1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
//===- SoftPointerAuth.cpp - Software lowering for ptrauth intrinsics -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers the llvm.ptrauth intrinsics into something that can
// be supported (inefficiently) on an arbitrary target.
//
// The runtime functions you must define to use this pass are:
// /// Apply a signature to the given unsigned pointer value.
// void *__ptrauth_sign(void *pointer, int32_t key, uintptr_t discriminator);
//
// /// Remove the signature from the given signed pointer value.
// void *__ptrauth_strip(void *pointer, int32_t key);
//
// /// Authenticate and remove the signature on the given signed
// /// pointer value. Trap on authenticate failure.
// void *__ptrauth_auth(void *pointer, int32_t key, uintptr_t discriminator);
//
// /// Blend a small non-zero value into a primary discriminator,
// /// which is expected to resemble a pointer.
// uintptr_t __ptrauth_blend(uintptr_t primaryDiscriminator,
// uintptr_t secondaryDiscriminator);
//
// /// Compute a full, pointer-wide signature on a value.
// uintptr_t __ptrauth_sign_generic(uintptr_t data, uintptr_t discriminator);
//
// The resulting code pattern does not perfectly protect against the backend
// inserting code between authentications and uses, and so the result may
// be attackable.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/SoftPointerAuth.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include <map>
#include <optional>
#define DEBUG_TYPE "soft-ptrauth"
using namespace llvm;
using IRBuilderTy = llvm::IRBuilder<>;
namespace {
/// A structure for tracking uses of relocations within a Constant.
struct UseSite {
/// A map from operand index to the tracking sites of children.
/// If this is empty, the Constant is a GlobalVariable for a relocation.
/// Otherwise, the Constant is a ConstantAggregate or ConstantExpr, and
/// the relocation reference(s) appear further down in the tree.
std::map<unsigned, UseSite> Children;
};
/// A linked list down to the use of a relocation.
struct UsePath {
const UsePath *Next;
unsigned OperandIndex;
};
enum TypeTag {
IntPtr, // uintptr_t
Discriminator = IntPtr, // uintptr_t
Key, // uint32_t
VoidPtr, // i8*
};
class SoftPointerAuth {
// The module.
Module *M = nullptr;
// Cached function pointers, initialized lazily.
FunctionCallee SignPointerFn = nullptr;
FunctionCallee AuthPointerFn = nullptr;
FunctionCallee StripPointerFn = nullptr;
FunctionCallee BlendDiscriminatorFn = nullptr;
FunctionCallee SignGenericFn = nullptr;
std::optional<IRBuilderTy> GlobalConstructorBuilder;
public:
SoftPointerAuth() {}
bool runOnModule(Module &M);
private:
bool isPointerAuthRelocation(GlobalVariable *global);
bool transformRelocations();
void transformGlobalInitializer(GlobalVariable *global,
const UseSite &usesToTransform);
Constant *transformInitializer(GlobalVariable *global,
SmallVectorImpl<Constant*> &pathToInitializer,
Constant *initializer,
const UseSite &usesToTransform);
void transformInstructionOperands(Instruction *user,
const UseSite &usesToTransform);
Value *emitTransformedConstant(IRBuilderTy &builder, Constant *constant,
const UseSite &usesToTransform);
IRBuilderTy &continueGlobalConstructor();
bool transformCalls();
bool transformCall(CallInst *call);
bool transformInvoke(InvokeInst *call);
bool transformPointerAuthCall(CallBase *oldCall,
const OperandBundleUse &bundle);
Value *emitSign(IRBuilderTy &builder, Value *pointer,
Value *key, Value *discriminator);
Value *emitResign(IRBuilderTy &builder, Value *pointer,
Value *oldKey, Value *oldDiscriminator,
Value *newKey, Value *newDiscriminator);
Value *emitAuth(IRBuilderTy &builder, Value *pointer,
Value *key, Value *discriminator);
Value *emitStrip(IRBuilderTy &builder, Value *pointer, Value *key);
Value *emitBlend(IRBuilderTy &builder, Value *primary, Value *secondary);
Value *emitSignGeneric(IRBuilderTy &builder,
Value *value, Value *discriminator);
/// Check whether the callee of a call has the right prototype.
bool hasExpectedPrototype(CallBase *call, TypeTag resultTypeTag,
ArrayRef<TypeTag> argTypeTags) {
if (!hasType(call, resultTypeTag))
return false;
if (call->arg_size() != argTypeTags.size())
return false;
for (unsigned i = 0, e = argTypeTags.size(); i != e; ++i) {
if (!hasType(call->getArgOperand(i), argTypeTags[i]))
return false;
}
return true;
}
/// Does the given value have its expected type?
bool hasType(Value *value, TypeTag tag) {
auto type = value->getType();
switch (tag) {
case VoidPtr:
return type == PointerType::getUnqual(M->getContext());
case Key:
return type->isIntegerTy(32);
case IntPtr:
return type->isIntegerTy(M->getDataLayout().getPointerSizeInBits(0));
}
llvm_unreachable("unexpected type tag");
}
/// Fetch an expected type.
Type *getType(TypeTag tag) {
switch (tag) {
case VoidPtr: return PointerType::getUnqual(M->getContext());
case Key: return Type::getInt32Ty(M->getContext());
case IntPtr: return Type::getIntNTy(M->getContext(),
M->getDataLayout().getPointerSizeInBits(0));
}
llvm_unreachable("unexpected type tag");
}
ConstantInt *getInt32(unsigned value) {
return ConstantInt::get(Type::getInt32Ty(M->getContext()), value);
}
/// Create a declaration for the given runtime function.
FunctionCallee getOrInsertFunction(StringRef name, TypeTag resultTypeTag,
ArrayRef<TypeTag> argTypeTags) {
auto resultType = getType(resultTypeTag);
SmallVector<Type*, 4> argTypes;
for (auto argTypeTag : argTypeTags)
argTypes.push_back(getType(argTypeTag));
auto functionType = FunctionType::get(resultType, argTypes, false);
return M->getOrInsertFunction(name, functionType);
}
FunctionCallee getSignPointerFn() {
if (!SignPointerFn)
SignPointerFn = getOrInsertFunction("__ptrauth_sign", VoidPtr,
{ VoidPtr, Key, Discriminator });
return SignPointerFn;
}
FunctionCallee getAuthPointerFn() {
if (!AuthPointerFn)
AuthPointerFn = getOrInsertFunction("__ptrauth_auth", VoidPtr,
{ VoidPtr, Key, Discriminator });
return AuthPointerFn;
}
FunctionCallee getStripPointerFn() {
if (!StripPointerFn)
StripPointerFn = getOrInsertFunction("__ptrauth_strip", VoidPtr,
{ VoidPtr, Key });
return StripPointerFn;
}
FunctionCallee getBlendDiscriminatorFn() {
if (!BlendDiscriminatorFn)
BlendDiscriminatorFn = getOrInsertFunction("__ptrauth_blend",
Discriminator,
{ Discriminator, Discriminator });
return BlendDiscriminatorFn;
}
FunctionCallee getSignGenericFn() {
if (!SignGenericFn)
SignGenericFn = getOrInsertFunction("__ptrauth_sign_generic", IntPtr,
{ IntPtr, Key, Discriminator });
return SignGenericFn;
}
};
} // end anonymous namespace
bool SoftPointerAuth::runOnModule(Module &M) {
assert(!GlobalConstructorBuilder);
// Reset any existing caches.
SignPointerFn = nullptr;
AuthPointerFn = nullptr;
StripPointerFn = nullptr;
BlendDiscriminatorFn = nullptr;
SignGenericFn = nullptr;
this->M = &M;
bool changed = false;
// Transform all of the intrinsic calls and operand bundles.
// Doing this before transforming the relocations doesn't deeply matter,
// but this pass has to walk all the functions and the relocation pass is
// based on use lists, so this order minimizes redundant work.
changed |= transformCalls();
// Next, transform all the uses of relocations.
changed |= transformRelocations();
return changed;
}
/*****************************************************************************/
/********************************** Common ***********************************/
/*****************************************************************************/
Value *SoftPointerAuth::emitSign(IRBuilderTy &builder, Value *pointer,
Value *key, Value *discriminator) {
auto call = builder.CreateCall(getSignPointerFn(),
{ pointer, key, discriminator });
call->setDoesNotThrow();
return call;
}
Value *SoftPointerAuth::emitResign(IRBuilderTy &builder, Value *pointer,
Value *oldKey, Value *oldDiscriminator,
Value *newKey, Value *newDiscriminator) {
// This is not an unattackable code pattern, but we don't emit one for
// call operand bundles, either.
auto rawValue = emitAuth(builder, pointer, oldKey, oldDiscriminator);
return emitSign(builder, rawValue, newKey, newDiscriminator);
}
Value *SoftPointerAuth::emitAuth(IRBuilderTy &builder, Value *pointer,
Value *key, Value *discriminator) {
auto call = builder.CreateCall(getAuthPointerFn(),
{ pointer, key, discriminator });
call->setDoesNotThrow();
return call;
}
Value *SoftPointerAuth::emitStrip(IRBuilderTy &builder, Value *pointer,
Value *key) {
auto call = builder.CreateCall(getStripPointerFn(),
{ pointer, key });
call->setDoesNotThrow();
return call;
}
Value *SoftPointerAuth::emitBlend(IRBuilderTy &builder, Value *primary,
Value *secondary) {
auto call = builder.CreateCall(getBlendDiscriminatorFn(),
{ primary, secondary });
call->setDoesNotThrow();
return call;
}
Value *SoftPointerAuth::emitSignGeneric(IRBuilderTy &builder, Value *value,
Value *discriminator) {
auto call = builder.CreateCall(getSignGenericFn(),
{ value, discriminator });
call->setDoesNotThrow();
return call;
}
bool SoftPointerAuth::isPointerAuthRelocation(GlobalVariable *global) {
// After checking the name, validate the type.
if (global->getSection() == "llvm.ptrauth") {
if (auto init = dyn_cast_or_null<ConstantStruct>(
global->getInitializer())) {
return (init->getNumOperands() == 4 &&
hasType(init->getOperand(0), VoidPtr) &&
hasType(init->getOperand(1), Key) &&
hasType(init->getOperand(2), Discriminator) &&
hasType(init->getOperand(3), Discriminator));
}
}
return false;
}
/*****************************************************************************/
/******************************** Relocations ********************************/
/*****************************************************************************/
/// Find all the top-level uses of a constant (i.e. the uses that are not
/// ConstantAggregates or ConstantExprs) and call the given callback
/// function on them.
template <class Fn>
static void findTopLevelUsesOfConstant(Constant *constant, const UsePath *path,
const Fn &callback) {
for (auto i = constant->use_begin(), e = constant->use_end(); i != e; ++i) {
UsePath userPath = { path, i->getOperandNo() };
auto user = i->getUser();
// If the user is a global variable, there's only one use we care about.
if (isa<GlobalVariable>(user)) {
assert(userPath.OperandIndex == 0 && "non-zero use index on global var");
callback(user, path);
// If the user is an instruction, remember the operand index.
} else if (isa<Instruction>(user)) {
callback(user, &userPath);
// If the user is some other kind of context, recurse.
} else if (auto userConstant = dyn_cast<Constant>(user)) {
findTopLevelUsesOfConstant(userConstant, &userPath, callback);
}
// TODO: metadata uses?
}
}
bool SoftPointerAuth::transformRelocations() {
SmallVector<GlobalVariable *, 16> relocations;
SmallVector<User*, 16> rootUsers;
DenseMap<User*, UseSite> useSites;
// Walk all the globals looking for relocations.
for (auto &global : M->globals()) {
if (!isPointerAuthRelocation(&global))
continue;
// Remember this relocation.
relocations.push_back(&global);
// Remember all the top-level uses of the relocation, together with
// paths down to the use.
findTopLevelUsesOfConstant(&global, nullptr,
[&](User *user, const UsePath *path) {
// Look up an entry in the users map, adding one if necessary.
// We remember the order in which we encountered things to avoid
// non-deterministically walking over a DenseMap. This still leaves
// us vulnerable to use-list ordering, but that's harder to avoid.
auto result = useSites.try_emplace(user);
if (result.second) rootUsers.push_back(user);
// Fill out the path down to the use.
UseSite *site = &result.first->second;
for (; path; path = path->Next) {
site = &site->Children[path->OperandIndex];
}
(void) site;
});
}
// Bail out if we didn't find any uses.
if (relocations.empty())
return false;
// Rewrite all the root users.
for (auto user : rootUsers) {
const auto &uses = useSites.find(user)->second;
if (auto global = dyn_cast<GlobalVariable>(user)) {
transformGlobalInitializer(global, uses);
} else {
transformInstructionOperands(cast<Instruction>(user), uses);
}
}
// Destroy all the relocations.
for (auto reloc : relocations) {
reloc->replaceAllUsesWith(ConstantPointerNull::get(reloc->getType()));
reloc->eraseFromParent();
}
// Finish the global initialization function if we started one.
if (GlobalConstructorBuilder) {
GlobalConstructorBuilder->CreateRetVoid();
GlobalConstructorBuilder.reset();
}
return true;
}
/// Transform a global initializer that contains signing relocations.
void SoftPointerAuth::transformGlobalInitializer(GlobalVariable *global,
const UseSite &usesToTransform) {
auto oldInitializer = global->getInitializer();
assert(oldInitializer && "global has no initializer?");
// transformInitializer wants the indices of a GEP to the initializer
// that it's transforming. Seed that with a '0' to enter the global.
SmallVector<Constant*, 4> pathToInitializer;
pathToInitializer.push_back(getInt32(0));
auto newInitializer = transformInitializer(global, pathToInitializer,
oldInitializer, usesToTransform);
assert(newInitializer != oldInitializer && "no changes?");
assert(pathToInitializer.size() == 1 && "didn't balance push/pop");
global->setInitializer(newInitializer);
// Make the global mutable; our constant initializer will change it.
global->setConstant(false);
}
/// Transform part of a global initializer that contains signing relocations.
Constant *SoftPointerAuth::transformInitializer(GlobalVariable *global,
SmallVectorImpl<Constant*> &pathToInitializer,
Constant *initializer,
const UseSite &usesToTransform) {
auto aggregate = dyn_cast<ConstantAggregate>(initializer);
// If the initializer is a simple reference to a relocation, or an
// expression in terms of same, compute it in the global construction.
if (!aggregate) {
auto &builder = continueGlobalConstructor();
// Compute the value.
auto transformedInitializer =
emitTransformedConstant(builder, initializer, usesToTransform);
// Drill down to the current position.
Constant *addr = global;
if (pathToInitializer.size() != 1)
addr = ConstantExpr::getInBoundsGetElementPtr(global->getValueType(),
addr, pathToInitializer);
// Store the transformed vlaue to this position.
builder.CreateStore(transformedInitializer, addr);
// Use a null value for the global position.
return Constant::getNullValue(initializer->getType());
}
// Otherwise, the initializer is a constant aggregate. Recurse into it
// at the appropriate positions. The goal here is to avoid emitting the
// entire aggregate with stores.
assert(!usesToTransform.Children.empty()
&& "walking into wrong initializer?");
// Copy the original elements.
SmallVector<Constant*, 16> elts;
elts.reserve(aggregate->getNumOperands());
for (auto &op : aggregate->operands())
elts.push_back(cast<Constant>(&*op));
// Modify just the elements that we decided to modify.
for (const auto &eltIndexAndUses : usesToTransform.Children) {
auto eltIndex = eltIndexAndUses.first;
// Add an index to the GEP down to this position.
pathToInitializer.push_back(getInt32(eltIndex));
// Rewrite the element.
elts[eltIndex] = transformInitializer(global, pathToInitializer,
elts[eltIndex], eltIndexAndUses.second);
// Pop the previously pushed path element.
pathToInitializer.pop_back();
}
// Rebuild the aggregate.
auto type = aggregate->getType();
if (auto structType = dyn_cast<StructType>(type)) {
return ConstantStruct::get(structType, elts);
} else if (auto arrayType = dyn_cast<ArrayType>(type)) {
return ConstantArray::get(arrayType, elts);
} else {
return ConstantVector::get(elts);
}
}
/// Continue emitting the global constructor function.
IRBuilderTy &SoftPointerAuth::continueGlobalConstructor() {
// Create the global initialization function if we haven't yet.
if (!GlobalConstructorBuilder) {
auto &context = M->getContext();
// Create the function.
auto fnType = FunctionType::get(Type::getVoidTy(context),
{}, false);
Function *fn = Function::Create(fnType, Function::PrivateLinkage,
"ptrauth_soft_init", M);
// Add the function to the global initializers list.
appendToGlobalCtors(*M, fn, 0);
auto entryBB = BasicBlock::Create(context, "", fn);
GlobalConstructorBuilder.emplace(entryBB);
}
return *GlobalConstructorBuilder;
}
void SoftPointerAuth::transformInstructionOperands(Instruction *user,
const UseSite &usesToTransform) {
assert(!usesToTransform.Children.empty()
&& "no uses to transform for instruction");
// Handle PHIs differently because we have to insert code into the
// right predecessor(s).
if (auto phi = dyn_cast<PHINode>(user)) {
for (auto &useEntry : usesToTransform.Children) {
auto operandIndex = useEntry.first;
auto operand = cast<Constant>(phi->getOperand(operandIndex));
// Figure out the block this edge corresponds to.
auto incomingValueIndex =
PHINode::getIncomingValueNumForOperand(operandIndex);
auto incomingBlock = phi->getIncomingBlock(incomingValueIndex);
// Split the edge if necessary & possible.
// Note that we don't want to change anything structurally about 'phi'.
auto newBlock = SplitCriticalEdge(incomingBlock, phi->getParent(),
CriticalEdgeSplittingOptions()
.setKeepOneInputPHIs());
// Start inserting before the terminator in the new block.
// If a critical edge was unsplittable, this will insert the code
// unconditionally in the origin block, which is unfortunate but
// acceptable because sign operations cannot fail.
auto blockToInsertInto = newBlock ? newBlock : incomingBlock;
IRBuilderTy builder(blockToInsertInto->getTerminator());
// Transform the value.
auto transformedOperand =
emitTransformedConstant(builder, operand, useEntry.second);
// Replace the incoming value.
phi->setIncomingValue(incomingValueIndex, transformedOperand);
}
return;
}
// Otherwise, emit immediately before the user.
IRBuilderTy builder(user);
for (auto &useEntry : usesToTransform.Children) {
auto operandIndex = useEntry.first;
auto operand = cast<Constant>(user->getOperand(operandIndex));
auto transformedOperand =
emitTransformedConstant(builder, operand, useEntry.second);
// Replace the incoming value.
user->setOperand(operandIndex, transformedOperand);
}
}
Value *SoftPointerAuth::emitTransformedConstant(IRBuilderTy &builder,
Constant *constant,
const UseSite &usesToTransform) {
// If it's a direct reference to the relocation, we're done.
if (auto global = dyn_cast<GlobalVariable>(constant)) {
assert(isPointerAuthRelocation(global));
assert(usesToTransform.Children.empty() &&
"child uses of direct relocation reference?");
// Decompose the relocation.
ConstantStruct *init = cast<ConstantStruct>(global->getInitializer());
auto pointer = init->getOperand(0);
auto key = init->getOperand(1);
auto primaryDiscriminator = init->getOperand(2);
auto secondaryDiscriminator = init->getOperand(3);
// Compute the discriminator.
Value *discriminator;
if (primaryDiscriminator->isNullValue()) {
discriminator = secondaryDiscriminator;
} else if (secondaryDiscriminator->isNullValue()) {
discriminator = primaryDiscriminator;
} else {
discriminator = emitBlend(builder, primaryDiscriminator,
secondaryDiscriminator);
}
// Emit a sign operation.
auto signedValue = emitSign(builder, pointer, key, discriminator);
// Cast back to the signed pointer type.
return builder.CreateBitCast(signedValue, global->getType());
}
// If it's a constant expression, make it an instruction and rebuild
// its operands.
if (auto expr = dyn_cast<ConstantExpr>(constant)) {
assert(!usesToTransform.Children.empty() &&
"direct use of constant expression?");
auto instruction = expr->getAsInstruction();
for (const auto &operandIndexAndUses : usesToTransform.Children) {
auto operandIndex = operandIndexAndUses.first;
auto newOperand =
emitTransformedConstant(builder, expr->getOperand(operandIndex),
operandIndexAndUses.second);
instruction->setOperand(operandIndex, newOperand);
}
builder.Insert(instruction);
return instruction;
}
// Otherwise, it should be a constant aggregate.
// Recursively emit the transformed elements.
auto aggregate = cast<ConstantAggregate>(constant);
assert(!usesToTransform.Children.empty() &&
"direct use of whole constant aggregate?");
SmallVector<Value*, 16> elts(aggregate->op_begin(), aggregate->op_end());
// Transform all of the children we're supposed to transform.
for (const auto &childUseEntry : usesToTransform.Children) {
auto &elt = elts[childUseEntry.first];
elt = emitTransformedConstant(builder, cast<Constant>(elt),
childUseEntry.second);
}
// Build up the aggregate value using insertelement / insertvalue
// as appropriate.
auto type = aggregate->getType();
bool isVector = isa<VectorType>(type);
Value *transformedAggregate = UndefValue::get(type);
for (unsigned i = 0, e = aggregate->getNumOperands(); i != e; ++i) {
if (isVector)
transformedAggregate =
builder.CreateInsertElement(transformedAggregate, elts[i], i);
else
transformedAggregate =
builder.CreateInsertValue(transformedAggregate, elts[i], i);
}
return transformedAggregate;
}
/*****************************************************************************/
/*********************** Intrinsics and Operand Bundles **********************/
/*****************************************************************************/
bool SoftPointerAuth::transformCalls() {
bool changed = false;
for (auto fi = M->begin(), fe = M->end(); fi != fe; ) {
auto fn = &*fi;
++fi;
// Soft return authentication is technically possible (even without backend
// support) but not currently necessary.
if (fn->hasFnAttribute("ptrauth-returns"))
report_fatal_error("Soft. lowering of return address auth unsupported");
for (auto bi = fn->begin(), be = fn->end(); bi != be; ) {
auto bb = &*bi;
++bi;
for (auto ii = bb->begin(), ie = bb->end(); ii != ie; ) {
auto instruction = &*ii;
++ii;
if (auto call = dyn_cast<CallInst>(instruction)) {
changed |= transformCall(call);
} else if (auto invoke = dyn_cast<InvokeInst>(instruction)) {
changed |= transformInvoke(invoke);
}
}
}
}
return changed;
}
bool SoftPointerAuth::transformCall(CallInst *call) {
// Handle calls with the llvm.ptrauth operand bundle attached.
if (auto bundle = call->getOperandBundle(LLVMContext::OB_ptrauth)) {
return transformPointerAuthCall(call, *bundle);
}
// Otherwise, look for our intrinsics.
auto callee = call->getCalledFunction();
if (!callee) return false;
auto intrinsicInst = dyn_cast<IntrinsicInst>(call);
if (!intrinsicInst)
return false;
auto intrinsic = intrinsicInst->getIntrinsicID();
auto rebuild = [&](function_ref<llvm::Value*(IRBuilderTy&)> fn) {
IRBuilderTy builder(call);
auto result = fn(builder);
call->replaceAllUsesWith(result);
call->eraseFromParent();
return true;
};
switch (intrinsic) {
case Intrinsic::ptrauth_sign:
if (!hasExpectedPrototype(call, VoidPtr, {VoidPtr, Key, Discriminator}))
return false;
return rebuild([&](IRBuilderTy &builder) {
return emitSign(builder, call->getArgOperand(0),
call->getArgOperand(1), call->getArgOperand(2));
});
case Intrinsic::ptrauth_resign:
if (!hasExpectedPrototype(call, VoidPtr, {VoidPtr, Key, Discriminator,
Key, Discriminator}))
return false;
return rebuild([&](IRBuilderTy &builder) {
return emitResign(builder, call->getArgOperand(0),
call->getArgOperand(1), call->getArgOperand(2),
call->getArgOperand(3), call->getArgOperand(4));
});
case Intrinsic::ptrauth_auth:
if (!hasExpectedPrototype(call, VoidPtr, {VoidPtr, Key, Discriminator}))
return false;
return rebuild([&](IRBuilderTy &builder) {
return emitAuth(builder, call->getArgOperand(0),
call->getArgOperand(1), call->getArgOperand(2));
});
case Intrinsic::ptrauth_strip:
if (!hasExpectedPrototype(call, VoidPtr, {VoidPtr, Key}))
return false;
return rebuild([&](IRBuilderTy &builder) {
return emitStrip(builder, call->getArgOperand(0),
call->getArgOperand(1));
});
case Intrinsic::ptrauth_blend:
if (!hasExpectedPrototype(call, Discriminator,
{Discriminator, Discriminator}))
return false;
return rebuild([&](IRBuilderTy &builder) {
return emitBlend(builder, call->getArgOperand(0),
call->getArgOperand(1));
});
case Intrinsic::ptrauth_sign_generic:
if (!hasExpectedPrototype(call, IntPtr, {IntPtr, IntPtr}))
return false;
return rebuild([&](IRBuilderTy &builder) {
return emitSignGeneric(builder, call->getArgOperand(0),
call->getArgOperand(1));
});
default:
break;
}
return false;
}
bool SoftPointerAuth::transformInvoke(InvokeInst *call) {
// Handle invokes with the llvm.ptrauth operand bundle attached.
if (auto bundle = call->getOperandBundle(LLVMContext::OB_ptrauth)) {
return transformPointerAuthCall(call, *bundle);
}
return false;
}
bool SoftPointerAuth::transformPointerAuthCall(CallBase *oldCall,
const OperandBundleUse &bundle) {
if (bundle.Inputs.size() != 2 ||
!hasType(bundle.Inputs[0], Key) ||
!hasType(bundle.Inputs[1], Discriminator))
return false;
IRBuilderTy builder(oldCall);
// Authenticate the callee.
Value *oldCallee = oldCall->getCalledOperand();
Value *callee = builder.CreateBitCast(oldCallee, getType(VoidPtr));
callee = emitAuth(builder, callee, bundle.Inputs[0], bundle.Inputs[1]);
callee = builder.CreateBitCast(callee, oldCallee->getType());
// Get the arguments.
SmallVector<Value*, 8> args(oldCall->arg_begin(), oldCall->arg_end());
// Get the operand bundles besides llvm.ptrauth (probably none).
SmallVector<OperandBundleDef, 1> opBundles;
for (unsigned i = 0, e = oldCall->getNumOperandBundles(); i != e; ++i) {
auto bundle = oldCall->getOperandBundleAt(i);
if (bundle.getTagID() != LLVMContext::OB_ptrauth) {
opBundles.emplace_back(bundle);
}
}
// Build the new instruction.
CallBase *newCall;
if (auto *oldInvoke = dyn_cast<InvokeInst>(oldCall)) {
newCall = builder.CreateInvoke(oldInvoke->getFunctionType(), callee,
oldInvoke->getNormalDest(),
oldInvoke->getUnwindDest(),
args, opBundles);
} else {
newCall =
builder.CreateCall(oldCall->getFunctionType(), callee, args, opBundles);
}
// Copy mandatory attributes.
newCall->setCallingConv(oldCall->getCallingConv());
newCall->setAttributes(oldCall->getAttributes());
// TODO: copy metadata?
newCall->takeName(oldCall);
// Destroy the old call.
oldCall->replaceAllUsesWith(newCall);
oldCall->eraseFromParent();
return true;
}
/*****************************************************************************/
/**************************** Pass Manager Support ***************************/
/*****************************************************************************/
PreservedAnalyses SoftPointerAuthPass::run(Module &M,
ModuleAnalysisManager &AM) {
SoftPointerAuth Pass;
if (!Pass.runOnModule(M))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
|