1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
|
//===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Barvinok.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/Sequence.h"
#include <algorithm>
using namespace mlir;
using namespace presburger;
using namespace mlir::presburger::detail;
/// Assuming that the input cone is pointed at the origin,
/// converts it to its dual in V-representation.
/// Essentially we just remove the all-zeroes constant column.
ConeV mlir::presburger::detail::getDual(ConeH cone) {
unsigned numIneq = cone.getNumInequalities();
unsigned numVar = cone.getNumCols() - 1;
ConeV dual(numIneq, numVar, 0, 0);
// Assuming that an inequality of the form
// a1*x1 + ... + an*xn + b ≥ 0
// is represented as a row [a1, ..., an, b]
// and that b = 0.
for (auto i : llvm::seq<int>(0, numIneq)) {
assert(cone.atIneq(i, numVar) == 0 &&
"H-representation of cone is not centred at the origin!");
for (unsigned j = 0; j < numVar; ++j) {
dual.at(i, j) = cone.atIneq(i, j);
}
}
// Now dual is of the form [ [a1, ..., an] , ... ]
// which is the V-representation of the dual.
return dual;
}
/// Converts a cone in V-representation to the H-representation
/// of its dual, pointed at the origin (not at the original vertex).
/// Essentially adds a column consisting only of zeroes to the end.
ConeH mlir::presburger::detail::getDual(ConeV cone) {
unsigned rows = cone.getNumRows();
unsigned columns = cone.getNumColumns();
ConeH dual = defineHRep(columns);
// Add a new column (for constants) at the end.
// This will be initialized to zero.
cone.insertColumn(columns);
for (unsigned i = 0; i < rows; ++i)
dual.addInequality(cone.getRow(i));
// Now dual is of the form [ [a1, ..., an, 0] , ... ]
// which is the H-representation of the dual.
return dual;
}
/// Find the index of a cone in V-representation.
DynamicAPInt mlir::presburger::detail::getIndex(const ConeV &cone) {
if (cone.getNumRows() > cone.getNumColumns())
return DynamicAPInt(0);
return cone.determinant();
}
/// Compute the generating function for a unimodular cone.
/// This consists of a single term of the form
/// sign * x^num / prod_j (1 - x^den_j)
///
/// sign is either +1 or -1.
/// den_j is defined as the set of generators of the cone.
/// num is computed by expressing the vertex as a weighted
/// sum of the generators, and then taking the floor of the
/// coefficients.
GeneratingFunction
mlir::presburger::detail::computeUnimodularConeGeneratingFunction(
ParamPoint vertex, int sign, const ConeH &cone) {
// Consider a cone with H-representation [0 -1].
// [-1 -2]
// Let the vertex be given by the matrix [ 2 2 0], with 2 params.
// [-1 -1/2 1]
// `cone` must be unimodular.
assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!");
unsigned numVar = cone.getNumVars();
unsigned numIneq = cone.getNumInequalities();
// Thus its ray matrix, U, is the inverse of the
// transpose of its inequality matrix, `cone`.
// The last column of the inequality matrix is null,
// so we remove it to obtain a square matrix.
FracMatrix transp = FracMatrix(cone.getInequalities()).transpose();
transp.removeRow(numVar);
FracMatrix generators(numVar, numIneq);
transp.determinant(/*inverse=*/&generators); // This is the U-matrix.
// Thus the generators are given by U = [2 -1].
// [-1 0]
// The powers in the denominator of the generating
// function are given by the generators of the cone,
// i.e., the rows of the matrix U.
std::vector<Point> denominator(numIneq);
ArrayRef<Fraction> row;
for (auto i : llvm::seq<int>(0, numVar)) {
row = generators.getRow(i);
denominator[i] = Point(row);
}
// The vertex is v \in Z^{d x (n+1)}
// We need to find affine functions of parameters λ_i(p)
// such that v = Σ λ_i(p)*u_i,
// where u_i are the rows of U (generators)
// The λ_i are given by the columns of Λ = v^T U^{-1}, and
// we have transp = U^{-1}.
// Then the exponent in the numerator will be
// Σ -floor(-λ_i(p))*u_i.
// Thus we store the (exponent of the) numerator as the affine function -Λ,
// since the generators u_i are already stored as the exponent of the
// denominator. Note that the outer -1 will have to be accounted for, as it is
// not stored. See end for an example.
unsigned numColumns = vertex.getNumColumns();
unsigned numRows = vertex.getNumRows();
ParamPoint numerator(numColumns, numRows);
SmallVector<Fraction> ithCol(numRows);
for (auto i : llvm::seq<int>(0, numColumns)) {
for (auto j : llvm::seq<int>(0, numRows))
ithCol[j] = vertex(j, i);
numerator.setRow(i, transp.preMultiplyWithRow(ithCol));
numerator.negateRow(i);
}
// Therefore Λ will be given by [ 1 0 ] and the negation of this will be
// [ 1/2 -1 ]
// [ -1 -2 ]
// stored as the numerator.
// Algebraically, the numerator exponent is
// [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1]
// [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0]
return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign),
std::vector({numerator}),
std::vector({denominator}));
}
/// We use Gaussian elimination to find the solution to a set of d equations
/// of the form
/// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0
/// where x_i are variables,
/// m_i are parameters and
/// a_i, b_i, c are rational coefficients.
///
/// The solution expresses each x_i as an affine function of the m_i, and is
/// therefore represented as a matrix of size d x (p+1).
/// If there is no solution, we return null.
std::optional<ParamPoint>
mlir::presburger::detail::solveParametricEquations(FracMatrix equations) {
// equations is a d x (d + p + 1) matrix.
// Each row represents an equation.
unsigned d = equations.getNumRows();
unsigned numCols = equations.getNumColumns();
// If the determinant is zero, there is no unique solution.
// Thus we return null.
if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
/*fromColumn=*/0,
/*toColumn=*/d - 1))
.determinant() == 0)
return std::nullopt;
// Perform row operations to make each column all zeros except for the
// diagonal element, which is made to be one.
for (unsigned i = 0; i < d; ++i) {
// First ensure that the diagonal element is nonzero, by swapping
// it with a row that is non-zero at column i.
if (equations(i, i) != 0)
continue;
for (unsigned j = i + 1; j < d; ++j) {
if (equations(j, i) == 0)
continue;
equations.swapRows(j, i);
break;
}
Fraction diagElement = equations(i, i);
// Apply row operations to make all elements except the diagonal to zero.
for (unsigned j = 0; j < d; ++j) {
if (i == j)
continue;
if (equations(j, i) == 0)
continue;
// Apply row operations to make element (j, i) zero by subtracting the
// ith row, appropriately scaled.
Fraction currentElement = equations(j, i);
equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j,
/*scale=*/-currentElement / diagElement);
}
}
// Rescale diagonal elements to 1.
for (unsigned i = 0; i < d; ++i)
equations.scaleRow(i, 1 / equations(i, i));
// Now we have reduced the equations to the form
// x_i + b_1' m_1 + ... + b_p' m_p + c' = 0
// i.e. each variable appears exactly once in the system, and has coefficient
// one.
//
// Thus we have
// x_i = - b_1' m_1 - ... - b_p' m_p - c
// and so we return the negation of the last p + 1 columns of the matrix.
//
// We copy these columns and return them.
ParamPoint vertex =
equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
/*fromColumn=*/d, /*toColumn=*/numCols - 1);
vertex.negateMatrix();
return vertex;
}
/// This is an implementation of the Clauss-Loechner algorithm for chamber
/// decomposition.
///
/// We maintain a list of pairwise disjoint chambers and the generating
/// functions corresponding to each one. We iterate over the list of regions,
/// each time adding the current region's generating function to the chambers
/// where it is active and separating the chambers where it is not.
///
/// Given the region each generating function is active in, for each subset of
/// generating functions the region that (the sum of) precisely this subset is
/// in, is the intersection of the regions that these are active in,
/// intersected with the complements of the remaining regions.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
mlir::presburger::detail::computeChamberDecomposition(
unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>>
regionsAndGeneratingFunctions) {
assert(!regionsAndGeneratingFunctions.empty() &&
"there must be at least one chamber!");
// We maintain a list of regions and their associated generating function
// initialized with the universe and the empty generating function.
std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = {
{PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(numSymbols)),
GeneratingFunction(numSymbols, {}, {}, {})}};
// We iterate over the region list.
//
// For each activity region R_j (corresponding to the generating function
// gf_j), we examine all the current chambers R_i.
//
// If R_j has a full-dimensional intersection with an existing chamber R_i,
// then that chamber is replaced by two new ones:
// 1. the intersection R_i \cap R_j, where the generating function is
// gf_i + gf_j.
// 2. the difference R_i - R_j, where the generating function is gf_i.
//
// At each step, we define a new chamber list after considering gf_j,
// replacing and appending chambers as discussed above.
//
// The loop has the invariant that the union over all the chambers gives the
// universe at every step.
for (const auto &[region, generatingFunction] :
regionsAndGeneratingFunctions) {
std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers;
for (const auto &[currentRegion, currentGeneratingFunction] : chambers) {
PresburgerSet intersection = currentRegion.intersect(region);
// If the intersection is not full-dimensional, we do not modify
// the chamber list.
if (!intersection.isFullDim()) {
newChambers.emplace_back(currentRegion, currentGeneratingFunction);
continue;
}
// If it is, we add the intersection and the difference as chambers.
newChambers.emplace_back(intersection,
currentGeneratingFunction + generatingFunction);
newChambers.emplace_back(currentRegion.subtract(region),
currentGeneratingFunction);
}
chambers = std::move(newChambers);
}
return chambers;
}
/// For a polytope expressed as a set of n inequalities, compute the generating
/// function corresponding to the lattice points included in the polytope. This
/// algorithm has three main steps:
/// 1. Enumerate the vertices, by iterating over subsets of inequalities and
/// checking for satisfiability. For each d-subset of inequalities (where d
/// is the number of variables), we solve to obtain the vertex in terms of
/// the parameters, and then check for the region in parameter space where
/// this vertex satisfies the remaining (n - d) inequalities.
/// 2. For each vertex, identify the tangent cone and compute the generating
/// function corresponding to it. The generating function depends on the
/// parametric expression of the vertex and the (non-parametric) generators
/// of the tangent cone.
/// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space
/// (chambers) where each vertex is active, and accordingly compute the
/// GF of the polytope in each chamber.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
mlir::presburger::detail::computePolytopeGeneratingFunction(
const PolyhedronH &poly) {
unsigned numVars = poly.getNumRangeVars();
unsigned numSymbols = poly.getNumSymbolVars();
unsigned numIneqs = poly.getNumInequalities();
// We store a list of the computed vertices.
std::vector<ParamPoint> vertices;
// For each vertex, we store the corresponding active region and the
// generating functions of the tangent cone, in order.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
regionsAndGeneratingFunctions;
// We iterate over all subsets of inequalities with cardinality numVars,
// using permutations of numVars 1's and (numIneqs - numVars) 0's.
//
// For a given permutation, we consider a subset which contains
// the i'th inequality if the i'th bit in the bitset is 1.
//
// We start with the permutation that takes the last numVars inequalities.
SmallVector<int> indicator(numIneqs);
for (unsigned i = numIneqs - numVars; i < numIneqs; ++i)
indicator[i] = 1;
do {
// Collect the inequalities corresponding to the bits which are set
// and the remaining ones.
auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator);
// All other inequalities are stored in a2 and b2c2.
//
// These are column-wise splits of the inequalities;
// a2 stores the coefficients of the variables, and
// b2c2 stores the coefficients of the parameters and the constant term.
FracMatrix a2(numIneqs - numVars, numVars);
FracMatrix b2c2(numIneqs - numVars, numSymbols + 1);
a2 = FracMatrix(
remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1));
b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars,
numVars + numSymbols));
// Find the vertex, if any, corresponding to the current subset of
// inequalities.
std::optional<ParamPoint> vertex =
solveParametricEquations(FracMatrix(subset)); // d x (p+1)
if (!vertex)
continue;
if (std::find(vertices.begin(), vertices.end(), vertex) != vertices.end())
continue;
// If this subset corresponds to a vertex that has not been considered,
// store it.
vertices.emplace_back(*vertex);
// If a vertex is formed by the intersection of more than d facets, we
// assume that any d-subset of these facets can be solved to obtain its
// expression. This assumption is valid because, if the vertex has two
// distinct parametric expressions, then a nontrivial equality among the
// parameters holds, which is a contradiction as we know the parameter
// space to be full-dimensional.
// Let the current vertex be [X | y], where
// X represents the coefficients of the parameters and
// y represents the constant term.
//
// The region (in parameter space) where this vertex is active is given
// by substituting the vertex into the *remaining* inequalities of the
// polytope (those which were not collected into `subset`), i.e., into the
// inequalities [A2 | B2 | c2].
//
// Thus, the coefficients of the parameters after substitution become
// (A2 • X + B2)
// and the constant terms become
// (A2 • y + c2).
//
// The region is therefore given by
// (A2 • X + B2) p + (A2 • y + c2) ≥ 0
//
// This is equivalent to A2 • [X | y] + [B2 | c2].
//
// Thus we premultiply [X | y] with each row of A2
// and add each row of [B2 | c2].
FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1);
for (unsigned i = 0; i < numIneqs - numVars; i++) {
activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i)));
activeRegion.addToRow(i, b2c2.getRow(i), 1);
}
// We convert the representation of the active region to an integers-only
// form so as to store it as a PresburgerSet.
IntegerPolyhedron activeRegionRel(
PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0), activeRegion);
// Now, we compute the generating function at this vertex.
// We collect the inequalities corresponding to each vertex to compute
// the tangent cone at that vertex.
//
// We only need the coefficients of the variables (NOT the parameters)
// as the generating function only depends on these.
// We translate the cones to be pointed at the origin by making the
// constant terms zero.
ConeH tangentCone = defineHRep(numVars);
for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) {
SmallVector<DynamicAPInt> ineq(numVars + 1);
for (unsigned k = 0; k < numVars; ++k)
ineq[k] = subset(j, k);
tangentCone.addInequality(ineq);
}
// We assume that the tangent cone is unimodular, so there is no need
// to decompose it.
//
// In the general case, the unimodular decomposition may have several
// cones.
GeneratingFunction vertexGf(numSymbols, {}, {}, {});
SmallVector<std::pair<int, ConeH>, 4> unimodCones = {{1, tangentCone}};
for (const std::pair<int, ConeH> &signedCone : unimodCones) {
auto [sign, cone] = signedCone;
vertexGf = vertexGf +
computeUnimodularConeGeneratingFunction(*vertex, sign, cone);
}
// We store the vertex we computed with the generating function of its
// tangent cone.
regionsAndGeneratingFunctions.emplace_back(PresburgerSet(activeRegionRel),
vertexGf);
} while (std::next_permutation(indicator.begin(), indicator.end()));
// Now, we use Clauss-Loechner decomposition to identify regions in parameter
// space where each vertex is active. These regions (chambers) have the
// property that no two of them have a full-dimensional intersection, i.e.,
// they may share "facets" or "edges", but their intersection can only have
// up to numVars - 1 dimensions.
//
// In each chamber, we sum up the generating functions of the active vertices
// to find the generating function of the polytope.
return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions);
}
/// We use an iterative procedure to find a vector not orthogonal
/// to a given set, ignoring the null vectors.
/// Let the inputs be {x_1, ..., x_k}, all vectors of length n.
///
/// In the following,
/// vs[:i] means the elements of vs up to and including the i'th one,
/// <vs, us> means the dot product of vs and us,
/// vs ++ [v] means the vector vs with the new element v appended to it.
///
/// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector
/// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring
/// the null vectors.
/// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to
/// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones,
/// which we ignore.
/// At step d > 0 , we need a number v
/// s.t. <x_i[:d], vs++[v]> != 0 for all i.
/// => <x_i[:d-1], vs> + x_i[d]*v != 0
/// => v != - <x_i[:d-1], vs> / x_i[d]
/// We compute this value for all x_i, and then
/// set v to be the maximum element of this set plus one. Thus
/// v is outside the set as desired, and we append it to vs
/// to obtain the result of the d'th step.
Point mlir::presburger::detail::getNonOrthogonalVector(
ArrayRef<Point> vectors) {
unsigned dim = vectors[0].size();
assert(llvm::all_of(
vectors,
[&dim](const Point &vector) { return vector.size() == dim; }) &&
"all vectors need to be the same size!");
SmallVector<Fraction> newPoint = {Fraction(1, 1)};
Fraction maxDisallowedValue = -Fraction(1, 0),
disallowedValue = Fraction(0, 1);
for (unsigned d = 1; d < dim; ++d) {
// Compute the disallowed values - <x_i[:d-1], vs> / x_i[d] for each i.
maxDisallowedValue = -Fraction(1, 0);
for (const Point &vector : vectors) {
if (vector[d] == 0)
continue;
disallowedValue =
-dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d];
// Find the biggest such value
maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue);
}
newPoint.emplace_back(maxDisallowedValue + 1);
}
return newPoint;
}
/// We use the following recursive formula to find the coefficient of
/// s^power in the rational function given by P(s)/Q(s).
///
/// Let P[i] denote the coefficient of s^i in the polynomial P(s).
/// (P/Q)[r] =
/// if (r == 0) then
/// P[0]/Q[0]
/// else
/// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0])
/// We therefore recursively call `getCoefficientInRationalFunction` on
/// all i \in [0, power).
///
/// https://math.ucdavis.edu/~deloera/researchsummary/
/// barvinokalgorithm-latte1.pdf, p. 1285
QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) {
assert(!den.empty() && "division by empty denominator in rational function!");
unsigned numParam = num[0].getNumInputs();
// We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial
// inherits from.
assert(llvm::all_of(num,
[&num](const QuasiPolynomial &qp) {
return num[0].isEqual(qp);
}) &&
"the quasipolynomials should all belong to the same space!");
std::vector<QuasiPolynomial> coefficients;
coefficients.reserve(power + 1);
coefficients.emplace_back(num[0] / den[0]);
for (unsigned i = 1; i <= power; ++i) {
// If the power is not there in the numerator, the coefficient is zero.
coefficients.emplace_back(i < num.size() ? num[i]
: QuasiPolynomial(numParam, 0));
// After den.size(), the coefficients are zero, so we stop
// subtracting at that point (if it is less than i).
unsigned limit = std::min<unsigned long>(i, den.size() - 1);
for (unsigned j = 1; j <= limit; ++j)
coefficients[i] = coefficients[i] -
coefficients[i - j] * QuasiPolynomial(numParam, den[j]);
coefficients[i] = coefficients[i] / den[0];
}
return coefficients[power].simplify();
}
/// Substitute x_i = t^μ_i in one term of a generating function, returning
/// a quasipolynomial which represents the exponent of the numerator
/// of the result, and a vector which represents the exponents of the
/// denominator of the result.
/// If the returned value is {num, dens}, it represents the function
/// t^num / \prod_j (1 - t^dens[j]).
/// v represents the affine functions whose floors are multiplied by the
/// generators, and ds represents the list of generators.
std::pair<QuasiPolynomial, std::vector<Fraction>>
substituteMuInTerm(unsigned numParams, const ParamPoint &v,
const std::vector<Point> &ds, const Point &mu) {
unsigned numDims = mu.size();
#ifndef NDEBUG
for (const Point &d : ds)
assert(d.size() == numDims &&
"μ has to have the same number of dimensions as the generators!");
#endif
// First, the exponent in the numerator becomes
// - (μ • u_1) * (floor(first col of v))
// - (μ • u_2) * (floor(second col of v)) - ...
// - (μ • u_d) * (floor(d'th col of v))
// So we store the negation of the dot products.
// We have d terms, each of whose coefficient is the negative dot product.
SmallVector<Fraction> coefficients;
coefficients.reserve(numDims);
for (const Point &d : ds)
coefficients.emplace_back(-dotProduct(mu, d));
// Then, the affine function is a single floor expression, given by the
// corresponding column of v.
ParamPoint vTranspose = v.transpose();
std::vector<std::vector<SmallVector<Fraction>>> affine;
affine.reserve(numDims);
for (unsigned j = 0; j < numDims; ++j)
affine.push_back({SmallVector<Fraction>{vTranspose.getRow(j)}});
QuasiPolynomial num(numParams, coefficients, affine);
num = num.simplify();
std::vector<Fraction> dens;
dens.reserve(ds.size());
// Similarly, each term in the denominator has exponent
// given by the dot product of μ with u_i.
for (const Point &d : ds) {
// This term in the denominator is
// (1 - t^dens.back())
dens.emplace_back(dotProduct(d, mu));
}
return {num, dens};
}
/// Normalize all denominator exponents `dens` to their absolute values
/// by multiplying and dividing by the inverses, in a function of the form
/// sign * t^num / prod_j (1 - t^dens[j]).
/// Here, sign = ± 1,
/// num is a QuasiPolynomial, and
/// each dens[j] is a Fraction.
void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
std::vector<Fraction> &dens) {
// We track the number of exponents that are negative in the
// denominator, and convert them to their absolute values.
unsigned numNegExps = 0;
Fraction sumNegExps(0, 1);
for (const auto &den : dens) {
if (den < 0) {
numNegExps += 1;
sumNegExps += den;
}
}
// If we have (1 - t^-c) in the denominator, for positive c,
// multiply and divide by t^c.
// We convert all negative-exponent terms at once; therefore
// we multiply and divide by t^sumNegExps.
// Then we get
// -(1 - t^c) in the denominator,
// increase the numerator by c, and
// flip the sign of the function.
if (numNegExps % 2 == 1)
sign = -sign;
num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
}
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<QuasiPolynomial> getBinomialCoefficients(const QuasiPolynomial &n,
unsigned r) {
unsigned numParams = n.getNumInputs();
std::vector<QuasiPolynomial> coefficients;
coefficients.reserve(r + 1);
coefficients.emplace_back(numParams, 1);
for (unsigned j = 1; j <= r; ++j)
// We use the recursive formula for binomial coefficients here and below.
coefficients.emplace_back(
(coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
Fraction(j, 1))
.simplify());
return coefficients;
}
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<Fraction> getBinomialCoefficients(const Fraction &n,
const Fraction &r) {
std::vector<Fraction> coefficients;
coefficients.reserve((int64_t)floor(r));
coefficients.emplace_back(1);
for (unsigned j = 1; j <= r; ++j)
coefficients.emplace_back(coefficients[j - 1] * (n - (j - 1)) / (j));
return coefficients;
}
/// We have a generating function of the form
/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
///
/// where sign_i is ±1,
/// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the
/// floors of d affine functions on p parameters.
/// d_{ij} \in Q^d are vectors.
///
/// We need to find the number of terms of the form x^t in the expansion of
/// this function.
/// However, direct substitution (x = (1, ..., 1)) causes the denominator
/// to become zero.
///
/// We therefore use the following procedure instead:
/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
/// function a function of a scalar s.
/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
/// polynomials. P has coefficients as quasipolynomials in d parameters, while
/// Q has coefficients as scalars.
/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
/// equivalent to substituting s = 0.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
QuasiPolynomial
mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
// Step (1) We need to find a μ such that we can substitute x_i =
// (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
// denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
// zero. Hence we find a vector μ that is not orthogonal to any of the
// d_{ij} and substitute x accordingly.
std::vector<Point> allDenominators;
for (ArrayRef<Point> den : gf.getDenominators())
allDenominators.insert(allDenominators.end(), den.begin(), den.end());
Point mu = getNonOrthogonalVector(allDenominators);
unsigned numParams = gf.getNumParams();
const std::vector<std::vector<Point>> &ds = gf.getDenominators();
QuasiPolynomial totalTerm(numParams, 0);
for (unsigned i = 0, e = ds.size(); i < e; ++i) {
int sign = gf.getSigns()[i];
// Compute the new exponents of (s+1) for the numerator and the
// denominator after substituting μ.
auto [numExp, dens] =
substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu);
// Now the numerator is (s+1)^numExp
// and the denominator is \prod_j (1 - (s+1)^dens[j]).
// Step (2) We need to express the terms in the function as quotients of
// polynomials. Each term is now of the form
// sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j]))
// For the i'th term, we first normalize the denominator to have only
// positive exponents. We convert all the dens[j] to their
// absolute values and change the sign and exponent in the numerator.
normalizeDenominatorExponents(sign, numExp, dens);
// Then, using the formula for geometric series, we replace each (1 -
// (s+1)^(dens[j])) with
// (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k).
for (auto &j : dens)
j = abs(j) - 1;
// Note that at this point, the semantics of `dens[j]` changes to mean
// a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before,
// a product of these terms.
// Since the -s are taken out, the sign changes if there is an odd number
// of such terms.
unsigned r = dens.size();
if (dens.size() % 2 == 1)
sign = -sign;
// Thus the term overall now has the form
// sign'_i * (s+1)^numExp /
// (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)).
// This means that
// the numerator is a polynomial in s, with coefficients as
// quasipolynomials (given by binomial coefficients), and the denominator
// is a polynomial in s, with integral coefficients (given by taking the
// convolution over all j).
// Step (3) We need to find the constant term in the expansion of each
// term. Since each term has s^r as a factor in the denominator, we avoid
// substituting s = 0 directly; instead, we find the coefficient of s^r in
// sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)),
// Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...),
// we need to find the coefficient of s^r in P(s)/Q(s),
// for which we use the `getCoefficientInRationalFunction()` function.
// First, we compute the coefficients of P(s), which are binomial
// coefficients.
// We only need the first r+1 of these, as higher-order terms do not
// contribute to the coefficient of s^r.
std::vector<QuasiPolynomial> numeratorCoefficients =
getBinomialCoefficients(numExp, r);
// Then we compute the coefficients of each individual term in Q(s),
// which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i].
std::vector<std::vector<Fraction>> eachTermDenCoefficients;
std::vector<Fraction> singleTermDenCoefficients;
eachTermDenCoefficients.reserve(r);
for (const Fraction &den : dens) {
singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1);
eachTermDenCoefficients.emplace_back(
ArrayRef<Fraction>(singleTermDenCoefficients).drop_front());
}
// Now we find the coefficients in Q(s) itself
// by taking the convolution of the coefficients
// of all the terms.
std::vector<Fraction> denominatorCoefficients;
denominatorCoefficients = eachTermDenCoefficients[0];
for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j)
denominatorCoefficients = multiplyPolynomials(denominatorCoefficients,
eachTermDenCoefficients[j]);
totalTerm =
totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients,
denominatorCoefficients) *
QuasiPolynomial(numParams, sign);
}
return totalTerm.simplify();
}
|