File: Barvinok.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (788 lines) | stat: -rw-r--r-- 33,330 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
//===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/Barvinok.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/Sequence.h"
#include <algorithm>

using namespace mlir;
using namespace presburger;
using namespace mlir::presburger::detail;

/// Assuming that the input cone is pointed at the origin,
/// converts it to its dual in V-representation.
/// Essentially we just remove the all-zeroes constant column.
ConeV mlir::presburger::detail::getDual(ConeH cone) {
  unsigned numIneq = cone.getNumInequalities();
  unsigned numVar = cone.getNumCols() - 1;
  ConeV dual(numIneq, numVar, 0, 0);
  // Assuming that an inequality of the form
  // a1*x1 + ... + an*xn + b ≥ 0
  // is represented as a row [a1, ..., an, b]
  // and that b = 0.

  for (auto i : llvm::seq<int>(0, numIneq)) {
    assert(cone.atIneq(i, numVar) == 0 &&
           "H-representation of cone is not centred at the origin!");
    for (unsigned j = 0; j < numVar; ++j) {
      dual.at(i, j) = cone.atIneq(i, j);
    }
  }

  // Now dual is of the form [ [a1, ..., an] , ... ]
  // which is the V-representation of the dual.
  return dual;
}

/// Converts a cone in V-representation to the H-representation
/// of its dual, pointed at the origin (not at the original vertex).
/// Essentially adds a column consisting only of zeroes to the end.
ConeH mlir::presburger::detail::getDual(ConeV cone) {
  unsigned rows = cone.getNumRows();
  unsigned columns = cone.getNumColumns();
  ConeH dual = defineHRep(columns);
  // Add a new column (for constants) at the end.
  // This will be initialized to zero.
  cone.insertColumn(columns);

  for (unsigned i = 0; i < rows; ++i)
    dual.addInequality(cone.getRow(i));

  // Now dual is of the form [ [a1, ..., an, 0] , ... ]
  // which is the H-representation of the dual.
  return dual;
}

/// Find the index of a cone in V-representation.
DynamicAPInt mlir::presburger::detail::getIndex(const ConeV &cone) {
  if (cone.getNumRows() > cone.getNumColumns())
    return DynamicAPInt(0);

  return cone.determinant();
}

/// Compute the generating function for a unimodular cone.
/// This consists of a single term of the form
/// sign * x^num / prod_j (1 - x^den_j)
///
/// sign is either +1 or -1.
/// den_j is defined as the set of generators of the cone.
/// num is computed by expressing the vertex as a weighted
/// sum of the generators, and then taking the floor of the
/// coefficients.
GeneratingFunction
mlir::presburger::detail::computeUnimodularConeGeneratingFunction(
    ParamPoint vertex, int sign, const ConeH &cone) {
  // Consider a cone with H-representation [0  -1].
  //                                       [-1 -2]
  // Let the vertex be given by the matrix [ 2  2   0], with 2 params.
  //                                       [-1 -1/2 1]

  // `cone` must be unimodular.
  assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!");

  unsigned numVar = cone.getNumVars();
  unsigned numIneq = cone.getNumInequalities();

  // Thus its ray matrix, U, is the inverse of the
  // transpose of its inequality matrix, `cone`.
  // The last column of the inequality matrix is null,
  // so we remove it to obtain a square matrix.
  FracMatrix transp = FracMatrix(cone.getInequalities()).transpose();
  transp.removeRow(numVar);

  FracMatrix generators(numVar, numIneq);
  transp.determinant(/*inverse=*/&generators); // This is the U-matrix.
  // Thus the generators are given by U = [2  -1].
  //                                      [-1  0]

  // The powers in the denominator of the generating
  // function are given by the generators of the cone,
  // i.e., the rows of the matrix U.
  std::vector<Point> denominator(numIneq);
  ArrayRef<Fraction> row;
  for (auto i : llvm::seq<int>(0, numVar)) {
    row = generators.getRow(i);
    denominator[i] = Point(row);
  }

  // The vertex is v \in Z^{d x (n+1)}
  // We need to find affine functions of parameters λ_i(p)
  // such that v = Σ λ_i(p)*u_i,
  // where u_i are the rows of U (generators)
  // The λ_i are given by the columns of Λ = v^T U^{-1}, and
  // we have transp = U^{-1}.
  // Then the exponent in the numerator will be
  // Σ -floor(-λ_i(p))*u_i.
  // Thus we store the (exponent of the) numerator as the affine function -Λ,
  // since the generators u_i are already stored as the exponent of the
  // denominator. Note that the outer -1 will have to be accounted for, as it is
  // not stored. See end for an example.

  unsigned numColumns = vertex.getNumColumns();
  unsigned numRows = vertex.getNumRows();
  ParamPoint numerator(numColumns, numRows);
  SmallVector<Fraction> ithCol(numRows);
  for (auto i : llvm::seq<int>(0, numColumns)) {
    for (auto j : llvm::seq<int>(0, numRows))
      ithCol[j] = vertex(j, i);
    numerator.setRow(i, transp.preMultiplyWithRow(ithCol));
    numerator.negateRow(i);
  }
  // Therefore Λ will be given by [ 1    0 ] and the negation of this will be
  //                              [ 1/2 -1 ]
  //                              [ -1  -2 ]
  // stored as the numerator.
  // Algebraically, the numerator exponent is
  // [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first  COLUMN of U is [2, -1]
  // [  1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0]

  return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign),
                            std::vector({numerator}),
                            std::vector({denominator}));
}

/// We use Gaussian elimination to find the solution to a set of d equations
/// of the form
/// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0
/// where x_i are variables,
/// m_i are parameters and
/// a_i, b_i, c are rational coefficients.
///
/// The solution expresses each x_i as an affine function of the m_i, and is
/// therefore represented as a matrix of size d x (p+1).
/// If there is no solution, we return null.
std::optional<ParamPoint>
mlir::presburger::detail::solveParametricEquations(FracMatrix equations) {
  // equations is a d x (d + p + 1) matrix.
  // Each row represents an equation.
  unsigned d = equations.getNumRows();
  unsigned numCols = equations.getNumColumns();

  // If the determinant is zero, there is no unique solution.
  // Thus we return null.
  if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
                                        /*fromColumn=*/0,
                                        /*toColumn=*/d - 1))
          .determinant() == 0)
    return std::nullopt;

  // Perform row operations to make each column all zeros except for the
  // diagonal element, which is made to be one.
  for (unsigned i = 0; i < d; ++i) {
    // First ensure that the diagonal element is nonzero, by swapping
    // it with a row that is non-zero at column i.
    if (equations(i, i) != 0)
      continue;
    for (unsigned j = i + 1; j < d; ++j) {
      if (equations(j, i) == 0)
        continue;
      equations.swapRows(j, i);
      break;
    }

    Fraction diagElement = equations(i, i);

    // Apply row operations to make all elements except the diagonal to zero.
    for (unsigned j = 0; j < d; ++j) {
      if (i == j)
        continue;
      if (equations(j, i) == 0)
        continue;
      // Apply row operations to make element (j, i) zero by subtracting the
      // ith row, appropriately scaled.
      Fraction currentElement = equations(j, i);
      equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j,
                         /*scale=*/-currentElement / diagElement);
    }
  }

  // Rescale diagonal elements to 1.
  for (unsigned i = 0; i < d; ++i)
    equations.scaleRow(i, 1 / equations(i, i));

  // Now we have reduced the equations to the form
  // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0
  // i.e. each variable appears exactly once in the system, and has coefficient
  // one.
  //
  // Thus we have
  // x_i = - b_1' m_1 - ... - b_p' m_p - c
  // and so we return the negation of the last p + 1 columns of the matrix.
  //
  // We copy these columns and return them.
  ParamPoint vertex =
      equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
                             /*fromColumn=*/d, /*toColumn=*/numCols - 1);
  vertex.negateMatrix();
  return vertex;
}

/// This is an implementation of the Clauss-Loechner algorithm for chamber
/// decomposition.
///
/// We maintain a list of pairwise disjoint chambers and the generating
/// functions corresponding to each one. We iterate over the list of regions,
/// each time adding the current region's generating function to the chambers
/// where it is active and separating the chambers where it is not.
///
/// Given the region each generating function is active in, for each subset of
/// generating functions the region that (the sum of) precisely this subset is
/// in, is the intersection of the regions that these are active in,
/// intersected with the complements of the remaining regions.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
mlir::presburger::detail::computeChamberDecomposition(
    unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>>
                             regionsAndGeneratingFunctions) {
  assert(!regionsAndGeneratingFunctions.empty() &&
         "there must be at least one chamber!");
  // We maintain a list of regions and their associated generating function
  // initialized with the universe and the empty generating function.
  std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = {
      {PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(numSymbols)),
       GeneratingFunction(numSymbols, {}, {}, {})}};

  // We iterate over the region list.
  //
  // For each activity region R_j (corresponding to the generating function
  // gf_j), we examine all the current chambers R_i.
  //
  // If R_j has a full-dimensional intersection with an existing chamber R_i,
  // then that chamber is replaced by two new ones:
  // 1. the intersection R_i \cap R_j, where the generating function is
  // gf_i + gf_j.
  // 2. the difference R_i - R_j, where the generating function is gf_i.
  //
  // At each step, we define a new chamber list after considering gf_j,
  // replacing and appending chambers as discussed above.
  //
  // The loop has the invariant that the union over all the chambers gives the
  // universe at every step.
  for (const auto &[region, generatingFunction] :
       regionsAndGeneratingFunctions) {
    std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers;

    for (const auto &[currentRegion, currentGeneratingFunction] : chambers) {
      PresburgerSet intersection = currentRegion.intersect(region);

      // If the intersection is not full-dimensional, we do not modify
      // the chamber list.
      if (!intersection.isFullDim()) {
        newChambers.emplace_back(currentRegion, currentGeneratingFunction);
        continue;
      }

      // If it is, we add the intersection and the difference as chambers.
      newChambers.emplace_back(intersection,
                               currentGeneratingFunction + generatingFunction);
      newChambers.emplace_back(currentRegion.subtract(region),
                               currentGeneratingFunction);
    }
    chambers = std::move(newChambers);
  }

  return chambers;
}

/// For a polytope expressed as a set of n inequalities, compute the generating
/// function corresponding to the lattice points included in the polytope. This
/// algorithm has three main steps:
/// 1. Enumerate the vertices, by iterating over subsets of inequalities and
///    checking for satisfiability. For each d-subset of inequalities (where d
///    is the number of variables), we solve to obtain the vertex in terms of
///    the parameters, and then check for the region in parameter space where
///    this vertex satisfies the remaining (n - d) inequalities.
/// 2. For each vertex, identify the tangent cone and compute the generating
///    function corresponding to it. The generating function depends on the
///    parametric expression of the vertex and the (non-parametric) generators
///    of the tangent cone.
/// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space
///    (chambers) where each vertex is active, and accordingly compute the
///    GF of the polytope in each chamber.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
mlir::presburger::detail::computePolytopeGeneratingFunction(
    const PolyhedronH &poly) {
  unsigned numVars = poly.getNumRangeVars();
  unsigned numSymbols = poly.getNumSymbolVars();
  unsigned numIneqs = poly.getNumInequalities();

  // We store a list of the computed vertices.
  std::vector<ParamPoint> vertices;
  // For each vertex, we store the corresponding active region and the
  // generating functions of the tangent cone, in order.
  std::vector<std::pair<PresburgerSet, GeneratingFunction>>
      regionsAndGeneratingFunctions;

  // We iterate over all subsets of inequalities with cardinality numVars,
  // using permutations of numVars 1's and (numIneqs - numVars) 0's.
  //
  // For a given permutation, we consider a subset which contains
  // the i'th inequality if the i'th bit in the bitset is 1.
  //
  // We start with the permutation that takes the last numVars inequalities.
  SmallVector<int> indicator(numIneqs);
  for (unsigned i = numIneqs - numVars; i < numIneqs; ++i)
    indicator[i] = 1;

  do {
    // Collect the inequalities corresponding to the bits which are set
    // and the remaining ones.
    auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator);
    // All other inequalities are stored in a2 and b2c2.
    //
    // These are column-wise splits of the inequalities;
    // a2 stores the coefficients of the variables, and
    // b2c2 stores the coefficients of the parameters and the constant term.
    FracMatrix a2(numIneqs - numVars, numVars);
    FracMatrix b2c2(numIneqs - numVars, numSymbols + 1);
    a2 = FracMatrix(
        remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1));
    b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars,
                                             numVars + numSymbols));

    // Find the vertex, if any, corresponding to the current subset of
    // inequalities.
    std::optional<ParamPoint> vertex =
        solveParametricEquations(FracMatrix(subset)); // d x (p+1)

    if (!vertex)
      continue;
    if (std::find(vertices.begin(), vertices.end(), vertex) != vertices.end())
      continue;
    // If this subset corresponds to a vertex that has not been considered,
    // store it.
    vertices.emplace_back(*vertex);

    // If a vertex is formed by the intersection of more than d facets, we
    // assume that any d-subset of these facets can be solved to obtain its
    // expression. This assumption is valid because, if the vertex has two
    // distinct parametric expressions, then a nontrivial equality among the
    // parameters holds, which is a contradiction as we know the parameter
    // space to be full-dimensional.

    // Let the current vertex be [X | y], where
    // X represents the coefficients of the parameters and
    // y represents the constant term.
    //
    // The region (in parameter space) where this vertex is active is given
    // by substituting the vertex into the *remaining* inequalities of the
    // polytope (those which were not collected into `subset`), i.e., into the
    // inequalities [A2 | B2 | c2].
    //
    // Thus, the coefficients of the parameters after substitution become
    // (A2 • X + B2)
    // and the constant terms become
    // (A2 • y + c2).
    //
    // The region is therefore given by
    // (A2 • X + B2) p + (A2 • y + c2) ≥ 0
    //
    // This is equivalent to A2 • [X | y] + [B2 | c2].
    //
    // Thus we premultiply [X | y] with each row of A2
    // and add each row of [B2 | c2].
    FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1);
    for (unsigned i = 0; i < numIneqs - numVars; i++) {
      activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i)));
      activeRegion.addToRow(i, b2c2.getRow(i), 1);
    }

    // We convert the representation of the active region to an integers-only
    // form so as to store it as a PresburgerSet.
    IntegerPolyhedron activeRegionRel(
        PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0), activeRegion);

    // Now, we compute the generating function at this vertex.
    // We collect the inequalities corresponding to each vertex to compute
    // the tangent cone at that vertex.
    //
    // We only need the coefficients of the variables (NOT the parameters)
    // as the generating function only depends on these.
    // We translate the cones to be pointed at the origin by making the
    // constant terms zero.
    ConeH tangentCone = defineHRep(numVars);
    for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) {
      SmallVector<DynamicAPInt> ineq(numVars + 1);
      for (unsigned k = 0; k < numVars; ++k)
        ineq[k] = subset(j, k);
      tangentCone.addInequality(ineq);
    }
    // We assume that the tangent cone is unimodular, so there is no need
    // to decompose it.
    //
    // In the general case, the unimodular decomposition may have several
    // cones.
    GeneratingFunction vertexGf(numSymbols, {}, {}, {});
    SmallVector<std::pair<int, ConeH>, 4> unimodCones = {{1, tangentCone}};
    for (const std::pair<int, ConeH> &signedCone : unimodCones) {
      auto [sign, cone] = signedCone;
      vertexGf = vertexGf +
                 computeUnimodularConeGeneratingFunction(*vertex, sign, cone);
    }
    // We store the vertex we computed with the generating function of its
    // tangent cone.
    regionsAndGeneratingFunctions.emplace_back(PresburgerSet(activeRegionRel),
                                               vertexGf);
  } while (std::next_permutation(indicator.begin(), indicator.end()));

  // Now, we use Clauss-Loechner decomposition to identify regions in parameter
  // space where each vertex is active. These regions (chambers) have the
  // property that no two of them have a full-dimensional intersection, i.e.,
  // they may share "facets" or "edges", but their intersection can only have
  // up to numVars - 1 dimensions.
  //
  // In each chamber, we sum up the generating functions of the active vertices
  // to find the generating function of the polytope.
  return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions);
}

/// We use an iterative procedure to find a vector not orthogonal
/// to a given set, ignoring the null vectors.
/// Let the inputs be {x_1, ..., x_k}, all vectors of length n.
///
/// In the following,
/// vs[:i] means the elements of vs up to and including the i'th one,
/// <vs, us> means the dot product of vs and us,
/// vs ++ [v] means the vector vs with the new element v appended to it.
///
/// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector
/// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring
/// the null vectors.
/// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to
/// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones,
/// which we ignore.
/// At step d > 0 , we need a number v
/// s.t. <x_i[:d], vs++[v]> != 0 for all i.
/// => <x_i[:d-1], vs> + x_i[d]*v != 0
/// => v != - <x_i[:d-1], vs> / x_i[d]
/// We compute this value for all x_i, and then
/// set v to be the maximum element of this set plus one. Thus
/// v is outside the set as desired, and we append it to vs
/// to obtain the result of the d'th step.
Point mlir::presburger::detail::getNonOrthogonalVector(
    ArrayRef<Point> vectors) {
  unsigned dim = vectors[0].size();
  assert(llvm::all_of(
             vectors,
             [&dim](const Point &vector) { return vector.size() == dim; }) &&
         "all vectors need to be the same size!");

  SmallVector<Fraction> newPoint = {Fraction(1, 1)};
  Fraction maxDisallowedValue = -Fraction(1, 0),
           disallowedValue = Fraction(0, 1);

  for (unsigned d = 1; d < dim; ++d) {
    // Compute the disallowed values  - <x_i[:d-1], vs> / x_i[d] for each i.
    maxDisallowedValue = -Fraction(1, 0);
    for (const Point &vector : vectors) {
      if (vector[d] == 0)
        continue;
      disallowedValue =
          -dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d];

      // Find the biggest such value
      maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue);
    }
    newPoint.emplace_back(maxDisallowedValue + 1);
  }
  return newPoint;
}

/// We use the following recursive formula to find the coefficient of
/// s^power in the rational function given by P(s)/Q(s).
///
/// Let P[i] denote the coefficient of s^i in the polynomial P(s).
/// (P/Q)[r] =
/// if (r == 0) then
///   P[0]/Q[0]
/// else
///   (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0])
/// We therefore recursively call `getCoefficientInRationalFunction` on
/// all i \in [0, power).
///
/// https://math.ucdavis.edu/~deloera/researchsummary/
/// barvinokalgorithm-latte1.pdf, p. 1285
QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
    unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) {
  assert(!den.empty() && "division by empty denominator in rational function!");

  unsigned numParam = num[0].getNumInputs();
  // We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial
  // inherits from.
  assert(llvm::all_of(num,
                      [&num](const QuasiPolynomial &qp) {
                        return num[0].isEqual(qp);
                      }) &&
         "the quasipolynomials should all belong to the same space!");

  std::vector<QuasiPolynomial> coefficients;
  coefficients.reserve(power + 1);

  coefficients.emplace_back(num[0] / den[0]);
  for (unsigned i = 1; i <= power; ++i) {
    // If the power is not there in the numerator, the coefficient is zero.
    coefficients.emplace_back(i < num.size() ? num[i]
                                             : QuasiPolynomial(numParam, 0));

    // After den.size(), the coefficients are zero, so we stop
    // subtracting at that point (if it is less than i).
    unsigned limit = std::min<unsigned long>(i, den.size() - 1);
    for (unsigned j = 1; j <= limit; ++j)
      coefficients[i] = coefficients[i] -
                        coefficients[i - j] * QuasiPolynomial(numParam, den[j]);

    coefficients[i] = coefficients[i] / den[0];
  }
  return coefficients[power].simplify();
}

/// Substitute x_i = t^μ_i in one term of a generating function, returning
/// a quasipolynomial which represents the exponent of the numerator
/// of the result, and a vector which represents the exponents of the
/// denominator of the result.
/// If the returned value is {num, dens}, it represents the function
/// t^num / \prod_j (1 - t^dens[j]).
/// v represents the affine functions whose floors are multiplied by the
/// generators, and ds represents the list of generators.
std::pair<QuasiPolynomial, std::vector<Fraction>>
substituteMuInTerm(unsigned numParams, const ParamPoint &v,
                   const std::vector<Point> &ds, const Point &mu) {
  unsigned numDims = mu.size();
#ifndef NDEBUG
  for (const Point &d : ds)
    assert(d.size() == numDims &&
           "μ has to have the same number of dimensions as the generators!");
#endif

  // First, the exponent in the numerator becomes
  // - (μ • u_1) * (floor(first col of v))
  // - (μ • u_2) * (floor(second col of v)) - ...
  // - (μ • u_d) * (floor(d'th col of v))
  // So we store the negation of the dot products.

  // We have d terms, each of whose coefficient is the negative dot product.
  SmallVector<Fraction> coefficients;
  coefficients.reserve(numDims);
  for (const Point &d : ds)
    coefficients.emplace_back(-dotProduct(mu, d));

  // Then, the affine function is a single floor expression, given by the
  // corresponding column of v.
  ParamPoint vTranspose = v.transpose();
  std::vector<std::vector<SmallVector<Fraction>>> affine;
  affine.reserve(numDims);
  for (unsigned j = 0; j < numDims; ++j)
    affine.push_back({SmallVector<Fraction>{vTranspose.getRow(j)}});

  QuasiPolynomial num(numParams, coefficients, affine);
  num = num.simplify();

  std::vector<Fraction> dens;
  dens.reserve(ds.size());
  // Similarly, each term in the denominator has exponent
  // given by the dot product of μ with u_i.
  for (const Point &d : ds) {
    // This term in the denominator is
    // (1 - t^dens.back())
    dens.emplace_back(dotProduct(d, mu));
  }

  return {num, dens};
}

/// Normalize all denominator exponents `dens` to their absolute values
/// by multiplying and dividing by the inverses, in a function of the form
/// sign * t^num / prod_j (1 - t^dens[j]).
/// Here, sign = ± 1,
/// num is a QuasiPolynomial, and
/// each dens[j] is a Fraction.
void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
                                   std::vector<Fraction> &dens) {
  // We track the number of exponents that are negative in the
  // denominator, and convert them to their absolute values.
  unsigned numNegExps = 0;
  Fraction sumNegExps(0, 1);
  for (const auto &den : dens) {
    if (den < 0) {
      numNegExps += 1;
      sumNegExps += den;
    }
  }

  // If we have (1 - t^-c) in the denominator, for positive c,
  // multiply and divide by t^c.
  // We convert all negative-exponent terms at once; therefore
  // we multiply and divide by t^sumNegExps.
  // Then we get
  // -(1 - t^c) in the denominator,
  // increase the numerator by c, and
  // flip the sign of the function.
  if (numNegExps % 2 == 1)
    sign = -sign;
  num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
}

/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<QuasiPolynomial> getBinomialCoefficients(const QuasiPolynomial &n,
                                                     unsigned r) {
  unsigned numParams = n.getNumInputs();
  std::vector<QuasiPolynomial> coefficients;
  coefficients.reserve(r + 1);
  coefficients.emplace_back(numParams, 1);
  for (unsigned j = 1; j <= r; ++j)
    // We use the recursive formula for binomial coefficients here and below.
    coefficients.emplace_back(
        (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
         Fraction(j, 1))
            .simplify());
  return coefficients;
}

/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<Fraction> getBinomialCoefficients(const Fraction &n,
                                              const Fraction &r) {
  std::vector<Fraction> coefficients;
  coefficients.reserve((int64_t)floor(r));
  coefficients.emplace_back(1);
  for (unsigned j = 1; j <= r; ++j)
    coefficients.emplace_back(coefficients[j - 1] * (n - (j - 1)) / (j));
  return coefficients;
}

/// We have a generating function of the form
/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
///
/// where sign_i is ±1,
/// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the
/// floors of d affine functions on p parameters.
/// d_{ij} \in Q^d are vectors.
///
/// We need to find the number of terms of the form x^t in the expansion of
/// this function.
/// However, direct substitution (x = (1, ..., 1)) causes the denominator
/// to become zero.
///
/// We therefore use the following procedure instead:
/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
/// function a function of a scalar s.
/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
/// polynomials. P has coefficients as quasipolynomials in d parameters, while
/// Q has coefficients as scalars.
/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
/// equivalent to substituting s = 0.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
QuasiPolynomial
mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
  // Step (1) We need to find a μ such that we can substitute x_i =
  // (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
  // denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
  // zero. Hence we find a vector μ that is not orthogonal to any of the
  // d_{ij} and substitute x accordingly.
  std::vector<Point> allDenominators;
  for (ArrayRef<Point> den : gf.getDenominators())
    allDenominators.insert(allDenominators.end(), den.begin(), den.end());
  Point mu = getNonOrthogonalVector(allDenominators);

  unsigned numParams = gf.getNumParams();
  const std::vector<std::vector<Point>> &ds = gf.getDenominators();
  QuasiPolynomial totalTerm(numParams, 0);
  for (unsigned i = 0, e = ds.size(); i < e; ++i) {
    int sign = gf.getSigns()[i];

    // Compute the new exponents of (s+1) for the numerator and the
    // denominator after substituting μ.
    auto [numExp, dens] =
        substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu);
    // Now the numerator is (s+1)^numExp
    // and the denominator is \prod_j (1 - (s+1)^dens[j]).

    // Step (2) We need to express the terms in the function as quotients of
    // polynomials. Each term is now of the form
    // sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j]))
    // For the i'th term, we first normalize the denominator to have only
    // positive exponents. We convert all the dens[j] to their
    // absolute values and change the sign and exponent in the numerator.
    normalizeDenominatorExponents(sign, numExp, dens);

    // Then, using the formula for geometric series, we replace each (1 -
    // (s+1)^(dens[j])) with
    // (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k).
    for (auto &j : dens)
      j = abs(j) - 1;
    // Note that at this point, the semantics of `dens[j]` changes to mean
    // a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before,
    // a product of these terms.

    // Since the -s are taken out, the sign changes if there is an odd number
    // of such terms.
    unsigned r = dens.size();
    if (dens.size() % 2 == 1)
      sign = -sign;

    // Thus the term overall now has the form
    // sign'_i * (s+1)^numExp /
    // (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)).
    // This means that
    // the numerator is a polynomial in s, with coefficients as
    // quasipolynomials (given by binomial coefficients), and the denominator
    // is a polynomial in s, with integral coefficients (given by taking the
    // convolution over all j).

    // Step (3) We need to find the constant term in the expansion of each
    // term. Since each term has s^r as a factor in the denominator, we avoid
    // substituting s = 0 directly; instead, we find the coefficient of s^r in
    // sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)),
    // Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...),
    // we need to find the coefficient of s^r in P(s)/Q(s),
    // for which we use the `getCoefficientInRationalFunction()` function.

    // First, we compute the coefficients of P(s), which are binomial
    // coefficients.
    // We only need the first r+1 of these, as higher-order terms do not
    // contribute to the coefficient of s^r.
    std::vector<QuasiPolynomial> numeratorCoefficients =
        getBinomialCoefficients(numExp, r);

    // Then we compute the coefficients of each individual term in Q(s),
    // which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i].
    std::vector<std::vector<Fraction>> eachTermDenCoefficients;
    std::vector<Fraction> singleTermDenCoefficients;
    eachTermDenCoefficients.reserve(r);
    for (const Fraction &den : dens) {
      singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1);
      eachTermDenCoefficients.emplace_back(
          ArrayRef<Fraction>(singleTermDenCoefficients).drop_front());
    }

    // Now we find the coefficients in Q(s) itself
    // by taking the convolution of the coefficients
    // of all the terms.
    std::vector<Fraction> denominatorCoefficients;
    denominatorCoefficients = eachTermDenCoefficients[0];
    for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j)
      denominatorCoefficients = multiplyPolynomials(denominatorCoefficients,
                                                    eachTermDenCoefficients[j]);

    totalTerm =
        totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients,
                                                     denominatorCoefficients) *
                        QuasiPolynomial(numParams, sign);
  }

  return totalTerm.simplify();
}