1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>
using namespace mlir;
using namespace presburger;
template <typename T>
Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
unsigned reservedColumns)
: nRows(rows), nColumns(columns),
nReservedColumns(std::max(nColumns, reservedColumns)),
data(nRows * nReservedColumns) {
data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
}
/// We cannot use the default implementation of operator== as it compares
/// fields like `reservedColumns` etc., which are not part of the data.
template <typename T>
bool Matrix<T>::operator==(const Matrix<T> &m) const {
if (nRows != m.getNumRows())
return false;
if (nColumns != m.getNumColumns())
return false;
for (unsigned i = 0; i < nRows; i++)
if (getRow(i) != m.getRow(i))
return false;
return true;
}
template <typename T>
Matrix<T> Matrix<T>::identity(unsigned dimension) {
Matrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
template <typename T>
unsigned Matrix<T>::getNumReservedRows() const {
return data.capacity() / nReservedColumns;
}
template <typename T>
void Matrix<T>::reserveRows(unsigned rows) {
data.reserve(rows * nReservedColumns);
}
template <typename T>
unsigned Matrix<T>::appendExtraRow() {
resizeVertically(nRows + 1);
return nRows - 1;
}
template <typename T>
unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) {
assert(elems.size() == nColumns && "elems must match row length!");
unsigned row = appendExtraRow();
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = elems[col];
return row;
}
template <typename T>
Matrix<T> Matrix<T>::transpose() const {
Matrix<T> transp(nColumns, nRows);
for (unsigned row = 0; row < nRows; ++row)
for (unsigned col = 0; col < nColumns; ++col)
transp(col, row) = at(row, col);
return transp;
}
template <typename T>
void Matrix<T>::resizeHorizontally(unsigned newNColumns) {
if (newNColumns < nColumns)
removeColumns(newNColumns, nColumns - newNColumns);
if (newNColumns > nColumns)
insertColumns(nColumns, newNColumns - nColumns);
}
template <typename T>
void Matrix<T>::resize(unsigned newNRows, unsigned newNColumns) {
resizeHorizontally(newNColumns);
resizeVertically(newNRows);
}
template <typename T>
void Matrix<T>::resizeVertically(unsigned newNRows) {
nRows = newNRows;
data.resize(nRows * nReservedColumns);
}
template <typename T>
void Matrix<T>::swapRows(unsigned row, unsigned otherRow) {
assert((row < getNumRows() && otherRow < getNumRows()) &&
"Given row out of bounds");
if (row == otherRow)
return;
for (unsigned col = 0; col < nColumns; col++)
std::swap(at(row, col), at(otherRow, col));
}
template <typename T>
void Matrix<T>::swapColumns(unsigned column, unsigned otherColumn) {
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
"Given column out of bounds");
if (column == otherColumn)
return;
for (unsigned row = 0; row < nRows; row++)
std::swap(at(row, column), at(row, otherColumn));
}
template <typename T>
MutableArrayRef<T> Matrix<T>::getRow(unsigned row) {
return {&data[row * nReservedColumns], nColumns};
}
template <typename T>
ArrayRef<T> Matrix<T>::getRow(unsigned row) const {
return {&data[row * nReservedColumns], nColumns};
}
template <typename T>
void Matrix<T>::setRow(unsigned row, ArrayRef<T> elems) {
assert(elems.size() == getNumColumns() &&
"elems size must match row length!");
for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
at(row, i) = elems[i];
}
template <typename T>
void Matrix<T>::insertColumn(unsigned pos) {
insertColumns(pos, 1);
}
template <typename T>
void Matrix<T>::insertColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nColumns);
unsigned oldNReservedColumns = nReservedColumns;
if (nColumns + count > nReservedColumns) {
nReservedColumns = llvm::NextPowerOf2(nColumns + count);
data.resize(nRows * nReservedColumns);
}
nColumns += count;
for (int ri = nRows - 1; ri >= 0; --ri) {
for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
unsigned r = ri;
unsigned c = ci;
T &dest = data[r * nReservedColumns + c];
if (c >= nColumns) { // NOLINT
// Out of bounds columns are zero-initialized. NOLINT because clang-tidy
// complains about this branch being the same as the c >= pos one.
//
// TODO: this case can be skipped if the number of reserved columns
// didn't change.
dest = 0;
} else if (c >= pos + count) {
// Shift the data occuring after the inserted columns.
dest = data[r * oldNReservedColumns + c - count];
} else if (c >= pos) {
// The inserted columns are also zero-initialized.
dest = 0;
} else {
// The columns before the inserted columns stay at the same (row, col)
// but this corresponds to a different location in the linearized array
// if the number of reserved columns changed.
if (nReservedColumns == oldNReservedColumns)
break;
dest = data[r * oldNReservedColumns + c];
}
}
}
}
template <typename T>
void Matrix<T>::removeColumn(unsigned pos) {
removeColumns(pos, 1);
}
template <typename T>
void Matrix<T>::removeColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 < nColumns);
for (unsigned r = 0; r < nRows; ++r) {
for (unsigned c = pos; c < nColumns - count; ++c)
at(r, c) = at(r, c + count);
for (unsigned c = nColumns - count; c < nColumns; ++c)
at(r, c) = 0;
}
nColumns -= count;
}
template <typename T>
void Matrix<T>::insertRow(unsigned pos) {
insertRows(pos, 1);
}
template <typename T>
void Matrix<T>::insertRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nRows);
resizeVertically(nRows + count);
for (int r = nRows - 1; r >= int(pos + count); --r)
copyRow(r - count, r);
for (int r = pos + count - 1; r >= int(pos); --r)
for (unsigned c = 0; c < nColumns; ++c)
at(r, c) = 0;
}
template <typename T>
void Matrix<T>::removeRow(unsigned pos) {
removeRows(pos, 1);
}
template <typename T>
void Matrix<T>::removeRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 <= nRows);
for (unsigned r = pos; r + count < nRows; ++r)
copyRow(r + count, r);
resizeVertically(nRows - count);
}
template <typename T>
void Matrix<T>::copyRow(unsigned sourceRow, unsigned targetRow) {
if (sourceRow == targetRow)
return;
for (unsigned c = 0; c < nColumns; ++c)
at(targetRow, c) = at(sourceRow, c);
}
template <typename T>
void Matrix<T>::fillRow(unsigned row, const T &value) {
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = value;
}
// moveColumns is implemented by moving the columns adjacent to the source range
// to their final position. When moving right (i.e. dstPos > srcPos), the range
// of the adjacent columns is [srcPos + num, dstPos + num). When moving left
// (i.e. dstPos < srcPos) the range of the adjacent columns is [dstPos, srcPos).
// First, zeroed out columns are inserted in the final positions of the adjacent
// columns. Then, the adjacent columns are moved to their final positions by
// swapping them with the zeroed columns. Finally, the now zeroed adjacent
// columns are deleted.
template <typename T>
void Matrix<T>::moveColumns(unsigned srcPos, unsigned num, unsigned dstPos) {
if (num == 0)
return;
int offset = dstPos - srcPos;
if (offset == 0)
return;
assert(srcPos + num <= getNumColumns() &&
"move source range exceeds matrix columns");
assert(dstPos + num <= getNumColumns() &&
"move destination range exceeds matrix columns");
unsigned insertCount = offset > 0 ? offset : -offset;
unsigned finalAdjStart = offset > 0 ? srcPos : srcPos + num;
unsigned curAdjStart = offset > 0 ? srcPos + num : dstPos;
// TODO: This can be done using std::rotate.
// Insert new zero columns in the positions where the adjacent columns are to
// be moved.
insertColumns(finalAdjStart, insertCount);
// Update curAdjStart if insertion of new columns invalidates it.
if (finalAdjStart < curAdjStart)
curAdjStart += insertCount;
// Swap the adjacent columns with inserted zero columns.
for (unsigned i = 0; i < insertCount; ++i)
swapColumns(finalAdjStart + i, curAdjStart + i);
// Delete the now redundant zero columns.
removeColumns(curAdjStart, insertCount);
}
template <typename T>
void Matrix<T>::addToRow(unsigned sourceRow, unsigned targetRow,
const T &scale) {
addToRow(targetRow, getRow(sourceRow), scale);
}
template <typename T>
void Matrix<T>::addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale) {
if (scale == 0)
return;
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) += scale * rowVec[col];
}
template <typename T>
void Matrix<T>::scaleRow(unsigned row, const T &scale) {
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) *= scale;
}
template <typename T>
void Matrix<T>::addToColumn(unsigned sourceColumn, unsigned targetColumn,
const T &scale) {
if (scale == 0)
return;
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, targetColumn) += scale * at(row, sourceColumn);
}
template <typename T>
void Matrix<T>::negateColumn(unsigned column) {
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, column) = -at(row, column);
}
template <typename T>
void Matrix<T>::negateRow(unsigned row) {
for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
at(row, column) = -at(row, column);
}
template <typename T>
void Matrix<T>::negateMatrix() {
for (unsigned row = 0; row < nRows; ++row)
negateRow(row);
}
template <typename T>
SmallVector<T, 8> Matrix<T>::preMultiplyWithRow(ArrayRef<T> rowVec) const {
assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");
SmallVector<T, 8> result(getNumColumns(), T(0));
for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
for (unsigned i = 0, e = getNumRows(); i < e; ++i)
result[col] += rowVec[i] * at(i, col);
return result;
}
template <typename T>
SmallVector<T, 8> Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const {
assert(getNumColumns() == colVec.size() &&
"Invalid column vector dimension!");
SmallVector<T, 8> result(getNumRows(), T(0));
for (unsigned row = 0, e = getNumRows(); row < e; row++)
for (unsigned i = 0, e = getNumColumns(); i < e; i++)
result[row] += at(row, i) * colVec[i];
return result;
}
/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
/// by subtracting from column targetCol an appropriate integer multiple of
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
/// integer multiple.
static void modEntryColumnOperation(Matrix<DynamicAPInt> &m, unsigned row,
unsigned sourceCol, unsigned targetCol,
Matrix<DynamicAPInt> &otherMatrix) {
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
assert(m(row, sourceCol) > 0 && "Source must be positive!");
DynamicAPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
m.addToColumn(sourceCol, targetCol, ratio);
otherMatrix.addToColumn(sourceCol, targetCol, ratio);
}
template <typename T>
Matrix<T> Matrix<T>::getSubMatrix(unsigned fromRow, unsigned toRow,
unsigned fromColumn,
unsigned toColumn) const {
assert(fromRow <= toRow && "end of row range must be after beginning!");
assert(toRow < nRows && "end of row range out of bounds!");
assert(fromColumn <= toColumn &&
"end of column range must be after beginning!");
assert(toColumn < nColumns && "end of column range out of bounds!");
Matrix<T> subMatrix(toRow - fromRow + 1, toColumn - fromColumn + 1);
for (unsigned i = fromRow; i <= toRow; ++i)
for (unsigned j = fromColumn; j <= toColumn; ++j)
subMatrix(i - fromRow, j - fromColumn) = at(i, j);
return subMatrix;
}
template <typename T>
void Matrix<T>::print(raw_ostream &os) const {
for (unsigned row = 0; row < nRows; ++row) {
for (unsigned column = 0; column < nColumns; ++column)
os << at(row, column) << ' ';
os << '\n';
}
}
/// We iterate over the `indicator` bitset, checking each bit. If a bit is 1,
/// we append it to one matrix, and if it is zero, we append it to the other.
template <typename T>
std::pair<Matrix<T>, Matrix<T>>
Matrix<T>::splitByBitset(ArrayRef<int> indicator) {
Matrix<T> rowsForOne(0, nColumns), rowsForZero(0, nColumns);
for (unsigned i = 0; i < nRows; i++) {
if (indicator[i] == 1)
rowsForOne.appendExtraRow(getRow(i));
else
rowsForZero.appendExtraRow(getRow(i));
}
return {rowsForOne, rowsForZero};
}
template <typename T>
void Matrix<T>::dump() const {
print(llvm::errs());
}
template <typename T>
bool Matrix<T>::hasConsistentState() const {
if (data.size() != nRows * nReservedColumns)
return false;
if (nColumns > nReservedColumns)
return false;
#ifdef EXPENSIVE_CHECKS
for (unsigned r = 0; r < nRows; ++r)
for (unsigned c = nColumns; c < nReservedColumns; ++c)
if (data[r * nReservedColumns + c] != 0)
return false;
#endif
return true;
}
namespace mlir {
namespace presburger {
template class Matrix<DynamicAPInt>;
template class Matrix<Fraction>;
} // namespace presburger
} // namespace mlir
IntMatrix IntMatrix::identity(unsigned dimension) {
IntMatrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
std::pair<IntMatrix, IntMatrix> IntMatrix::computeHermiteNormalForm() const {
// We start with u as an identity matrix and perform operations on h until h
// is in hermite normal form. We apply the same sequence of operations on u to
// obtain a transform that takes h to hermite normal form.
IntMatrix h = *this;
IntMatrix u = IntMatrix::identity(h.getNumColumns());
unsigned echelonCol = 0;
// Invariant: in all rows above row, all columns from echelonCol onwards
// are all zero elements. In an iteration, if the curent row has any non-zero
// elements echelonCol onwards, we bring one to echelonCol and use it to
// make all elements echelonCol + 1 onwards zero.
for (unsigned row = 0; row < h.getNumRows(); ++row) {
// Search row for a non-empty entry, starting at echelonCol.
unsigned nonZeroCol = echelonCol;
for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
if (h(row, nonZeroCol) == 0)
continue;
break;
}
// Continue to the next row with the same echelonCol if this row is all
// zeros from echelonCol onwards.
if (nonZeroCol == h.getNumColumns())
continue;
// Bring the non-zero column to echelonCol. This doesn't affect rows
// above since they are all zero at these columns.
if (nonZeroCol != echelonCol) {
h.swapColumns(nonZeroCol, echelonCol);
u.swapColumns(nonZeroCol, echelonCol);
}
// Make h(row, echelonCol) non-negative.
if (h(row, echelonCol) < 0) {
h.negateColumn(echelonCol);
u.negateColumn(echelonCol);
}
// Make all the entries in row after echelonCol zero.
for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
// We make h(row, i) non-negative, and then apply the Euclidean GCD
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
// has value equal to the gcd of the two entries, and the other is zero.
if (h(row, i) < 0) {
h.negateColumn(i);
u.negateColumn(i);
}
unsigned targetCol = i, sourceCol = echelonCol;
// At every step, we set h(row, targetCol) %= h(row, sourceCol), and
// swap the indices sourceCol and targetCol. (not the columns themselves)
// This modulo is implemented as a subtraction
// h(row, targetCol) -= quotient * h(row, sourceCol),
// where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
// which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
//
// We are only allowed column operations; we perform the above
// for every row, i.e., the above subtraction is done as a column
// operation. This does not affect any rows above us since they are
// guaranteed to be zero at these columns.
while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
modEntryColumnOperation(h, row, sourceCol, targetCol, u);
std::swap(targetCol, sourceCol);
}
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
// Make it so that (row, echelonCol) holds the non-zero value.
if (h(row, echelonCol) == 0) {
h.swapColumns(i, echelonCol);
u.swapColumns(i, echelonCol);
}
}
// Make all entries before echelonCol non-negative and strictly smaller
// than the pivot entry.
for (unsigned i = 0; i < echelonCol; ++i)
modEntryColumnOperation(h, row, echelonCol, i, u);
++echelonCol;
}
return {h, u};
}
DynamicAPInt IntMatrix::normalizeRow(unsigned row, unsigned cols) {
return normalizeRange(getRow(row).slice(0, cols));
}
DynamicAPInt IntMatrix::normalizeRow(unsigned row) {
return normalizeRow(row, getNumColumns());
}
DynamicAPInt IntMatrix::determinant(IntMatrix *inverse) const {
assert(nRows == nColumns &&
"determinant can only be calculated for square matrices!");
FracMatrix m(*this);
FracMatrix fracInverse(nRows, nColumns);
DynamicAPInt detM = m.determinant(&fracInverse).getAsInteger();
if (detM == 0)
return DynamicAPInt(0);
if (!inverse)
return detM;
*inverse = IntMatrix(nRows, nColumns);
for (unsigned i = 0; i < nRows; i++)
for (unsigned j = 0; j < nColumns; j++)
inverse->at(i, j) = (fracInverse.at(i, j) * detM).getAsInteger();
return detM;
}
FracMatrix FracMatrix::identity(unsigned dimension) {
return Matrix::identity(dimension);
}
FracMatrix::FracMatrix(IntMatrix m)
: FracMatrix(m.getNumRows(), m.getNumColumns()) {
for (unsigned i = 0, r = m.getNumRows(); i < r; i++)
for (unsigned j = 0, c = m.getNumColumns(); j < c; j++)
this->at(i, j) = m.at(i, j);
}
Fraction FracMatrix::determinant(FracMatrix *inverse) const {
assert(nRows == nColumns &&
"determinant can only be calculated for square matrices!");
FracMatrix m(*this);
FracMatrix tempInv(nRows, nColumns);
if (inverse)
tempInv = FracMatrix::identity(nRows);
Fraction a, b;
// Make the matrix into upper triangular form using
// gaussian elimination with row operations.
// If inverse is required, we apply more operations
// to turn the matrix into diagonal form. We apply
// the same operations to the inverse matrix,
// which is initially identity.
// Either way, the product of the diagonal elements
// is then the determinant.
for (unsigned i = 0; i < nRows; i++) {
if (m(i, i) == 0)
// First ensure that the diagonal
// element is nonzero, by swapping
// it with a nonzero row.
for (unsigned j = i + 1; j < nRows; j++) {
if (m(j, i) != 0) {
m.swapRows(j, i);
if (inverse)
tempInv.swapRows(j, i);
break;
}
}
b = m.at(i, i);
if (b == 0)
return 0;
// Set all elements above the
// diagonal to zero.
if (inverse) {
for (unsigned j = 0; j < i; j++) {
if (m.at(j, i) == 0)
continue;
a = m.at(j, i);
// Set element (j, i) to zero
// by subtracting the ith row,
// appropriately scaled.
m.addToRow(i, j, -a / b);
tempInv.addToRow(i, j, -a / b);
}
}
// Set all elements below the
// diagonal to zero.
for (unsigned j = i + 1; j < nRows; j++) {
if (m.at(j, i) == 0)
continue;
a = m.at(j, i);
// Set element (j, i) to zero
// by subtracting the ith row,
// appropriately scaled.
m.addToRow(i, j, -a / b);
if (inverse)
tempInv.addToRow(i, j, -a / b);
}
}
// Now only diagonal elements of m are nonzero, but they are
// not necessarily 1. To get the true inverse, we should
// normalize them and apply the same scale to the inverse matrix.
// For efficiency we skip scaling m and just scale tempInv appropriately.
if (inverse) {
for (unsigned i = 0; i < nRows; i++)
for (unsigned j = 0; j < nRows; j++)
tempInv.at(i, j) = tempInv.at(i, j) / m(i, i);
*inverse = std::move(tempInv);
}
Fraction determinant = 1;
for (unsigned i = 0; i < nRows; i++)
determinant *= m.at(i, i);
return determinant;
}
FracMatrix FracMatrix::gramSchmidt() const {
// Create a copy of the argument to store
// the orthogonalised version.
FracMatrix orth(*this);
// For each vector (row) in the matrix, subtract its unit
// projection along each of the previous vectors.
// This ensures that it has no component in the direction
// of any of the previous vectors.
for (unsigned i = 1, e = getNumRows(); i < e; i++) {
for (unsigned j = 0; j < i; j++) {
Fraction jNormSquared = dotProduct(orth.getRow(j), orth.getRow(j));
assert(jNormSquared != 0 && "some row became zero! Inputs to this "
"function must be linearly independent.");
Fraction projectionScale =
dotProduct(orth.getRow(i), orth.getRow(j)) / jNormSquared;
orth.addToRow(j, i, -projectionScale);
}
}
return orth;
}
// Convert the matrix, interpreted (row-wise) as a basis
// to an LLL-reduced basis.
//
// This is an implementation of the algorithm described in
// "Factoring polynomials with rational coefficients" by
// A. K. Lenstra, H. W. Lenstra Jr., L. Lovasz.
//
// Let {b_1, ..., b_n} be the current basis and
// {b_1*, ..., b_n*} be the Gram-Schmidt orthogonalised
// basis (unnormalized).
// Define the Gram-Schmidt coefficients μ_ij as
// (b_i • b_j*) / (b_j* • b_j*), where (•) represents the inner product.
//
// We iterate starting from the second row to the last row.
//
// For the kth row, we first check μ_kj for all rows j < k.
// We subtract b_j (scaled by the integer nearest to μ_kj)
// from b_k.
//
// Now, we update k.
// If b_k and b_{k-1} satisfy the Lovasz condition
// |b_k|^2 ≥ (δ - μ_k{k-1}^2) |b_{k-1}|^2,
// we are done and we increment k.
// Otherwise, we swap b_k and b_{k-1} and decrement k.
//
// We repeat this until k = n and return.
void FracMatrix::LLL(Fraction delta) {
DynamicAPInt nearest;
Fraction mu;
// `gsOrth` holds the Gram-Schmidt orthogonalisation
// of the matrix at all times. It is recomputed every
// time the matrix is modified during the algorithm.
// This is naive and can be optimised.
FracMatrix gsOrth = gramSchmidt();
// We start from the second row.
unsigned k = 1;
while (k < getNumRows()) {
for (unsigned j = k - 1; j < k; j--) {
// Compute the Gram-Schmidt coefficient μ_jk.
mu = dotProduct(getRow(k), gsOrth.getRow(j)) /
dotProduct(gsOrth.getRow(j), gsOrth.getRow(j));
nearest = round(mu);
// Subtract b_j scaled by the integer nearest to μ_jk from b_k.
addToRow(k, getRow(j), -Fraction(nearest, 1));
gsOrth = gramSchmidt(); // Update orthogonalization.
}
mu = dotProduct(getRow(k), gsOrth.getRow(k - 1)) /
dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1));
// Check the Lovasz condition for b_k and b_{k-1}.
if (dotProduct(gsOrth.getRow(k), gsOrth.getRow(k)) >
(delta - mu * mu) *
dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1))) {
// If it is satisfied, proceed to the next k.
k += 1;
} else {
// If it is not satisfied, decrement k (without
// going beyond the second row).
swapRows(k, k - 1);
gsOrth = gramSchmidt(); // Update orthogonalization.
k = k > 1 ? k - 1 : 1;
}
}
}
IntMatrix FracMatrix::normalizeRows() const {
unsigned numRows = getNumRows();
unsigned numColumns = getNumColumns();
IntMatrix normalized(numRows, numColumns);
DynamicAPInt lcmDenoms = DynamicAPInt(1);
for (unsigned i = 0; i < numRows; i++) {
// For a row, first compute the LCM of the denominators.
for (unsigned j = 0; j < numColumns; j++)
lcmDenoms = lcm(lcmDenoms, at(i, j).den);
// Then, multiply by it throughout and convert to integers.
for (unsigned j = 0; j < numColumns; j++)
normalized(i, j) = (at(i, j) * lcmDenoms).getAsInteger();
}
return normalized;
}
|