File: saved-model-to-tflite.py

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (37 lines) | stat: -rw-r--r-- 1,054 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""Convert a saved model to tflite model.

Usage: python3 saved-model-to-tflite.py <mlgo saved_model_dir> <tflite dest_dir>

The <tflite dest_dir> will contain:
  model.tflite: this is the converted saved model
  output_spec.json: the output spec, copied from the saved_model dir.
"""

import tensorflow as tf
import os
import sys
from tf_agents.policies import greedy_policy


def main(argv):
    assert len(argv) == 3
    sm_dir = argv[1]
    tfl_dir = argv[2]
    tf.io.gfile.makedirs(tfl_dir)
    tfl_path = os.path.join(tfl_dir, "model.tflite")
    converter = tf.lite.TFLiteConverter.from_saved_model(sm_dir)
    converter.target_spec.supported_ops = [
        tf.lite.OpsSet.TFLITE_BUILTINS,
    ]
    tfl_model = converter.convert()
    with tf.io.gfile.GFile(tfl_path, "wb") as f:
        f.write(tfl_model)

    json_file = "output_spec.json"
    src_json = os.path.join(sm_dir, json_file)
    if tf.io.gfile.exists(src_json):
        tf.io.gfile.copy(src_json, os.path.join(tfl_dir, json_file))


if __name__ == "__main__":
    main(sys.argv)