1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir-c/AffineMap.h"
#include "mlir-c/Dialect/SparseTensor.h"
#include "mlir-c/IR.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
#include <optional>
#include <pybind11/cast.h>
#include <pybind11/detail/common.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <vector>
namespace py = pybind11;
using namespace llvm;
using namespace mlir;
using namespace mlir::python::adaptors;
static void populateDialectSparseTensorSubmodule(const py::module &m) {
py::enum_<MlirSparseTensorLevelFormat>(m, "LevelFormat", py::module_local())
.value("dense", MLIR_SPARSE_TENSOR_LEVEL_DENSE)
.value("n_out_of_m", MLIR_SPARSE_TENSOR_LEVEL_N_OUT_OF_M)
.value("compressed", MLIR_SPARSE_TENSOR_LEVEL_COMPRESSED)
.value("singleton", MLIR_SPARSE_TENSOR_LEVEL_SINGLETON)
.value("loose_compressed", MLIR_SPARSE_TENSOR_LEVEL_LOOSE_COMPRESSED);
py::enum_<MlirSparseTensorLevelPropertyNondefault>(m, "LevelProperty",
py::module_local())
.value("non_ordered", MLIR_SPARSE_PROPERTY_NON_ORDERED)
.value("non_unique", MLIR_SPARSE_PROPERTY_NON_UNIQUE);
mlir_attribute_subclass(m, "EncodingAttr",
mlirAttributeIsASparseTensorEncodingAttr)
.def_classmethod(
"get",
[](py::object cls, std::vector<MlirSparseTensorLevelType> lvlTypes,
std::optional<MlirAffineMap> dimToLvl,
std::optional<MlirAffineMap> lvlToDim, int posWidth, int crdWidth,
std::optional<MlirAttribute> explicitVal,
std::optional<MlirAttribute> implicitVal, MlirContext context) {
return cls(mlirSparseTensorEncodingAttrGet(
context, lvlTypes.size(), lvlTypes.data(),
dimToLvl ? *dimToLvl : MlirAffineMap{nullptr},
lvlToDim ? *lvlToDim : MlirAffineMap{nullptr}, posWidth,
crdWidth, explicitVal ? *explicitVal : MlirAttribute{nullptr},
implicitVal ? *implicitVal : MlirAttribute{nullptr}));
},
py::arg("cls"), py::arg("lvl_types"), py::arg("dim_to_lvl"),
py::arg("lvl_to_dim"), py::arg("pos_width"), py::arg("crd_width"),
py::arg("explicit_val") = py::none(),
py::arg("implicit_val") = py::none(), py::arg("context") = py::none(),
"Gets a sparse_tensor.encoding from parameters.")
.def_classmethod(
"build_level_type",
[](py::object cls, MlirSparseTensorLevelFormat lvlFmt,
const std::vector<MlirSparseTensorLevelPropertyNondefault>
&properties,
unsigned n, unsigned m) {
return mlirSparseTensorEncodingAttrBuildLvlType(
lvlFmt, properties.data(), properties.size(), n, m);
},
py::arg("cls"), py::arg("lvl_fmt"),
py::arg("properties") =
std::vector<MlirSparseTensorLevelPropertyNondefault>(),
py::arg("n") = 0, py::arg("m") = 0,
"Builds a sparse_tensor.encoding.level_type from parameters.")
.def_property_readonly(
"lvl_types",
[](MlirAttribute self) {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
std::vector<MlirSparseTensorLevelType> ret;
ret.reserve(lvlRank);
for (int l = 0; l < lvlRank; ++l)
ret.push_back(mlirSparseTensorEncodingAttrGetLvlType(self, l));
return ret;
})
.def_property_readonly(
"dim_to_lvl",
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimToLvl(self);
if (mlirAffineMapIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"lvl_to_dim",
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetLvlToDim(self);
if (mlirAffineMapIsNull(ret))
return {};
return ret;
})
.def_property_readonly("pos_width",
mlirSparseTensorEncodingAttrGetPosWidth)
.def_property_readonly("crd_width",
mlirSparseTensorEncodingAttrGetCrdWidth)
.def_property_readonly(
"explicit_val",
[](MlirAttribute self) -> std::optional<MlirAttribute> {
MlirAttribute ret =
mlirSparseTensorEncodingAttrGetExplicitVal(self);
if (mlirAttributeIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"implicit_val",
[](MlirAttribute self) -> std::optional<MlirAttribute> {
MlirAttribute ret =
mlirSparseTensorEncodingAttrGetImplicitVal(self);
if (mlirAttributeIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"structured_n",
[](MlirAttribute self) -> unsigned {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
return mlirSparseTensorEncodingAttrGetStructuredN(
mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1));
})
.def_property_readonly(
"structured_m",
[](MlirAttribute self) -> unsigned {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
return mlirSparseTensorEncodingAttrGetStructuredM(
mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1));
})
.def_property_readonly("lvl_formats_enum", [](MlirAttribute self) {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
std::vector<MlirSparseTensorLevelFormat> ret;
ret.reserve(lvlRank);
for (int l = 0; l < lvlRank; l++)
ret.push_back(mlirSparseTensorEncodingAttrGetLvlFmt(self, l));
return ret;
});
}
PYBIND11_MODULE(_mlirDialectsSparseTensor, m) {
m.doc() = "MLIR SparseTensor dialect.";
populateDialectSparseTensorSubmodule(m);
}
|