();
// Then look through optional types since in cases like where we have a
// function argument that is an Optional actor... like an optional actor
// returned from a function, we still need to be able to lookup the actor
// as being the underlying type.
selfASTType =
selfASTType->lookThroughAllOptionalTypes()->getCanonicalType();
if (auto *nomDecl = selfASTType->getAnyActor()) {
// Then see if we have a global actor. This pattern matches the output
// for doing things like GlobalActor.shared.
if (nomDecl->isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(SILValue(), nomDecl);
}
// TODO: We really should be doing this based off of an Operand. Then
// we would get the SILValue() for the first element. Today this can
// only mess up isolation history.
return SILIsolationInfo::getActorInstanceIsolated(
SILValue(), actualIsolatedValue, nomDecl);
}
}
// See if we can infer isolation from our callee.
if (auto isolationInfo = get(fas.getCallee())) {
return isolationInfo;
}
}
if (auto *pai = dyn_cast<PartialApplyInst>(inst)) {
if (auto *ace = pai->getLoc().getAsASTNode<AbstractClosureExpr>()) {
auto actorIsolation = ace->getActorIsolation();
if (actorIsolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
pai, actorIsolation.getGlobalActor());
}
if (actorIsolation.isActorInstanceIsolated()) {
ApplySite as(pai);
SILValue actorInstance;
for (auto &op : as.getArgumentOperands()) {
if (as.getArgumentParameterInfo(op).hasOption(
SILParameterInfo::Isolated)) {
actorInstance = op.get();
break;
}
}
if (actorInstance) {
return SILIsolationInfo::getActorInstanceIsolated(
pai, actorInstance, actorIsolation.getActor());
}
// For now, if we do not have an actor instance, just create an actor
// instance isolated without an actor instance.
//
// If we do not have an actor instance, that means that we have a
// partial apply for which the isolated parameter was not closed over
// and is an actual argument that we pass in. This means that the
// partial apply is actually flow sensitive in terms of which specific
// actor instance we are isolated to.
//
// TODO: How do we want to resolve this.
return SILIsolationInfo::getPartialApplyActorInstanceIsolated(
pai, actorIsolation.getActor());
}
assert(actorIsolation.getKind() != ActorIsolation::Erased &&
"Implement this!");
}
}
// See if the memory base is a ref_element_addr from an address. If so, add
// the actor derived flag.
//
// This is important so we properly handle setters.
if (auto *rei = dyn_cast<RefElementAddrInst>(inst)) {
auto varIsolation = swift::getActorIsolation(rei->getField());
auto *nomDecl =
rei->getOperand()->getType().getNominalOrBoundGenericNominal();
if (nomDecl->isAnyActor())
return SILIsolationInfo::getActorInstanceIsolated(rei, rei->getOperand(),
nomDecl)
.withUnsafeNonIsolated(varIsolation.isNonisolatedUnsafe());
if (auto isolation = swift::getActorIsolation(nomDecl)) {
assert(isolation.isGlobalActor());
return SILIsolationInfo::getGlobalActorIsolated(
rei, isolation.getGlobalActor())
.withUnsafeNonIsolated(varIsolation.isNonisolatedUnsafe());
}
return SILIsolationInfo::getDisconnected(
varIsolation.isNonisolatedUnsafe());
}
// Check if we have a global_addr inst.
if (auto *ga = dyn_cast<GlobalAddrInst>(inst)) {
if (auto *global = ga->getReferencedGlobal()) {
if (auto *globalDecl = global->getDecl()) {
auto isolation = swift::getActorIsolation(globalDecl);
if (isolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
ga, isolation.getGlobalActor());
}
if (isolation.isNonisolatedUnsafe()) {
return SILIsolationInfo::getDisconnected(
true /*is nonisolated(unsafe)*/);
}
}
}
}
// Treat function ref as either actor isolated or sendable.
if (auto *fri = dyn_cast<FunctionRefInst>(inst)) {
if (auto optIsolation = fri->getReferencedFunction()->getActorIsolation()) {
auto isolation = *optIsolation;
// First check if we are actor isolated at the AST level... if we are,
// then create the relevant actor isolated.
if (isolation.isActorIsolated()) {
if (isolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, isolation.getGlobalActor());
}
// TODO: We need to be able to support flow sensitive actor instances
// like we do for partial apply. Until we do so, just store SILValue()
// for this. This could cause a problem if we can construct a function
// ref and invoke it with two different actor instances of the same type
// and pass in the same parameters to both. We should error and we would
// not with this impl since we could not distinguish the two.
if (isolation.getKind() == ActorIsolation::ActorInstance) {
return SILIsolationInfo::getFlowSensitiveActorIsolated(fri,
isolation);
}
assert(isolation.getKind() != ActorIsolation::Erased &&
"Implement this!");
}
// Then check if we have something that is nonisolated unsafe.
if (isolation.isNonisolatedUnsafe()) {
// First check if our function_ref is a method of a global actor
// isolated type. In such a case, we create a global actor isolated
// nonisolated(unsafe) so that if we assign the value to another
// variable, the variable still says that it is the appropriate global
// actor isolated thing.
//
// E.x.:
//
// @MainActor
// struct X { nonisolated(unsafe) var x: NonSendableThing { ... } }
//
// We want X.x to be safe to use... but to have that 'z' in the
// following is considered MainActor isolated.
//
// let z = X.x
//
auto *func = fri->getReferencedFunction();
auto funcType = func->getLoweredFunctionType();
if (funcType->hasSelfParam()) {
auto selfParam = funcType->getSelfInstanceType(
fri->getModule(), func->getTypeExpansionContext());
if (auto *nomDecl = selfParam->getNominalOrBoundGenericNominal()) {
auto nomDeclIsolation = swift::getActorIsolation(nomDecl);
if (nomDeclIsolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, nomDeclIsolation.getGlobalActor())
.withUnsafeNonIsolated(true);
}
}
}
}
}
// Otherwise, lets look at the AST and see if our function ref is from an
// autoclosure.
if (auto *autoclosure = fri->getLoc().getAsASTNode<AutoClosureExpr>()) {
if (auto *funcType = autoclosure->getType()->getAs<AnyFunctionType>()) {
if (funcType->hasGlobalActor()) {
if (funcType->hasGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, funcType->getGlobalActor());
}
}
if (auto *resultFType =
funcType->getResult()->getAs<AnyFunctionType>()) {
if (resultFType->hasGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, resultFType->getGlobalActor());
}
}
}
}
}
if (auto *cmi = dyn_cast<ClassMethodInst>(inst)) {
// Ok, we know that we do not have an actor... but we might have a global
// actor isolated method. Use the AST to compute the actor isolation and
// check if we are self. If we are not self, we want this to be
// disconnected.
if (auto *expr = cmi->getLoc().getAsASTNode<Expr>()) {
DeclRefExprAnalysis exprAnalysis;
if (exprAnalysis.compute(expr)) {
auto *dre = exprAnalysis.getResult();
// First see if we can get any information from the actual var decl of
// the class_method. We could find isolation or if our value is marked
// as nonisolated(unsafe), we could find that as well. If we have
// nonisolated(unsafe), we just propagate the value. Otherwise, we
// return the isolation.
bool isNonIsolatedUnsafe = exprAnalysis.hasNonisolatedUnsafe();
{
auto isolation = swift::getActorIsolation(dre->getDecl());
if (isolation.isActorIsolated()) {
// Check if we have a global actor and handle it appropriately.
if (isolation.getKind() == ActorIsolation::GlobalActor) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getGlobalActorIsolated(
cmi, isolation.getGlobalActor())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
// In this case, we have an actor instance that is self.
if (isolation.getKind() != ActorIsolation::ActorInstance &&
isolation.isActorInstanceForSelfParameter()) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getActorInstanceIsolated(
cmi, cmi->getOperand(),
cmi->getOperand()
->getType()
.getNominalOrBoundGenericNominal())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
}
}
if (auto type = dre->getType()->getNominalOrBoundGenericNominal()) {
if (auto isolation = swift::getActorIsolation(type)) {
if (isolation.isActorIsolated()) {
// Check if we have a global actor and handle it appropriately.
if (isolation.getKind() == ActorIsolation::GlobalActor) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getGlobalActorIsolated(
cmi, isolation.getGlobalActor())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
// In this case, we have an actor instance that is self.
if (isolation.getKind() != ActorIsolation::ActorInstance &&
isolation.isActorInstanceForSelfParameter()) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getActorInstanceIsolated(
cmi, cmi->getOperand(),
cmi->getOperand()
->getType()
.getNominalOrBoundGenericNominal())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
}
}
}
if (isNonIsolatedUnsafe)
return SILIsolationInfo::getDisconnected(isNonIsolatedUnsafe);
}
}
}
// See if we have a struct_extract from a global actor isolated type.
if (auto *sei = dyn_cast<StructExtractInst>(inst)) {
auto varIsolation = swift::getActorIsolation(sei->getField());
if (auto isolation =
SILIsolationInfo::getGlobalActorIsolated(sei, sei->getStructDecl()))
return isolation.withUnsafeNonIsolated(
varIsolation.isNonisolatedUnsafe());
return SILIsolationInfo::getDisconnected(
varIsolation.isNonisolatedUnsafe());
}
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
auto varIsolation = swift::getActorIsolation(seai->getField());
if (auto isolation = SILIsolationInfo::getGlobalActorIsolated(
seai, seai->getStructDecl()))
return isolation.withUnsafeNonIsolated(
varIsolation.isNonisolatedUnsafe());
return SILIsolationInfo::getDisconnected(
varIsolation.isNonisolatedUnsafe());
}
// See if we have an unchecked_enum_data from a global actor isolated type.
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(inst)) {
return SILIsolationInfo::getGlobalActorIsolated(uedi, uedi->getEnumDecl());
}
// See if we have an unchecked_enum_data from a global actor isolated type.
if (auto *utedi = dyn_cast<UncheckedTakeEnumDataAddrInst>(inst)) {
return SILIsolationInfo::getGlobalActorIsolated(utedi,
utedi->getEnumDecl());
}
// Check if we have an unsafeMutableAddressor from a global actor, mark the
// returned value as being actor derived.
if (auto applySite = dyn_cast<ApplyInst>(inst)) {
if (auto *calleeFunction = applySite->getCalleeFunction()) {
if (calleeFunction->isGlobalInit()) {
auto isolation = getGlobalActorInitIsolation(calleeFunction);
if (isolation && isolation->isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
applySite, isolation->getGlobalActor());
}
}
}
}
// See if we have a convert function from a Sendable actor isolated function,
// we want to treat the result of the convert function as being actor isolated
// so that we cannot escape the value.
//
// NOTE: At this point, we already know that cfi's result is not sendable,
// since we would have exited above already.
if (auto *cfi = dyn_cast<ConvertFunctionInst>(inst)) {
SILValue operand = cfi->getOperand();
if (operand->getType().getAs<SILFunctionType>()->isSendable()) {
SILValue newValue = operand;
do {
operand = newValue;
newValue = lookThroughOwnershipInsts(operand);
if (auto *ttfi = dyn_cast<ThinToThickFunctionInst>(newValue)) {
newValue = ttfi->getOperand();
}
if (auto *cfi = dyn_cast<ConvertFunctionInst>(newValue)) {
newValue = cfi->getOperand();
}
if (auto *pai = dyn_cast<PartialApplyInst>(newValue)) {
newValue = pai->getCallee();
}
} while (newValue != operand);
if (auto *ai = dyn_cast<ApplyInst>(operand)) {
if (auto *callExpr = ai->getLoc().getAsASTNode<ApplyExpr>()) {
if (auto *callType = callExpr->getType()->getAs<AnyFunctionType>()) {
if (callType->hasGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
ai, callType->getGlobalActor());
}
}
}
}
if (auto *fri = dyn_cast<FunctionRefInst>(operand)) {
if (auto isolation = SILIsolationInfo::get(fri)) {
return isolation;
}
}
}
}
if (auto *asi = dyn_cast<AllocStackInst>(inst)) {
if (asi->isFromVarDecl()) {
if (auto *varDecl = asi->getLoc().getAsASTNode<VarDecl>()) {
auto isolation = swift::getActorIsolation(varDecl);
if (isolation.getKind() == ActorIsolation::NonisolatedUnsafe) {
return SILIsolationInfo::getDisconnected(
true /*is nonisolated(unsafe)*/);
}
}
} else {
// Ok, we have a temporary. If it is non-Sendable...
if (SILIsolationInfo::isNonSendableType(asi)) {
if (auto isolation = inferIsolationInfoForTempAllocStack(asi))
return isolation;
}
}
}
if (auto *mvi = dyn_cast<MoveValueInst>(inst)) {
if (mvi->isFromVarDecl()) {
if (auto *debugInfo = getSingleDebugUse(mvi)) {
if (auto *dbg = dyn_cast<DebugValueInst>(debugInfo->getUser())) {
if (auto *varDecl = dbg->getLoc().getAsASTNode<VarDecl>()) {
auto isolation = swift::getActorIsolation(varDecl);
if (isolation.getKind() == ActorIsolation::NonisolatedUnsafe) {
return SILIsolationInfo::getDisconnected(
true /*is nonisolated(unsafe)*/);
}
}
}
}
}
}
// Check if we have an ApplyInst with nonisolated.
//
// NOTE: We purposely avoid using other isolation info from an ApplyExpr since
// when we use the isolation crossing on the ApplyExpr at this point,w e are
// unable to find out what the appropriate instance is (since we would have
// found it earlier if we could). This ensures that we can eliminate a case
// where we get a SILIsolationInfo with actor isolation and without a SILValue
// actor instance. This prevents a class of bad SILIsolationInfo merge errors
// caused by the actor instances not matching.
if (ApplyExpr *apply = inst->getLoc().getAsASTNode<ApplyExpr>()) {
if (auto crossing = apply->getIsolationCrossing()) {
if (crossing->getCalleeIsolation().isNonisolated()) {
return SILIsolationInfo::getDisconnected(false /*nonisolated(unsafe)*/);
}
}
}
return SILIsolationInfo();
}
SILIsolationInfo SILIsolationInfo::get(SILArgument *arg) {
// Return early if we do not have a non-Sendable type.
if (!SILIsolationInfo::isNonSendableType(arg->getType(), arg->getFunction()))
return {};
// Handle a switch_enum from a global actor isolated type.
if (auto *phiArg = dyn_cast<SILPhiArgument>(arg)) {
if (auto *singleTerm = phiArg->getSingleTerminator()) {
if (auto *swi = dyn_cast<SwitchEnumInst>(singleTerm)) {
auto enumDecl =
swi->getOperand()->getType().getEnumOrBoundGenericEnum();
return SILIsolationInfo::getGlobalActorIsolated(arg, enumDecl);
}
}
return SILIsolationInfo();
}
auto *fArg = cast<SILFunctionArgument>(arg);
// Sending is always disconnected.
if (fArg->isSending())
return SILIsolationInfo::getDisconnected(false /*nonisolated(unsafe)*/);
// If we have a closure capture that is not an indirect result or indirect
// result error, we want to treat it as sending so that we properly handle
// async lets.
//
// This pattern should only come up with async lets. See comment in
// isTransferrableFunctionArgument.
if (!fArg->isIndirectResult() && !fArg->isIndirectErrorResult() &&
fArg->isClosureCapture() &&
fArg->getFunction()->getLoweredFunctionType()->isSendable())
return SILIsolationInfo::getDisconnected(false /*nonisolated(unsafe)*/);
// Before we do anything further, see if we have an isolated parameter. This
// handles isolated self and specifically marked isolated.
if (auto *isolatedArg = fArg->getFunction()->maybeGetIsolatedArgument()) {
auto astType = isolatedArg->getType().getASTType();
if (auto *nomDecl = astType->lookThroughAllOptionalTypes()->getAnyActor()) {
return SILIsolationInfo::getActorInstanceIsolated(fArg, isolatedArg,
nomDecl);
}
}
// Otherwise, see if we need to handle this isolation computation specially
// due to information from the decl ref if we have one.
if (auto declRef = fArg->getFunction()->getDeclRef()) {
// First check if we have an allocator decl ref. If we do and we have an
// actor instance isolation, then we know that we are actively just calling
// the initializer. To just make region isolation work, treat this as
// disconnected so we can construct the actor value. Users cannot write
// allocator functions so we just need to worry about compiler generated
// code. In the case of a non-actor, we can only have an allocator that is
// global actor isolated, so we will never hit this code path.
if (declRef.kind == SILDeclRef::Kind::Allocator) {
if (auto isolation = fArg->getFunction()->getActorIsolation()) {
if (isolation->isActorInstanceIsolated()) {
return SILIsolationInfo::getDisconnected(
false /*nonisolated(unsafe)*/);
}
}
}
// Then see if we have an init accessor that is isolated to an actor
// instance, but for which we have not actually passed self. In such a case,
// we need to pass in a "fake" ActorInstance that users know is a sentinel
// for the self value.
if (auto functionIsolation = fArg->getFunction()->getActorIsolation()) {
if (functionIsolation->isActorInstanceIsolated() && declRef.getDecl()) {
if (auto *accessor =
dyn_cast_or_null<AccessorDecl>(declRef.getFuncDecl())) {
if (accessor->isInitAccessor()) {
return SILIsolationInfo::getActorInstanceIsolated(
fArg, ActorInstance::getForActorAccessorInit(),
functionIsolation->getActor());
}
}
}
}
}
// Otherwise, if we do not have an isolated argument and are not in an
// allocator, then we might be isolated via global isolation.
if (auto functionIsolation = fArg->getFunction()->getActorIsolation()) {
if (functionIsolation->isActorIsolated()) {
if (functionIsolation->isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fArg, functionIsolation->getGlobalActor());
}
return SILIsolationInfo::getActorInstanceIsolated(
fArg, ActorInstance::getForActorAccessorInit(),
functionIsolation->getActor());
}
}
return SILIsolationInfo::getTaskIsolated(fArg);
}
void SILIsolationInfo::printOptions(llvm::raw_ostream &os) const {
auto opts = getOptions();
if (!opts)
return;
os << ": ";
llvm::SmallVector<StringLiteral, unsigned(Flag::MaxNumBits)> data;
if (opts.contains(Flag::UnsafeNonIsolated)) {
data.push_back(StringLiteral("nonisolated(unsafe)"));
opts -= Flag::UnsafeNonIsolated;
}
if (opts.contains(Flag::UnappliedIsolatedAnyParameter)) {
data.push_back(StringLiteral("unapplied_isolated_any_parameter"));
opts -= Flag::UnappliedIsolatedAnyParameter;
}
assert(!opts && "Unhandled flag?!");
assert(data.size() < unsigned(Flag::MaxNumBits) &&
"Please update MaxNumBits so that we can avoid heap allocations in "
"this SmallVector");
llvm::interleave(data, os, ", ");
}
void SILIsolationInfo::print(llvm::raw_ostream &os) const {
switch (Kind(*this)) {
case Unknown:
os << "unknown";
return;
case Disconnected:
os << "disconnected";
printOptions(os);
return;
case Actor:
if (ActorInstance instance = getActorInstance()) {
switch (instance.getKind()) {
case ActorInstance::Kind::Value: {
SILValue value = instance.getValue();
if (auto name = VariableNameInferrer::inferName(value)) {
os << "'" << *name << "'-isolated";
printOptions(os);
os << "\n";
os << "instance: " << *value;
return;
}
break;
}
case ActorInstance::Kind::ActorAccessorInit:
os << "'self'-isolated";
printOptions(os);
os << '\n';
os << "instance: actor accessor init\n";
return;
case ActorInstance::Kind::CapturedActorSelf:
os << "'self'-isolated";
printOptions(os);
os << '\n';
os << "instance: captured actor instance self\n";
return;
}
}
if (getActorIsolation().getKind() == ActorIsolation::ActorInstance) {
if (auto *vd = getActorIsolation().getActorInstance()) {
os << "'" << vd->getBaseIdentifier() << "'-isolated";
printOptions(os);
return;
}
}
getActorIsolation().printForDiagnostics(os);
printOptions(os);
return;
case Task:
os << "task-isolated";
printOptions(os);
os << '\n';
os << "instance: " << *getIsolatedValue();
return;
}
}
bool SILIsolationInfo::hasSameIsolation(ActorIsolation actorIsolation) const {
if (getKind() != Kind::Actor)
return false;
return getActorIsolation() == actorIsolation;
}
bool SILIsolationInfo::hasSameIsolation(const SILIsolationInfo &other) const {
if (getKind() != other.getKind())
return false;
switch (getKind()) {
case Unknown:
case Disconnected:
return true;
case Task:
return getIsolatedValue() == other.getIsolatedValue();
case Actor: {
ActorInstance actor1 = getActorInstance();
ActorInstance actor2 = other.getActorInstance();
// If either have an actor instance, and the actor instance doesn't match,
// return false.
//
// This ensures that cases like comparing two global actor isolated things
// do not hit this path.
//
// It also catches cases where we have a missing actor instance.
if ((actor1 || actor2) && actor1 != actor2)
return false;
auto lhsIsolation = getActorIsolation();
auto rhsIsolation = other.getActorIsolation();
return lhsIsolation == rhsIsolation;
}
}
}
bool SILIsolationInfo::isEqual(const SILIsolationInfo &other) const {
// First check if the two types have the same isolation.
if (!hasSameIsolation(other))
return false;
// Then check if both have the same isolated value state. If they do not
// match, bail they cannot equal.
if (hasIsolatedValue() != other.hasIsolatedValue())
return false;
// Then actually check if we have an isolated value. If we do not, then both
// do not have an isolated value due to our earlier check, so we can just
// return true early.
if (!hasIsolatedValue())
return true;
// Otherwise, equality is determined by directly comparing the isolated value.
return getIsolatedValue() == other.getIsolatedValue();
}
void SILIsolationInfo::Profile(llvm::FoldingSetNodeID &id) const {
id.AddInteger(getKind());
switch (getKind()) {
case Unknown:
case Disconnected:
return;
case Task:
id.AddPointer(getIsolatedValue());
return;
case Actor:
id.AddPointer(getIsolatedValue());
getActorIsolation().Profile(id);
return;
}
}
void SILIsolationInfo::printForDiagnostics(llvm::raw_ostream &os) const {
switch (Kind(*this)) {
case Unknown:
llvm::report_fatal_error("Printing unknown for diagnostics?!");
return;
case Disconnected:
os << "disconnected";
return;
case Actor:
if (auto instance = getActorInstance()) {
switch (instance.getKind()) {
case ActorInstance::Kind::Value: {
SILValue value = instance.getValue();
if (auto name = VariableNameInferrer::inferName(value)) {
os << "'" << *name << "'-isolated";
return;
}
break;
}
case ActorInstance::Kind::ActorAccessorInit:
os << "'self'-isolated";
return;
case ActorInstance::Kind::CapturedActorSelf:
os << "'self'-isolated";
return;
}
}
if (getActorIsolation().getKind() == ActorIsolation::ActorInstance) {
if (auto *vd = getActorIsolation().getActorInstance()) {
os << "'" << vd->getBaseIdentifier() << "'-isolated";
return;
}
}
getActorIsolation().printForDiagnostics(os);
return;
case Task:
os << "task-isolated";
return;
}
}
void SILIsolationInfo::printForCodeDiagnostic(llvm::raw_ostream &os) const {
switch (Kind(*this)) {
case Unknown:
llvm::report_fatal_error("Printing unknown for code diagnostic?!");
return;
case Disconnected:
llvm::report_fatal_error("Printing disconnected for code diagnostic?!");
return;
case Actor:
if (auto instance = getActorInstance()) {
switch (instance.getKind()) {
case ActorInstance::Kind::Value: {
SILValue value = instance.getValue();
if (auto name = VariableNameInferrer::inferName(value)) {
os << "'" << *name << "'-isolated code";
return;
}
break;
}
case ActorInstance::Kind::ActorAccessorInit:
os << "'self'-isolated code";
return;
case ActorInstance::Kind::CapturedActorSelf:
os << "'self'-isolated code";
return;
}
}
if (getActorIsolation().getKind() == ActorIsolation::ActorInstance) {
if (auto *vd = getActorIsolation().getActorInstance()) {
os << "'" << vd->getBaseIdentifier() << "'-isolated code";
return;
}
}
getActorIsolation().printForDiagnostics(os);
os << " code";
return;
case Task:
os << "code in the current task";
return;
}
}
void SILIsolationInfo::printForOneLineLogging(llvm::raw_ostream &os) const {
switch (Kind(*this)) {
case Unknown:
os << "unknown";
return;
case Disconnected:
os << "disconnected";
printOptions(os);
return;
case Actor:
if (auto instance = getActorInstance()) {
switch (instance.getKind()) {
case ActorInstance::Kind::Value: {
SILValue value = instance.getValue();
if (auto name = VariableNameInferrer::inferName(value)) {
os << "'" << *name << "'-isolated";
printOptions(os);
return;
}
break;
}
case ActorInstance::Kind::ActorAccessorInit:
os << "'self'-isolated (actor-accessor-init)";
printOptions(os);
return;
case ActorInstance::Kind::CapturedActorSelf:
os << "'self'-isolated (captured-actor-self)";
printOptions(os);
return;
}
}
if (getActorIsolation().getKind() == ActorIsolation::ActorInstance) {
if (auto *vd = getActorIsolation().getActorInstance()) {
os << "'" << vd->getBaseIdentifier() << "'-isolated";
printOptions(os);
return;
}
}
getActorIsolation().printForDiagnostics(os);
printOptions(os);
return;
case Task:
os << "task-isolated";
printOptions(os);
return;
}
}
// Check if the passed in type is NonSendable.
//
// NOTE: We special case RawPointer and NativeObject to ensure they are
// treated as non-Sendable and strict checking is applied to it.
bool SILIsolationInfo::isNonSendableType(CanType type, SILFunction *fn) {
// Treat Builtin.NativeObject, Builtin.RawPointer, and Builtin.BridgeObject as
// non-Sendable.
if (type->is<BuiltinNativeObjectType>() ||
type->is<BuiltinRawPointerType>() ||
type->is<BuiltinBridgeObjectType>()) {
return true;
}
// Treat Builtin.SILToken as Sendable. It cannot escape from the current
// function. We should change isSendable to hardwire this.
if (type->is<SILTokenType>()) {
return false;
}
// First before we do anything, see if we have a Sendable type. In such a
// case, just return true early.
//
// DISCUSSION: It is important that we do this first since otherwise calling
// getConcurrencyDiagnosticBehavior could cause us to prevent a
// "preconcurrency" unneeded diagnostic when just using Sendable values. We
// only want to trigger that if we analyze a non-Sendable type.
if (type->isSendableType())
return false;
// Grab out behavior. If it is none, then we have a type that we want to treat
// as non-Sendable.
auto declRef = fn->getDeclRef();
if (!declRef)
return true;
auto *fromDC = declRef.getInnermostDeclContext();
auto behavior = type->getConcurrencyDiagnosticBehaviorLimit(fromDC);
if (!behavior)
return true;
// Finally, if we are not supposed to ignore, then we have a true non-Sendable
// type. Types whose diagnostics we are supposed to ignore, we want to treat
// as Sendable.
return *behavior != DiagnosticBehavior::Ignore;
}
//===----------------------------------------------------------------------===//
// MARK: ActorInstance
//===----------------------------------------------------------------------===//
SILValue ActorInstance::lookThroughInsts(SILValue value) {
if (!value)
return value;
while (auto *svi = dyn_cast<SingleValueInstruction>(value)) {
if (isa<EndInitLetRefInst>(svi) || isa<CopyValueInst>(svi) ||
isa<MoveValueInst>(svi) || isa<ExplicitCopyValueInst>(svi) ||
isa<BeginBorrowInst>(svi) ||
isa<CopyableToMoveOnlyWrapperValueInst>(svi) ||
isa<MoveOnlyWrapperToCopyableValueInst>(svi) ||
isa<InitExistentialRefInst>(svi) || isa<UncheckedRefCastInst>(svi) ||
isa<UnconditionalCheckedCastInst>(svi)) {
value = lookThroughInsts(svi->getOperand(0));
continue;
}
// Look through extracting from optionals.
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(svi)) {
if (uedi->getEnumDecl() ==
uedi->getFunction()->getASTContext().getOptionalDecl()) {
value = lookThroughInsts(uedi->getOperand());
continue;
}
}
// Look through wrapping in an optional.
if (auto *ei = dyn_cast<EnumInst>(svi)) {
if (ei->hasOperand()) {
if (ei->getElement()->getParentEnum() ==
ei->getFunction()->getASTContext().getOptionalDecl()) {
value = lookThroughInsts(ei->getOperand());
continue;
}
}
}
break;
}
return value;
}
//===----------------------------------------------------------------------===//
// MARK: SILDynamicMergedIsolationInfo
//===----------------------------------------------------------------------===//
std::optional<SILDynamicMergedIsolationInfo>
SILDynamicMergedIsolationInfo::merge(SILIsolationInfo other) const {
// If we are greater than the other kind, then we are further along the
// lattice. We ignore the change.
if (unsigned(innerInfo.getKind() > unsigned(other.getKind())))
return {*this};
// If we are both actor isolated...
if (innerInfo.isActorIsolated() && other.isActorIsolated()) {
// If both innerInfo and other have the same isolation, we are obviously
// done. Just return innerInfo since we could return either.
if (innerInfo.hasSameIsolation(other))
return {innerInfo};
// Ok, there is some difference in between innerInfo and other. Lets see if
// they are both actor instance isolated and if either are unapplied
// isolated any parameter. In such a case, take the one that is further
// along.
if (innerInfo.getActorIsolation().isActorInstanceIsolated() &&
other.getActorIsolation().isActorInstanceIsolated()) {
if (innerInfo.isUnappliedIsolatedAnyParameter())
return other;
if (other.isUnappliedIsolatedAnyParameter())
return innerInfo;
}
// Otherwise, they do not match... so return None to signal merge failure.
return {};
}
// If we are both disconnected and other has the unsafeNonIsolated bit set,
// drop that bit and return that.
//
// DISCUSSION: We do not want to preserve the unsafe non isolated bit after
// merging. These bits should not propagate through merging and should instead
// always be associated with non-merged infos.
if (other.isDisconnected() && other.isUnsafeNonIsolated()) {
return {other.withUnsafeNonIsolated(false)};
}
// Otherwise, just return other.
return {other};
}
//===----------------------------------------------------------------------===//
// MARK: Tests
//===----------------------------------------------------------------------===//
namespace swift::test {
// Arguments:
// - SILValue: value to look up isolation for.
// Dumps:
// - The inferred isolation.
static FunctionTest
IsolationInfoInferrence("sil_isolation_info_inference",
[](auto &function, auto &arguments, auto &test) {
auto value = arguments.takeValue();
SILIsolationInfo info =
SILIsolationInfo::get(value);
llvm::outs() << "Input Value: " << *value;
llvm::outs() << "Isolation: ";
info.printForOneLineLogging(llvm::outs());
llvm::outs() << "\n";
});
// Arguments:
// - SILValue: first value to merge
// - SILValue: second value to merge
// Dumps:
// - The merged isolation.
static FunctionTest IsolationMergeTest(
"sil-isolation-info-merged-inference",
[](auto &function, auto &arguments, auto &test) {
auto firstValue = arguments.takeValue();
auto secondValue = arguments.takeValue();
SILIsolationInfo firstValueInfo = SILIsolationInfo::get(firstValue);
SILIsolationInfo secondValueInfo = SILIsolationInfo::get(secondValue);
std::optional<SILDynamicMergedIsolationInfo> mergedInfo(firstValueInfo);
mergedInfo = mergedInfo->merge(secondValueInfo);
llvm::outs() << "First Value: " << *firstValue;
llvm::outs() << "First Isolation: ";
firstValueInfo.printForOneLineLogging(llvm::outs());
llvm::outs() << "\nSecond Value: " << *secondValue;
llvm::outs() << "Second Isolation: ";
secondValueInfo.printForOneLineLogging(llvm::outs());
llvm::outs() << "\nMerged Isolation: ";
if (mergedInfo) {
mergedInfo->printForOneLineLogging(llvm::outs());
} else {
llvm::outs() << "Merge failure!";
}
llvm::outs() << "\n";
});
} // namespace swift::test
|