File: Matrix.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (773 lines) | stat: -rw-r--r-- 25,661 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>

using namespace mlir;
using namespace presburger;

template <typename T>
Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
                  unsigned reservedColumns)
    : nRows(rows), nColumns(columns),
      nReservedColumns(std::max(nColumns, reservedColumns)),
      data(nRows * nReservedColumns) {
  data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
}

/// We cannot use the default implementation of operator== as it compares
/// fields like `reservedColumns` etc., which are not part of the data.
template <typename T>
bool Matrix<T>::operator==(const Matrix<T> &m) const {
  if (nRows != m.getNumRows())
    return false;
  if (nColumns != m.getNumColumns())
    return false;

  for (unsigned i = 0; i < nRows; i++)
    if (getRow(i) != m.getRow(i))
      return false;

  return true;
}

template <typename T>
Matrix<T> Matrix<T>::identity(unsigned dimension) {
  Matrix matrix(dimension, dimension);
  for (unsigned i = 0; i < dimension; ++i)
    matrix(i, i) = 1;
  return matrix;
}

template <typename T>
unsigned Matrix<T>::getNumReservedRows() const {
  return data.capacity() / nReservedColumns;
}

template <typename T>
void Matrix<T>::reserveRows(unsigned rows) {
  data.reserve(rows * nReservedColumns);
}

template <typename T>
unsigned Matrix<T>::appendExtraRow() {
  resizeVertically(nRows + 1);
  return nRows - 1;
}

template <typename T>
unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) {
  assert(elems.size() == nColumns && "elems must match row length!");
  unsigned row = appendExtraRow();
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) = elems[col];
  return row;
}

template <typename T>
Matrix<T> Matrix<T>::transpose() const {
  Matrix<T> transp(nColumns, nRows);
  for (unsigned row = 0; row < nRows; ++row)
    for (unsigned col = 0; col < nColumns; ++col)
      transp(col, row) = at(row, col);

  return transp;
}

template <typename T>
void Matrix<T>::resizeHorizontally(unsigned newNColumns) {
  if (newNColumns < nColumns)
    removeColumns(newNColumns, nColumns - newNColumns);
  if (newNColumns > nColumns)
    insertColumns(nColumns, newNColumns - nColumns);
}

template <typename T>
void Matrix<T>::resize(unsigned newNRows, unsigned newNColumns) {
  resizeHorizontally(newNColumns);
  resizeVertically(newNRows);
}

template <typename T>
void Matrix<T>::resizeVertically(unsigned newNRows) {
  nRows = newNRows;
  data.resize(nRows * nReservedColumns);
}

template <typename T>
void Matrix<T>::swapRows(unsigned row, unsigned otherRow) {
  assert((row < getNumRows() && otherRow < getNumRows()) &&
         "Given row out of bounds");
  if (row == otherRow)
    return;
  for (unsigned col = 0; col < nColumns; col++)
    std::swap(at(row, col), at(otherRow, col));
}

template <typename T>
void Matrix<T>::swapColumns(unsigned column, unsigned otherColumn) {
  assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
         "Given column out of bounds");
  if (column == otherColumn)
    return;
  for (unsigned row = 0; row < nRows; row++)
    std::swap(at(row, column), at(row, otherColumn));
}

template <typename T>
MutableArrayRef<T> Matrix<T>::getRow(unsigned row) {
  return {&data[row * nReservedColumns], nColumns};
}

template <typename T>
ArrayRef<T> Matrix<T>::getRow(unsigned row) const {
  return {&data[row * nReservedColumns], nColumns};
}

template <typename T>
void Matrix<T>::setRow(unsigned row, ArrayRef<T> elems) {
  assert(elems.size() == getNumColumns() &&
         "elems size must match row length!");
  for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
    at(row, i) = elems[i];
}

template <typename T>
void Matrix<T>::insertColumn(unsigned pos) {
  insertColumns(pos, 1);
}
template <typename T>
void Matrix<T>::insertColumns(unsigned pos, unsigned count) {
  if (count == 0)
    return;
  assert(pos <= nColumns);
  unsigned oldNReservedColumns = nReservedColumns;
  if (nColumns + count > nReservedColumns) {
    nReservedColumns = llvm::NextPowerOf2(nColumns + count);
    data.resize(nRows * nReservedColumns);
  }
  nColumns += count;

  for (int ri = nRows - 1; ri >= 0; --ri) {
    for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
      unsigned r = ri;
      unsigned c = ci;
      T &dest = data[r * nReservedColumns + c];
      if (c >= nColumns) { // NOLINT
        // Out of bounds columns are zero-initialized. NOLINT because clang-tidy
        // complains about this branch being the same as the c >= pos one.
        //
        // TODO: this case can be skipped if the number of reserved columns
        // didn't change.
        dest = 0;
      } else if (c >= pos + count) {
        // Shift the data occuring after the inserted columns.
        dest = data[r * oldNReservedColumns + c - count];
      } else if (c >= pos) {
        // The inserted columns are also zero-initialized.
        dest = 0;
      } else {
        // The columns before the inserted columns stay at the same (row, col)
        // but this corresponds to a different location in the linearized array
        // if the number of reserved columns changed.
        if (nReservedColumns == oldNReservedColumns)
          break;
        dest = data[r * oldNReservedColumns + c];
      }
    }
  }
}

template <typename T>
void Matrix<T>::removeColumn(unsigned pos) {
  removeColumns(pos, 1);
}
template <typename T>
void Matrix<T>::removeColumns(unsigned pos, unsigned count) {
  if (count == 0)
    return;
  assert(pos + count - 1 < nColumns);
  for (unsigned r = 0; r < nRows; ++r) {
    for (unsigned c = pos; c < nColumns - count; ++c)
      at(r, c) = at(r, c + count);
    for (unsigned c = nColumns - count; c < nColumns; ++c)
      at(r, c) = 0;
  }
  nColumns -= count;
}

template <typename T>
void Matrix<T>::insertRow(unsigned pos) {
  insertRows(pos, 1);
}
template <typename T>
void Matrix<T>::insertRows(unsigned pos, unsigned count) {
  if (count == 0)
    return;

  assert(pos <= nRows);
  resizeVertically(nRows + count);
  for (int r = nRows - 1; r >= int(pos + count); --r)
    copyRow(r - count, r);
  for (int r = pos + count - 1; r >= int(pos); --r)
    for (unsigned c = 0; c < nColumns; ++c)
      at(r, c) = 0;
}

template <typename T>
void Matrix<T>::removeRow(unsigned pos) {
  removeRows(pos, 1);
}
template <typename T>
void Matrix<T>::removeRows(unsigned pos, unsigned count) {
  if (count == 0)
    return;
  assert(pos + count - 1 <= nRows);
  for (unsigned r = pos; r + count < nRows; ++r)
    copyRow(r + count, r);
  resizeVertically(nRows - count);
}

template <typename T>
void Matrix<T>::copyRow(unsigned sourceRow, unsigned targetRow) {
  if (sourceRow == targetRow)
    return;
  for (unsigned c = 0; c < nColumns; ++c)
    at(targetRow, c) = at(sourceRow, c);
}

template <typename T>
void Matrix<T>::fillRow(unsigned row, const T &value) {
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) = value;
}

// moveColumns is implemented by moving the columns adjacent to the source range
// to their final position. When moving right (i.e. dstPos > srcPos), the range
// of the adjacent columns is [srcPos + num, dstPos + num). When moving left
// (i.e. dstPos < srcPos) the range of the adjacent columns is [dstPos, srcPos).
// First, zeroed out columns are inserted in the final positions of the adjacent
// columns. Then, the adjacent columns are moved to their final positions by
// swapping them with the zeroed columns. Finally, the now zeroed adjacent
// columns are deleted.
template <typename T>
void Matrix<T>::moveColumns(unsigned srcPos, unsigned num, unsigned dstPos) {
  if (num == 0)
    return;

  int offset = dstPos - srcPos;
  if (offset == 0)
    return;

  assert(srcPos + num <= getNumColumns() &&
         "move source range exceeds matrix columns");
  assert(dstPos + num <= getNumColumns() &&
         "move destination range exceeds matrix columns");

  unsigned insertCount = offset > 0 ? offset : -offset;
  unsigned finalAdjStart = offset > 0 ? srcPos : srcPos + num;
  unsigned curAdjStart = offset > 0 ? srcPos + num : dstPos;
  // TODO: This can be done using std::rotate.
  // Insert new zero columns in the positions where the adjacent columns are to
  // be moved.
  insertColumns(finalAdjStart, insertCount);
  // Update curAdjStart if insertion of new columns invalidates it.
  if (finalAdjStart < curAdjStart)
    curAdjStart += insertCount;

  // Swap the adjacent columns with inserted zero columns.
  for (unsigned i = 0; i < insertCount; ++i)
    swapColumns(finalAdjStart + i, curAdjStart + i);

  // Delete the now redundant zero columns.
  removeColumns(curAdjStart, insertCount);
}

template <typename T>
void Matrix<T>::addToRow(unsigned sourceRow, unsigned targetRow,
                         const T &scale) {
  addToRow(targetRow, getRow(sourceRow), scale);
}

template <typename T>
void Matrix<T>::addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale) {
  if (scale == 0)
    return;
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) += scale * rowVec[col];
}

template <typename T>
void Matrix<T>::scaleRow(unsigned row, const T &scale) {
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) *= scale;
}

template <typename T>
void Matrix<T>::addToColumn(unsigned sourceColumn, unsigned targetColumn,
                            const T &scale) {
  if (scale == 0)
    return;
  for (unsigned row = 0, e = getNumRows(); row < e; ++row)
    at(row, targetColumn) += scale * at(row, sourceColumn);
}

template <typename T>
void Matrix<T>::negateColumn(unsigned column) {
  for (unsigned row = 0, e = getNumRows(); row < e; ++row)
    at(row, column) = -at(row, column);
}

template <typename T>
void Matrix<T>::negateRow(unsigned row) {
  for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
    at(row, column) = -at(row, column);
}

template <typename T>
void Matrix<T>::negateMatrix() {
  for (unsigned row = 0; row < nRows; ++row)
    negateRow(row);
}

template <typename T>
SmallVector<T, 8> Matrix<T>::preMultiplyWithRow(ArrayRef<T> rowVec) const {
  assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");

  SmallVector<T, 8> result(getNumColumns(), T(0));
  for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
    for (unsigned i = 0, e = getNumRows(); i < e; ++i)
      result[col] += rowVec[i] * at(i, col);
  return result;
}

template <typename T>
SmallVector<T, 8> Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const {
  assert(getNumColumns() == colVec.size() &&
         "Invalid column vector dimension!");

  SmallVector<T, 8> result(getNumRows(), T(0));
  for (unsigned row = 0, e = getNumRows(); row < e; row++)
    for (unsigned i = 0, e = getNumColumns(); i < e; i++)
      result[row] += at(row, i) * colVec[i];
  return result;
}

/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
/// by subtracting from column targetCol an appropriate integer multiple of
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
/// integer multiple.
static void modEntryColumnOperation(Matrix<DynamicAPInt> &m, unsigned row,
                                    unsigned sourceCol, unsigned targetCol,
                                    Matrix<DynamicAPInt> &otherMatrix) {
  assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
  assert(m(row, sourceCol) > 0 && "Source must be positive!");
  DynamicAPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
  m.addToColumn(sourceCol, targetCol, ratio);
  otherMatrix.addToColumn(sourceCol, targetCol, ratio);
}

template <typename T>
Matrix<T> Matrix<T>::getSubMatrix(unsigned fromRow, unsigned toRow,
                                  unsigned fromColumn,
                                  unsigned toColumn) const {
  assert(fromRow <= toRow && "end of row range must be after beginning!");
  assert(toRow < nRows && "end of row range out of bounds!");
  assert(fromColumn <= toColumn &&
         "end of column range must be after beginning!");
  assert(toColumn < nColumns && "end of column range out of bounds!");
  Matrix<T> subMatrix(toRow - fromRow + 1, toColumn - fromColumn + 1);
  for (unsigned i = fromRow; i <= toRow; ++i)
    for (unsigned j = fromColumn; j <= toColumn; ++j)
      subMatrix(i - fromRow, j - fromColumn) = at(i, j);
  return subMatrix;
}

template <typename T>
void Matrix<T>::print(raw_ostream &os) const {
  for (unsigned row = 0; row < nRows; ++row) {
    for (unsigned column = 0; column < nColumns; ++column)
      os << at(row, column) << ' ';
    os << '\n';
  }
}

/// We iterate over the `indicator` bitset, checking each bit. If a bit is 1,
/// we append it to one matrix, and if it is zero, we append it to the other.
template <typename T>
std::pair<Matrix<T>, Matrix<T>>
Matrix<T>::splitByBitset(ArrayRef<int> indicator) {
  Matrix<T> rowsForOne(0, nColumns), rowsForZero(0, nColumns);
  for (unsigned i = 0; i < nRows; i++) {
    if (indicator[i] == 1)
      rowsForOne.appendExtraRow(getRow(i));
    else
      rowsForZero.appendExtraRow(getRow(i));
  }
  return {rowsForOne, rowsForZero};
}

template <typename T>
void Matrix<T>::dump() const {
  print(llvm::errs());
}

template <typename T>
bool Matrix<T>::hasConsistentState() const {
  if (data.size() != nRows * nReservedColumns)
    return false;
  if (nColumns > nReservedColumns)
    return false;
#ifdef EXPENSIVE_CHECKS
  for (unsigned r = 0; r < nRows; ++r)
    for (unsigned c = nColumns; c < nReservedColumns; ++c)
      if (data[r * nReservedColumns + c] != 0)
        return false;
#endif
  return true;
}

namespace mlir {
namespace presburger {
template class Matrix<DynamicAPInt>;
template class Matrix<Fraction>;
} // namespace presburger
} // namespace mlir

IntMatrix IntMatrix::identity(unsigned dimension) {
  IntMatrix matrix(dimension, dimension);
  for (unsigned i = 0; i < dimension; ++i)
    matrix(i, i) = 1;
  return matrix;
}

std::pair<IntMatrix, IntMatrix> IntMatrix::computeHermiteNormalForm() const {
  // We start with u as an identity matrix and perform operations on h until h
  // is in hermite normal form. We apply the same sequence of operations on u to
  // obtain a transform that takes h to hermite normal form.
  IntMatrix h = *this;
  IntMatrix u = IntMatrix::identity(h.getNumColumns());

  unsigned echelonCol = 0;
  // Invariant: in all rows above row, all columns from echelonCol onwards
  // are all zero elements. In an iteration, if the curent row has any non-zero
  // elements echelonCol onwards, we bring one to echelonCol and use it to
  // make all elements echelonCol + 1 onwards zero.
  for (unsigned row = 0; row < h.getNumRows(); ++row) {
    // Search row for a non-empty entry, starting at echelonCol.
    unsigned nonZeroCol = echelonCol;
    for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
      if (h(row, nonZeroCol) == 0)
        continue;
      break;
    }

    // Continue to the next row with the same echelonCol if this row is all
    // zeros from echelonCol onwards.
    if (nonZeroCol == h.getNumColumns())
      continue;

    // Bring the non-zero column to echelonCol. This doesn't affect rows
    // above since they are all zero at these columns.
    if (nonZeroCol != echelonCol) {
      h.swapColumns(nonZeroCol, echelonCol);
      u.swapColumns(nonZeroCol, echelonCol);
    }

    // Make h(row, echelonCol) non-negative.
    if (h(row, echelonCol) < 0) {
      h.negateColumn(echelonCol);
      u.negateColumn(echelonCol);
    }

    // Make all the entries in row after echelonCol zero.
    for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
      // We make h(row, i) non-negative, and then apply the Euclidean GCD
      // algorithm to (row, i) and (row, echelonCol). At the end, one of them
      // has value equal to the gcd of the two entries, and the other is zero.

      if (h(row, i) < 0) {
        h.negateColumn(i);
        u.negateColumn(i);
      }

      unsigned targetCol = i, sourceCol = echelonCol;
      // At every step, we set h(row, targetCol) %= h(row, sourceCol), and
      // swap the indices sourceCol and targetCol. (not the columns themselves)
      // This modulo is implemented as a subtraction
      // h(row, targetCol) -= quotient * h(row, sourceCol),
      // where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
      // which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
      //
      // We are only allowed column operations; we perform the above
      // for every row, i.e., the above subtraction is done as a column
      // operation. This does not affect any rows above us since they are
      // guaranteed to be zero at these columns.
      while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
        modEntryColumnOperation(h, row, sourceCol, targetCol, u);
        std::swap(targetCol, sourceCol);
      }

      // One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
      // Make it so that (row, echelonCol) holds the non-zero value.
      if (h(row, echelonCol) == 0) {
        h.swapColumns(i, echelonCol);
        u.swapColumns(i, echelonCol);
      }
    }

    // Make all entries before echelonCol non-negative and strictly smaller
    // than the pivot entry.
    for (unsigned i = 0; i < echelonCol; ++i)
      modEntryColumnOperation(h, row, echelonCol, i, u);

    ++echelonCol;
  }

  return {h, u};
}

DynamicAPInt IntMatrix::normalizeRow(unsigned row, unsigned cols) {
  return normalizeRange(getRow(row).slice(0, cols));
}

DynamicAPInt IntMatrix::normalizeRow(unsigned row) {
  return normalizeRow(row, getNumColumns());
}

DynamicAPInt IntMatrix::determinant(IntMatrix *inverse) const {
  assert(nRows == nColumns &&
         "determinant can only be calculated for square matrices!");

  FracMatrix m(*this);

  FracMatrix fracInverse(nRows, nColumns);
  DynamicAPInt detM = m.determinant(&fracInverse).getAsInteger();

  if (detM == 0)
    return DynamicAPInt(0);

  if (!inverse)
    return detM;

  *inverse = IntMatrix(nRows, nColumns);
  for (unsigned i = 0; i < nRows; i++)
    for (unsigned j = 0; j < nColumns; j++)
      inverse->at(i, j) = (fracInverse.at(i, j) * detM).getAsInteger();

  return detM;
}

FracMatrix FracMatrix::identity(unsigned dimension) {
  return Matrix::identity(dimension);
}

FracMatrix::FracMatrix(IntMatrix m)
    : FracMatrix(m.getNumRows(), m.getNumColumns()) {
  for (unsigned i = 0, r = m.getNumRows(); i < r; i++)
    for (unsigned j = 0, c = m.getNumColumns(); j < c; j++)
      this->at(i, j) = m.at(i, j);
}

Fraction FracMatrix::determinant(FracMatrix *inverse) const {
  assert(nRows == nColumns &&
         "determinant can only be calculated for square matrices!");

  FracMatrix m(*this);
  FracMatrix tempInv(nRows, nColumns);
  if (inverse)
    tempInv = FracMatrix::identity(nRows);

  Fraction a, b;
  // Make the matrix into upper triangular form using
  // gaussian elimination with row operations.
  // If inverse is required, we apply more operations
  // to turn the matrix into diagonal form. We apply
  // the same operations to the inverse matrix,
  // which is initially identity.
  // Either way, the product of the diagonal elements
  // is then the determinant.
  for (unsigned i = 0; i < nRows; i++) {
    if (m(i, i) == 0)
      // First ensure that the diagonal
      // element is nonzero, by swapping
      // it with a nonzero row.
      for (unsigned j = i + 1; j < nRows; j++) {
        if (m(j, i) != 0) {
          m.swapRows(j, i);
          if (inverse)
            tempInv.swapRows(j, i);
          break;
        }
      }

    b = m.at(i, i);
    if (b == 0)
      return 0;

    // Set all elements above the
    // diagonal to zero.
    if (inverse) {
      for (unsigned j = 0; j < i; j++) {
        if (m.at(j, i) == 0)
          continue;
        a = m.at(j, i);
        // Set element (j, i) to zero
        // by subtracting the ith row,
        // appropriately scaled.
        m.addToRow(i, j, -a / b);
        tempInv.addToRow(i, j, -a / b);
      }
    }

    // Set all elements below the
    // diagonal to zero.
    for (unsigned j = i + 1; j < nRows; j++) {
      if (m.at(j, i) == 0)
        continue;
      a = m.at(j, i);
      // Set element (j, i) to zero
      // by subtracting the ith row,
      // appropriately scaled.
      m.addToRow(i, j, -a / b);
      if (inverse)
        tempInv.addToRow(i, j, -a / b);
    }
  }

  // Now only diagonal elements of m are nonzero, but they are
  // not necessarily 1. To get the true inverse, we should
  // normalize them and apply the same scale to the inverse matrix.
  // For efficiency we skip scaling m and just scale tempInv appropriately.
  if (inverse) {
    for (unsigned i = 0; i < nRows; i++)
      for (unsigned j = 0; j < nRows; j++)
        tempInv.at(i, j) = tempInv.at(i, j) / m(i, i);

    *inverse = std::move(tempInv);
  }

  Fraction determinant = 1;
  for (unsigned i = 0; i < nRows; i++)
    determinant *= m.at(i, i);

  return determinant;
}

FracMatrix FracMatrix::gramSchmidt() const {
  // Create a copy of the argument to store
  // the orthogonalised version.
  FracMatrix orth(*this);

  // For each vector (row) in the matrix, subtract its unit
  // projection along each of the previous vectors.
  // This ensures that it has no component in the direction
  // of any of the previous vectors.
  for (unsigned i = 1, e = getNumRows(); i < e; i++) {
    for (unsigned j = 0; j < i; j++) {
      Fraction jNormSquared = dotProduct(orth.getRow(j), orth.getRow(j));
      assert(jNormSquared != 0 && "some row became zero! Inputs to this "
                                  "function must be linearly independent.");
      Fraction projectionScale =
          dotProduct(orth.getRow(i), orth.getRow(j)) / jNormSquared;
      orth.addToRow(j, i, -projectionScale);
    }
  }
  return orth;
}

// Convert the matrix, interpreted (row-wise) as a basis
// to an LLL-reduced basis.
//
// This is an implementation of the algorithm described in
// "Factoring polynomials with rational coefficients" by
// A. K. Lenstra, H. W. Lenstra Jr., L. Lovasz.
//
// Let {b_1,  ..., b_n}  be the current basis and
//     {b_1*, ..., b_n*} be the Gram-Schmidt orthogonalised
//                          basis (unnormalized).
// Define the Gram-Schmidt coefficients μ_ij as
// (b_i • b_j*) / (b_j* • b_j*), where (•) represents the inner product.
//
// We iterate starting from the second row to the last row.
//
// For the kth row, we first check μ_kj for all rows j < k.
// We subtract b_j (scaled by the integer nearest to μ_kj)
// from b_k.
//
// Now, we update k.
// If b_k and b_{k-1} satisfy the Lovasz condition
//    |b_k|^2 ≥ (δ - μ_k{k-1}^2) |b_{k-1}|^2,
// we are done and we increment k.
// Otherwise, we swap b_k and b_{k-1} and decrement k.
//
// We repeat this until k = n and return.
void FracMatrix::LLL(Fraction delta) {
  DynamicAPInt nearest;
  Fraction mu;

  // `gsOrth` holds the Gram-Schmidt orthogonalisation
  // of the matrix at all times. It is recomputed every
  // time the matrix is modified during the algorithm.
  // This is naive and can be optimised.
  FracMatrix gsOrth = gramSchmidt();

  // We start from the second row.
  unsigned k = 1;
  while (k < getNumRows()) {
    for (unsigned j = k - 1; j < k; j--) {
      // Compute the Gram-Schmidt coefficient μ_jk.
      mu = dotProduct(getRow(k), gsOrth.getRow(j)) /
           dotProduct(gsOrth.getRow(j), gsOrth.getRow(j));
      nearest = round(mu);
      // Subtract b_j scaled by the integer nearest to μ_jk from b_k.
      addToRow(k, getRow(j), -Fraction(nearest, 1));
      gsOrth = gramSchmidt(); // Update orthogonalization.
    }
    mu = dotProduct(getRow(k), gsOrth.getRow(k - 1)) /
         dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1));
    // Check the Lovasz condition for b_k and b_{k-1}.
    if (dotProduct(gsOrth.getRow(k), gsOrth.getRow(k)) >
        (delta - mu * mu) *
            dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1))) {
      // If it is satisfied, proceed to the next k.
      k += 1;
    } else {
      // If it is not satisfied, decrement k (without
      // going beyond the second row).
      swapRows(k, k - 1);
      gsOrth = gramSchmidt(); // Update orthogonalization.
      k = k > 1 ? k - 1 : 1;
    }
  }
}

IntMatrix FracMatrix::normalizeRows() const {
  unsigned numRows = getNumRows();
  unsigned numColumns = getNumColumns();
  IntMatrix normalized(numRows, numColumns);

  DynamicAPInt lcmDenoms = DynamicAPInt(1);
  for (unsigned i = 0; i < numRows; i++) {
    // For a row, first compute the LCM of the denominators.
    for (unsigned j = 0; j < numColumns; j++)
      lcmDenoms = lcm(lcmDenoms, at(i, j).den);
    // Then, multiply by it throughout and convert to integers.
    for (unsigned j = 0; j < numColumns; j++)
      normalized(i, j) = (at(i, j) * lcmDenoms).getAsInteger();
  }
  return normalized;
}