1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
//===- QuasiPolynomial.cpp - Quasipolynomial Class --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/QuasiPolynomial.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include "mlir/Analysis/Presburger/PresburgerSpace.h"
using namespace mlir;
using namespace presburger;
QuasiPolynomial::QuasiPolynomial(
unsigned numVars, ArrayRef<Fraction> coeffs,
ArrayRef<std::vector<SmallVector<Fraction>>> aff)
: PresburgerSpace(/*numDomain=*/numVars, /*numRange=*/1, /*numSymbols=*/0,
/*numLocals=*/0),
coefficients(coeffs), affine(aff) {
#ifndef NDEBUG
// For each term which involves at least one affine function,
for (const std::vector<SmallVector<Fraction>> &term : affine) {
if (term.empty())
continue;
// the number of elements in each affine function is
// one more than the number of symbols.
for (const SmallVector<Fraction> &aff : term) {
assert(aff.size() == getNumInputs() + 1 &&
"dimensionality of affine functions does not match number of "
"symbols!");
}
}
#endif // NDEBUG
}
/// Define a quasipolynomial which is a single constant.
QuasiPolynomial::QuasiPolynomial(unsigned numVars, const Fraction &constant)
: PresburgerSpace(/*numDomain=*/numVars, /*numRange=*/1, /*numSymbols=*/0,
/*numLocals=*/0),
coefficients({constant}), affine({{}}) {}
QuasiPolynomial QuasiPolynomial::operator+(const QuasiPolynomial &x) const {
assert(getNumInputs() == x.getNumInputs() &&
"two quasi-polynomials with different numbers of symbols cannot "
"be added!");
SmallVector<Fraction> sumCoeffs = coefficients;
sumCoeffs.append(x.coefficients);
std::vector<std::vector<SmallVector<Fraction>>> sumAff = affine;
sumAff.insert(sumAff.end(), x.affine.begin(), x.affine.end());
return QuasiPolynomial(getNumInputs(), sumCoeffs, sumAff);
}
QuasiPolynomial QuasiPolynomial::operator-(const QuasiPolynomial &x) const {
assert(getNumInputs() == x.getNumInputs() &&
"two quasi-polynomials with different numbers of symbols cannot "
"be subtracted!");
QuasiPolynomial qp(getNumInputs(), x.coefficients, x.affine);
for (Fraction &coeff : qp.coefficients)
coeff = -coeff;
return *this + qp;
}
QuasiPolynomial QuasiPolynomial::operator*(const QuasiPolynomial &x) const {
assert(getNumInputs() == x.getNumInputs() &&
"two quasi-polynomials with different numbers of "
"symbols cannot be multiplied!");
SmallVector<Fraction> coeffs;
coeffs.reserve(coefficients.size() * x.coefficients.size());
for (const Fraction &coeff : coefficients)
for (const Fraction &xcoeff : x.coefficients)
coeffs.emplace_back(coeff * xcoeff);
std::vector<SmallVector<Fraction>> product;
std::vector<std::vector<SmallVector<Fraction>>> aff;
aff.reserve(affine.size() * x.affine.size());
for (const std::vector<SmallVector<Fraction>> &term : affine) {
for (const std::vector<SmallVector<Fraction>> &xterm : x.affine) {
product.clear();
product.insert(product.end(), term.begin(), term.end());
product.insert(product.end(), xterm.begin(), xterm.end());
aff.emplace_back(product);
}
}
return QuasiPolynomial(getNumInputs(), coeffs, aff);
}
QuasiPolynomial QuasiPolynomial::operator/(const Fraction &x) const {
assert(x != 0 && "division by zero!");
QuasiPolynomial qp(*this);
for (Fraction &coeff : qp.coefficients)
coeff /= x;
return qp;
}
// Removes terms which evaluate to zero from the expression and
// integrate affine functions which are constants into the
// coefficients.
QuasiPolynomial QuasiPolynomial::simplify() {
Fraction newCoeff = 0;
SmallVector<Fraction> newCoeffs({});
std::vector<SmallVector<Fraction>> newAffineTerm({});
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
unsigned numParam = getNumInputs();
for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
// A term is zero if its coefficient is zero, or
if (coefficients[i] == Fraction(0, 1))
continue;
bool product_is_zero =
// if any of the affine functions in the product
llvm::any_of(affine[i], [](const SmallVector<Fraction> &affine_ij) {
// has all its coefficients as zero.
return llvm::all_of(affine_ij,
[](const Fraction &f) { return f == 0; });
});
if (product_is_zero)
continue;
// Now, we know the term is nonzero.
// We now eliminate the affine functions which are constant
// by merging them into the coefficients.
newAffineTerm = {};
newCoeff = coefficients[i];
for (ArrayRef<Fraction> term : affine[i]) {
bool allCoeffsZero = llvm::all_of(
term.slice(0, numParam), [](const Fraction &c) { return c == 0; });
if (allCoeffsZero)
newCoeff *= term[numParam];
else
newAffineTerm.emplace_back(term);
}
newCoeffs.emplace_back(newCoeff);
newAffine.emplace_back(newAffineTerm);
}
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
}
QuasiPolynomial QuasiPolynomial::collectTerms() {
SmallVector<Fraction> newCoeffs({});
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
for (unsigned i = 0, e = affine.size(); i < e; i++) {
bool alreadyPresent = false;
for (unsigned j = 0, f = newAffine.size(); j < f; j++) {
if (affine[i] == newAffine[j]) {
newCoeffs[j] += coefficients[i];
alreadyPresent = true;
}
}
if (alreadyPresent)
continue;
newCoeffs.emplace_back(coefficients[i]);
newAffine.emplace_back(affine[i]);
}
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
}
Fraction QuasiPolynomial::getConstantTerm() {
Fraction constTerm = 0;
for (unsigned i = 0, e = coefficients.size(); i < e; ++i)
if (affine[i].empty())
constTerm += coefficients[i];
return constTerm;
}
|