1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
|
//===- ArmSMEToLLVM.cpp - Convert ArmSME to LLVM dialect ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of ArmSME operations to LLVM intrinsics.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArmSMEToLLVM/ArmSMEToLLVM.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Transforms/Transforms.h"
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTARMSMETOLLVM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
static constexpr StringLiteral kInMemoryTileIdAttr("arm_sme.in_memory_tile_id");
/// Helper to create an arm_sme.intr.ld1*.(horiz|vert)' intrinsic.
static Operation *createLoadTileSliceIntrinsic(
RewriterBase &rewriter, Location loc, arm_sme::ArmSMETileType type,
arm_sme::TileSliceLayout layout, Value maskOp, Value ptr,
IntegerAttr tileId, Value tileSliceI32) {
if (layout == arm_sme::TileSliceLayout::Horizontal) {
switch (type) {
case arm_sme::ArmSMETileType::ZAB:
return rewriter.create<arm_sme::aarch64_sme_ld1b_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAH:
return rewriter.create<arm_sme::aarch64_sme_ld1h_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAS:
return rewriter.create<arm_sme::aarch64_sme_ld1w_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAD:
return rewriter.create<arm_sme::aarch64_sme_ld1d_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAQ:
return rewriter.create<arm_sme::aarch64_sme_ld1q_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
}
} else {
switch (type) {
case arm_sme::ArmSMETileType::ZAB:
return rewriter.create<arm_sme::aarch64_sme_ld1b_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAH:
return rewriter.create<arm_sme::aarch64_sme_ld1h_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAS:
return rewriter.create<arm_sme::aarch64_sme_ld1w_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAD:
return rewriter.create<arm_sme::aarch64_sme_ld1d_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAQ:
return rewriter.create<arm_sme::aarch64_sme_ld1q_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
break;
}
}
}
/// Helper to create an arm_sme.intr.st1*.(horiz|vert)' intrinsic.
static Operation *createStoreTileSliceIntrinsic(
RewriterBase &rewriter, Location loc, arm_sme::ArmSMETileType type,
arm_sme::TileSliceLayout layout, Value maskOp, Value ptr,
IntegerAttr tileId, Value tileSliceI32) {
if (layout == arm_sme::TileSliceLayout::Horizontal) {
switch (type) {
case arm_sme::ArmSMETileType::ZAB:
return rewriter.create<arm_sme::aarch64_sme_st1b_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAH:
return rewriter.create<arm_sme::aarch64_sme_st1h_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAS:
return rewriter.create<arm_sme::aarch64_sme_st1w_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAD:
return rewriter.create<arm_sme::aarch64_sme_st1d_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAQ:
return rewriter.create<arm_sme::aarch64_sme_st1q_horiz>(
loc, maskOp, ptr, tileId, tileSliceI32);
}
} else {
switch (type) {
case arm_sme::ArmSMETileType::ZAB:
return rewriter.create<arm_sme::aarch64_sme_st1b_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAH:
return rewriter.create<arm_sme::aarch64_sme_st1h_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAS:
return rewriter.create<arm_sme::aarch64_sme_st1w_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAD:
return rewriter.create<arm_sme::aarch64_sme_st1d_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
case arm_sme::ArmSMETileType::ZAQ:
return rewriter.create<arm_sme::aarch64_sme_st1q_vert>(
loc, maskOp, ptr, tileId, tileSliceI32);
}
}
}
IntegerAttr getTileIdOrError(arm_sme::ArmSMETileOpInterface op) {
auto tileId = op.getTileId();
if (!tileId)
op.emitOpError(
"expected tile ID to be allocated before conversion to LLVM");
return tileId;
}
/// Creates an alloca matching the size of tile used by `tileOp`. The alloca is
/// placed in the first block of the function.
static memref::AllocaOp
createAllocaForTile(RewriterBase &rewriter, Location loc,
FunctionOpInterface func,
arm_sme::ArmSMETileOpInterface tileOp) {
RewriterBase::InsertionGuard g(rewriter);
// Move to the first operation in the function.
rewriter.setInsertionPointToStart(&func.getBlocks().front());
// Create an alloca matching the tile size of the `tileOp`.
auto vscale = rewriter.create<vector::VectorScaleOp>(loc);
auto tileElementType = tileOp.getTileType().getElementType();
auto memrefType = MemRefType::get(
{ShapedType::kDynamic, ShapedType::kDynamic}, tileElementType);
unsigned minElements = arm_sme::getSMETileSliceMinNumElts(tileElementType);
auto minElementsOp =
rewriter.create<arith::ConstantIndexOp>(loc, minElements);
auto vectorLen = rewriter.create<arith::MulIOp>(loc, vscale, minElementsOp);
auto alloca = rewriter.create<memref::AllocaOp>(
loc, memrefType, ValueRange{vectorLen, vectorLen});
return alloca;
}
/// Finds or creates an alloca for a spill of a tile.
static memref::AllocaOp getOrCreateAllocaForTile(
RewriterBase &rewriter, Location loc, FunctionOpInterface func,
arm_sme::ArmSMETileOpInterface tileOp, unsigned tileId) {
// Find an alloca at the top of the function tagged with a
// 'arm_sme.in_memory_tile_id' that matches `tileId`.
for (auto &op : func.getBlocks().front()) {
auto alloca = llvm::dyn_cast<memref::AllocaOp>(op);
if (!alloca)
continue;
auto inMemoryTileId = llvm::dyn_cast_or_null<IntegerAttr>(
alloca->getDiscardableAttr(kInMemoryTileIdAttr));
if (!inMemoryTileId)
continue;
if (inMemoryTileId.getInt() == tileId)
return alloca;
}
// Otherwise, create a new alloca:
auto alloca = createAllocaForTile(rewriter, loc, func, tileOp);
alloca->setDiscardableAttr(kInMemoryTileIdAttr,
rewriter.getI32IntegerAttr(tileId));
return alloca;
}
/// Very naive lowering of in-memory tiles (i.e. tiles that were not assigned a
/// hardware tile ID) to ArmSME intrinsics. Currently, this works by assigning
/// the op to tile 0, then emitting a full tile swap between ZA and memory
/// before + after the tile op.
///
/// Example:
///
/// // Note: <IN MEMORY TILE> = tile ID >= 16.
/// arm_sme.tile_op { tile_id = <IN MEMORY TILE> }
///
/// is converted to:
/// // At function entry:
/// %spill = memref.alloca ... : memref<?x?xty>
///
/// // Around op:
/// scf.for %slice_idx {
/// %slice_to_save = "arm_sme.intr.read.horiz" ... <{tile_id = 0 : i32}>
/// "arm_sme.intr.ld1h.horiz"(%spill, %slice_idx) <{tile_id = 0 : i32}>
/// vector.store %slice_to_save, %spill[%slice_idx, %c0]
/// }
/// arm_sme.tile_op { tile_id = 0 }
/// scf.for %slice_idx {
/// %slice_to_save = "arm_sme.intr.read.horiz" ... <{tile_id = 0 : i32}>
/// "arm_sme.intr.ld1h.horiz"(%spill, %slice_idx) <{tile_id = 0 : i32}>
/// vector.store %slice_to_save, %spill[%slice_idx, %c0]
/// }
///
/// Note that these spills/fills are not inserted earlier as concept of a
/// register, and the need to swap the contents, can't really be represented
/// correctly at a high level in MLIR.
///
/// TODO: Reduce the spills/reloads to single slices where possible (and omit
/// redundant reloads). This could be done via a method on the
/// `ArmSMETileOpInterface` which returns how the operation uses ZA. E.g.:
///
/// `tileOp.getZaUsage()` could return:
///
/// struct ArmSMEOpZAUsage {
/// enum class Kind {
/// TileRead, // Omit store after tile operation.
/// TileWrite, // Omit load before tile operation.
/// TileReadWrite, // Needs both tile load and store.
/// SliceRead, // Spill single slice and omit store after operation.
/// SliceWrite, // Spill single slice and omit load before operation.
/// SliceReadWrite // Spill single slice.
/// };
/// Value sliceIndex {};
/// TileSliceLayout sliceLayout { TileSliceLayout::Horizontal };
/// };
///
struct ConvertArmSMESpillsAndFillsToLLVM : public ConvertToLLVMPattern {
ConvertArmSMESpillsAndFillsToLLVM(StringRef rootOpName,
const LLVMTypeConverter &typeConverter,
PatternBenefit benefit)
: ConvertToLLVMPattern(rootOpName, &typeConverter.getContext(),
typeConverter, benefit) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto tileOp = cast<arm_sme::ArmSMETileOpInterface>(op);
// Tile has a real (hardware) tile. No spills/reloads required.
if (!tileOp.isInMemoryTile())
return failure();
tileOp->emitWarning(
"failed to allocate SME virtual tile to operation, tile value will go "
"through memory, expect degraded performance");
// Step 1. Create an alloca for the tile at the top of the function (if one
// does not already exist).
auto loc = tileOp.getLoc();
auto func = tileOp->getParentOfType<FunctionOpInterface>();
auto tileAlloca = getOrCreateAllocaForTile(rewriter, loc, func, tileOp,
tileOp.getTileId().getInt());
// Step 2. Assign the op a real tile ID.
// For simplicity, we always use tile 0 (which always exists).
auto zeroTileId = rewriter.getI32IntegerAttr(0);
rewriter.modifyOpInPlace(tileOp, [&] { tileOp.setTileId(zeroTileId); });
VectorType tileVectorType = tileOp.getTileType();
auto sliceType = VectorType::Builder(tileVectorType).dropDim(0);
auto swapInMemoryTileWithSMETileZero = [&] {
emitFullTileSwap(rewriter, loc, tileAlloca,
*arm_sme::getSMETileType(tileVectorType), sliceType,
zeroTileId);
};
// Step 3. Emit tile swaps before and after the op.
// TODO: Reduce the amount spilled to the amount of data the `tileOp`
// touches (i.e. a single tile slice).
{
rewriter.setInsertionPoint(op);
// Swap the contents of ZA and the in-memory tile before the op.
swapInMemoryTileWithSMETileZero();
rewriter.setInsertionPointAfter(op);
// Swap the tile back out to memory again after the op.
swapInMemoryTileWithSMETileZero();
}
return success();
}
/// Extracts a pointer to a slice of an in-memory tile.
Value getInMemoryTileSlicePtr(RewriterBase &rewriter, Location loc,
Value tileMemory, Value sliceIndex) const {
auto llvmType = getTypeConverter()->convertType(tileMemory.getType());
auto descriptor =
rewriter.create<UnrealizedConversionCastOp>(loc, llvmType, tileMemory);
auto zero = rewriter.create<arith::ConstantIntOp>(loc, 0, /*width=*/64);
auto sliceIndexI64 = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI64Type(), sliceIndex);
return getStridedElementPtr(
loc, llvm::cast<MemRefType>(tileMemory.getType()),
descriptor.getResult(0), {sliceIndexI64, zero},
static_cast<ConversionPatternRewriter &>(rewriter));
}
/// Emits an in-place swap of a slice of a tile in ZA and a slice of a
/// tile-sized memref (`tileAlloca`).
void emitSliceSwap(RewriterBase &rewriter, Location loc, Value tileAlloca,
arm_sme::ArmSMETileType tileType, VectorType sliceType,
IntegerAttr tileId, Value sliceIndex) const {
// Cast the slice index to an i32.
auto sliceIndexI32 = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI32Type(), sliceIndex);
// Create an all-true predicate for the slice.
auto predicateType = sliceType.clone(rewriter.getI1Type());
auto allTruePredicate = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(predicateType, true));
// Create padding vector (never used due to all-true predicate).
auto padVector = rewriter.create<LLVM::UndefOp>(loc, sliceType);
// Get a pointer to the current slice.
auto slicePtr =
getInMemoryTileSlicePtr(rewriter, loc, tileAlloca, sliceIndex);
// Read the value of the current slice from ZA.
auto currentTileSlice = rewriter.create<arm_sme::aarch64_sme_read_horiz>(
loc, sliceType, padVector, allTruePredicate, tileId, sliceIndexI32);
// Load the new tile slice back from memory into ZA.
createLoadTileSliceIntrinsic(
rewriter, loc, tileType, arm_sme::TileSliceLayout::Horizontal,
allTruePredicate, slicePtr, tileId, sliceIndexI32);
// Store the current tile slice to memory.
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
rewriter.create<vector::StoreOp>(loc, currentTileSlice, tileAlloca,
ValueRange{sliceIndex, zero});
}
/// Emits a full in-place swap of the contents of a tile in ZA and a
/// tile-sized memref (`tileAlloca`).
void emitFullTileSwap(RewriterBase &rewriter, Location loc, Value tileAlloca,
arm_sme::ArmSMETileType tileType, VectorType sliceType,
IntegerAttr tileId) const {
RewriterBase::InsertionGuard guard(rewriter);
// Create an scf.for over all tile slices.
auto minNumElts =
rewriter.create<arith::ConstantIndexOp>(loc, sliceType.getDimSize(0));
auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto upperBound = rewriter.create<arith::MulIOp>(
loc, minNumElts, rewriter.create<vector::VectorScaleOp>(loc));
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto forOp = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step);
// Emit a swap for each tile slice.
rewriter.setInsertionPointToStart(forOp.getBody());
auto sliceIndex = forOp.getInductionVar();
emitSliceSwap(rewriter, loc, tileAlloca, tileType, sliceType, tileId,
sliceIndex);
}
};
enum class RequiresSpillsAndFills { Yes, No };
/// Base class for ArmSME to LLVM conversion patterns. By default, this adds
/// spills and fills around ArmSME ops that use in-memory tile IDs. This can be
/// disabled by setting the `requiresSpillsAndFills` template parameter to
/// `RequiresSpillsAndFills::No`.
template <typename SourceOp, RequiresSpillsAndFills requiresSpillsAndFills =
RequiresSpillsAndFills::Yes>
struct ConvertArmSMEOpToLLVMPattern : ConvertOpToLLVMPattern<SourceOp> {
using ArmSMEOp = SourceOp;
using ConvertOpToLLVMPattern<SourceOp>::ConvertOpToLLVMPattern;
static constexpr bool requiresSpillsAndFillsConversion() {
return requiresSpillsAndFills == RequiresSpillsAndFills::Yes;
}
};
template <typename Pattern>
static void addArmSMEConversionPattern(RewritePatternSet &patterns,
LLVMTypeConverter const &typeConverter) {
// Register spills/fills for ops that implement the
// `ArmSMETileOpInterface` and have `requiresSpillsAndFills` set to
// `RequiresSpillsAndFills::Yes`.
if constexpr (Pattern::requiresSpillsAndFillsConversion() &&
std::is_base_of_v<arm_sme::ArmSMETileOpInterface::Trait<
typename Pattern::ArmSMEOp>,
typename Pattern::ArmSMEOp>) {
// Add spill/fill conversions with a very high benefit to ensure
// they are lowered first.
patterns.add<ConvertArmSMESpillsAndFillsToLLVM>(
Pattern::ArmSMEOp::getOperationName(), typeConverter,
/*benefit=*/1337);
}
patterns.add<Pattern>(typeConverter);
}
/// Helper to register `ConvertArmSMEOpToLLVMPattern` patterns.
template <typename... Patterns>
static void
addArmSMEConversionPatterns(RewritePatternSet &patterns,
LLVMTypeConverter const &typeConverter) {
(addArmSMEConversionPattern<Patterns>(patterns, typeConverter), ...);
}
/// Lower 'arm_sme.zero' to SME intrinsics.
///
/// BEFORE:
/// ```mlir
/// %v = arm_sme.zero {tile_id = 0 : i32} : vector<[4]x[4]xi32>
/// ```
///
/// AFTER:
/// ```mlir
/// "arm_sme.intr.zero"() <{tile_mask = 17 : i32}> : () -> ()
/// %v = arm_sme.get_tile : vector<[4]x[4]xi32>
/// ```
///
/// The 'arm_sme.get_tile' (which models the return) will fold away once all
/// ArmSME ops have been converted to LLVM intrinsics.
struct ZeroOpConversion : public ConvertArmSMEOpToLLVMPattern<arm_sme::ZeroOp> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::ZeroOp zero, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = zero.getLoc();
auto tileId = getTileIdOrError(zero);
if (!tileId)
return failure();
// Get the base mask for tile based on the element size.
// The base mask is just the mask to zero the first tile (of a size).
// These masks are derived from:
// https://developer.arm.com/documentation/ddi0602/2022-06/SME-Instructions/ZERO--Zero-a-list-of-64-bit-element-ZA-tiles-
arm_sme::ArmSMETileType tileType =
*arm_sme::getSMETileType(zero.getTileType());
auto baseMaskForSize = [&] {
switch (tileType) {
case arm_sme::ArmSMETileType::ZAB:
// Zeroing the 8-bit ZA0.B tile is equivalent to zeroing all eight
// 64-bit element tiles named ZA0.D to ZA7.D.
return 0b1111'1111;
case arm_sme::ArmSMETileType::ZAH:
// Zeroing the 16-bit ZA0.H tile is equivalent to zeroing 64-bit
// element tiles named ZA0.D, ZA2.D, ZA4.D, and ZA6.D. Shift this left
// once for ZA1.H.
return 0b0101'0101;
case arm_sme::ArmSMETileType::ZAS:
// Zeroing the 32-bit ZA0.S tile is equivalent to zeroing 64-bit
// element tiles named ZA0.D and ZA4.D.
// Shift left by 1, 2, or 3 respectively for ZA1.S, ZA2.S, ZA3.S.
return 0b0001'0001;
case arm_sme::ArmSMETileType::ZAD:
// Zeroing one of the a 64-bit tiles ZA0.D to ZA7.D just requires
// setting the bit for that tile.
return 0b0000'0001;
default:
llvm_unreachable("bad element size");
}
}();
// The actual mask is just the base mask shifted by the tile ID.
// This will be folded to a constant after tile allocation.
//
// The shift is just derived from the layout of the tiles, and that the tile
// ID is the index of the tile. For example, looking at the 32-bit ZAx.S
// tiles:
//
// ZA0.S = ZA0.D and ZA4.D
// * Tile ID -> 0
// * Mask -> 00010001 = (00010001 << 0)
// ZA1.S = ZA1.D and ZA5.D
// * Tile ID -> 1
// * Mask -> 00100010 = (00010001 << 1)
// ZA2.S = ZA2.D and ZA6.D
// * Tile ID -> 2
// * Mask -> 01000100 = (00010001 << 2)
// ZA3.S = ZA3.D and ZA7.D
// * Tile ID -> 3
// * Mask -> 10001000 = (00010001 << 3)
//
// This holds for all tile sizes.
int32_t zeroMask = baseMaskForSize << int32_t(tileId.getInt());
rewriter.create<arm_sme::aarch64_sme_zero>(
loc, rewriter.getI32IntegerAttr(zeroMask));
// Create a placeholder op to preserve dataflow.
rewriter.replaceOpWithNewOp<arm_sme::GetTileOp>(zero, zero.getVectorType());
return success();
}
};
/// Lower `arm_sme.load_tile_slice` to SME intrinsics.
struct LoadTileSliceConversion
: public ConvertArmSMEOpToLLVMPattern<arm_sme::LoadTileSliceOp> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::LoadTileSliceOp loadTileSliceOp,
arm_sme::LoadTileSliceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = loadTileSliceOp.getLoc();
auto tileId = getTileIdOrError(loadTileSliceOp);
if (!tileId)
return failure();
Value ptr = this->getStridedElementPtr(loc, loadTileSliceOp.getMemRefType(),
adaptor.getBase(),
adaptor.getIndices(), rewriter);
auto tileSlice = loadTileSliceOp.getTileSliceIndex();
// Cast tile slice to i32 for intrinsic.
auto tileSliceI32 = rewriter.create<arith::IndexCastUIOp>(
loc, rewriter.getI32Type(), tileSlice);
// Create all active predicate mask.
auto maskOp = loadTileSliceOp.getMask();
auto tileVectorType = loadTileSliceOp.getVectorType();
arm_sme::ArmSMETileType tileType = *arm_sme::getSMETileType(tileVectorType);
arm_sme::TileSliceLayout layout = loadTileSliceOp.getLayout();
// Create 'arm_sme.intr.ld1*.(horiz|vert)' intrinsic to load ZA tile slice.
createLoadTileSliceIntrinsic(rewriter, loc, tileType, layout, maskOp, ptr,
tileId, tileSliceI32);
// The load intrinsics have no result, replace 'arm_sme.tile_load' with
// the input tile to preserve dataflow.
rewriter.replaceOp(loadTileSliceOp, loadTileSliceOp.getTile());
return success();
}
};
/// Lower for `arm_sme.store_tile_slice` to SME intrinsics.
struct StoreTileSliceConversion
: public ConvertArmSMEOpToLLVMPattern<arm_sme::StoreTileSliceOp> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::StoreTileSliceOp storeTileSliceOp,
arm_sme::StoreTileSliceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = storeTileSliceOp.getLoc();
auto tileVectorType = storeTileSliceOp.getVectorType();
auto tileId = getTileIdOrError(storeTileSliceOp);
if (!tileId)
return failure();
// Create 'arm_sme.intr.st1*.horiz' intrinsic to store ZA tile slice.
Value ptr = this->getStridedElementPtr(
loc, storeTileSliceOp.getMemRefType(), adaptor.getBase(),
adaptor.getIndices(), rewriter);
auto tileSlice = storeTileSliceOp.getTileSliceIndex();
// Cast tile slice to i32 for intrinsic.
auto tileSliceI32 = rewriter.create<arith::IndexCastUIOp>(
loc, rewriter.getI32Type(), tileSlice);
auto maskOp = storeTileSliceOp.getMask();
arm_sme::TileSliceLayout layout = storeTileSliceOp.getLayout();
arm_sme::ArmSMETileType tileType = *arm_sme::getSMETileType(tileVectorType);
rewriter.replaceOp(storeTileSliceOp,
createStoreTileSliceIntrinsic(rewriter, loc, tileType,
layout, maskOp, ptr,
tileId, tileSliceI32));
return success();
}
};
/// Lower `arm_sme.move_vector_to_tile_slice` to SME intrinsics.
struct MoveVectorToTileSliceConversion
: public ConvertArmSMEOpToLLVMPattern<arm_sme::MoveVectorToTileSliceOp> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::MoveVectorToTileSliceOp moveVectorToTileSliceOp,
arm_sme::MoveVectorToTileSliceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = moveVectorToTileSliceOp.getLoc();
auto tileType = moveVectorToTileSliceOp.getTileType();
auto tileId = getTileIdOrError(moveVectorToTileSliceOp);
if (!tileId)
return failure();
auto tileSlice = moveVectorToTileSliceOp.getTileSliceIndex();
// Cast tile slice from index to i32 for intrinsic.
auto tileSliceI32 = rewriter.create<arith::IndexCastUIOp>(
loc, rewriter.getI32Type(), tileSlice);
// Create all active predicate mask.
auto one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI1Type(),
rewriter.getIntegerAttr(rewriter.getI1Type(), 1));
auto predTy = VectorType::get(tileType.getShape()[0], rewriter.getI1Type(),
/*scalableDims=*/{true});
auto allActiveMask = rewriter.create<vector::SplatOp>(loc, predTy, one);
// Create 'arm_sme.intr.write.(horiz|vert)' to write vector to tile slice.
switch (moveVectorToTileSliceOp.getLayout()) {
case arm_sme::TileSliceLayout::Horizontal:
rewriter.create<arm_sme::aarch64_sme_write_horiz>(
loc, tileId, tileSliceI32, allActiveMask,
moveVectorToTileSliceOp.getVector());
break;
case arm_sme::TileSliceLayout::Vertical:
rewriter.create<arm_sme::aarch64_sme_write_vert>(
loc, tileId, tileSliceI32, allActiveMask,
moveVectorToTileSliceOp.getVector());
break;
}
// Intrinsic has no result, replace 'arm_sme.move_vector_to_tile_slice' with
// the input tile to preserve dataflow.
rewriter.replaceOp(moveVectorToTileSliceOp,
moveVectorToTileSliceOp.getTile());
return success();
}
};
/// Lower `arm_sme.move_tile_slice_to_vector` to SME intrinsics.
struct MoveTileSliceToVectorConversion
: public ConvertArmSMEOpToLLVMPattern<arm_sme::MoveTileSliceToVectorOp> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::MoveTileSliceToVectorOp moveTileSliceToVector,
OpAdaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = moveTileSliceToVector.getLoc();
auto sliceType = moveTileSliceToVector.getSliceType();
auto sliceIndex = moveTileSliceToVector.getTileSliceIndex();
auto tileId = getTileIdOrError(moveTileSliceToVector);
if (!tileId)
return failure();
// Create an 'all true' predicate for the tile slice.
auto predicateType = sliceType.cloneWith({}, rewriter.getI1Type());
auto allTruePredicate = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(predicateType, true));
// Zero destination/fallback for tile slice extraction.
auto zeroVector = rewriter.create<arith::ConstantOp>(
loc, sliceType, rewriter.getZeroAttr(sliceType));
// Cast tile slice from index to i32 for intrinsic.
auto sliceIndexI32 = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI32Type(), sliceIndex);
// Create 'arm_sme.intr.read.(horiz|vert)' to extract the tile slice.
switch (moveTileSliceToVector.getLayout()) {
case arm_sme::TileSliceLayout::Horizontal:
rewriter.replaceOpWithNewOp<arm_sme::aarch64_sme_read_horiz>(
moveTileSliceToVector, sliceType, zeroVector, allTruePredicate,
tileId, sliceIndexI32);
break;
case arm_sme::TileSliceLayout::Vertical:
rewriter.replaceOpWithNewOp<arm_sme::aarch64_sme_read_vert>(
moveTileSliceToVector, sliceType, zeroVector, allTruePredicate,
tileId, sliceIndexI32);
break;
}
return success();
}
};
/// Lower `arm_sme.outerproduct` to SME MOPA intrinsics.
///
/// Example:
///
/// %0 = arm_sme.outerproduct %lhs, %rhs acc(%acc)
/// : vector<[4]xf32>, vector<[4]xf32>
///
/// is converted to:
///
/// "arm_sme.intr.mopa"(%ptrue_s, %ptrue_s, %lhs, %rhs) <{tile_id = 0 : i32}>
/// : (vector<[4]xi1>, vector<[4]xi1>, vector<[4]xf32>,
/// vector<[4]xf32>) -> ()
///
/// Currently only supports FMOPA and BFMOPA (non-widening).
struct OuterProductOpConversion
: public ConvertArmSMEOpToLLVMPattern<arm_sme::OuterProductOp> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::OuterProductOp outerProductOp,
arm_sme::OuterProductOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto tileId = getTileIdOrError(outerProductOp);
if (!tileId)
return failure();
auto isSupportedType = [](VectorType vectorType) {
// TODO: the FP outer product instruction variants are predicated on
// different features [1]:
//
// * FMOPA (non-widening)
// * half-precision - +sme2p1,+sme-f16f16
// * single-precision - +sme
// * double-precision - +sme-f64f64
// * BFMOPA
// * half-precision - +sme2p1,+b16b16
//
// It should be possible to control lowering based on target features.
// [1]
// https://developer.arm.com/downloads/-/exploration-tools/feature-names-for-a-profile
if ((vectorType.getRank() != 2) || !vectorType.allDimsScalable())
return false;
auto elementType = vectorType.getElementType();
if (!elementType.isF16() && !elementType.isBF16() &&
!elementType.isF32() && !elementType.isF64())
return false;
unsigned minNumElts = arm_sme::MinStreamingVectorLengthInBits /
vectorType.getElementTypeBitWidth();
return vectorType.getShape() ==
ArrayRef<int64_t>({minNumElts, minNumElts});
};
// TODO: Support CombiningKind::Sub for outer products.
if (outerProductOp.getKind() != arm_sme::CombiningKind::Add)
return outerProductOp.emitError("unsupported kind");
auto resultVectorType = outerProductOp.getResultType();
if (!isSupportedType(resultVectorType))
return outerProductOp.emitError("unsupported type");
auto loc = outerProductOp.getLoc();
Value acc = outerProductOp.getAcc();
if (!acc) {
// Initalize accumulator with zero.
auto zero = rewriter.create<arm_sme::ZeroOp>(loc, resultVectorType);
zero.setTileId(tileId);
acc = zero;
}
Value lhsMask = outerProductOp.getLhsMask();
Value rhsMask = outerProductOp.getRhsMask();
if (!lhsMask || !rhsMask) {
auto predTy =
outerProductOp.getLhsType().cloneWith({}, rewriter.getI1Type());
Value allActiveMask = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(predTy, true));
lhsMask = allActiveMask;
rhsMask = allActiveMask;
}
// Create 'arm_sme.intr.mopa' outer product intrinsic.
rewriter.create<arm_sme::aarch64_sme_mopa>(loc, tileId, lhsMask, rhsMask,
outerProductOp.getLhs(),
outerProductOp.getRhs());
// The outerproduct intrinsics have no result, replace
// 'arm_sme.outerproduct' with the input tile to preserve dataflow.
rewriter.replaceOp(outerProductOp, acc);
return success();
}
};
/// Lower 2-way and 4-way widening outer products to intrinsics.
template <class OuterProductWideningOp, class OuterProductWideningIntrOp>
struct OuterProductWideningOpConversion
: public ConvertArmSMEOpToLLVMPattern<OuterProductWideningOp> {
using ConvertArmSMEOpToLLVMPattern<
OuterProductWideningOp>::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(OuterProductWideningOp op,
typename OuterProductWideningOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto tileId = getTileIdOrError(op);
if (!tileId)
return failure();
auto loc = op.getLoc();
Value acc = op.getAcc();
if (!acc) {
// Initalize accumulator with zero.
auto zero = rewriter.create<arm_sme::ZeroOp>(loc, op.getResultType());
zero.setTileId(tileId);
acc = zero;
}
Value lhsMask = op.getLhsMask();
Value rhsMask = op.getRhsMask();
if (!lhsMask || !rhsMask) {
auto predTy = op.getLhsType().cloneWith({}, rewriter.getI1Type());
Value allActiveMask = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(predTy, true));
lhsMask = allActiveMask;
rhsMask = allActiveMask;
}
rewriter.create<OuterProductWideningIntrOp>(
loc, tileId, lhsMask, rhsMask, adaptor.getLhs(), adaptor.getRhs());
// The outerproduct intrinsics have no result, replace
// 'arm_sme.outerproduct' with the input tile to preserve dataflow.
rewriter.replaceOp(op, acc);
return success();
}
};
/// Lower `arm_sme.streaming_vl` to SME CNTS intrinsics.
///
/// Example:
///
/// %0 = arm_sme.streaming_vl <half>
///
/// is converted to:
///
/// %cnt = "arm_sme.intr.cntsh"() : () -> i64
/// %0 = arith.index_cast %cnt : i64 to index
///
struct StreamingVLOpConversion
: public ConvertArmSMEOpToLLVMPattern<arm_sme::StreamingVLOp,
RequiresSpillsAndFills::No> {
using ConvertArmSMEOpToLLVMPattern::ConvertArmSMEOpToLLVMPattern;
LogicalResult
matchAndRewrite(arm_sme::StreamingVLOp streamingVlOp,
arm_sme::StreamingVLOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = streamingVlOp.getLoc();
auto i64Type = rewriter.getI64Type();
auto *intrOp = [&]() -> Operation * {
switch (streamingVlOp.getTypeSize()) {
case arm_sme::TypeSize::Byte:
return rewriter.create<arm_sme::aarch64_sme_cntsb>(loc, i64Type);
case arm_sme::TypeSize::Half:
return rewriter.create<arm_sme::aarch64_sme_cntsh>(loc, i64Type);
case arm_sme::TypeSize::Word:
return rewriter.create<arm_sme::aarch64_sme_cntsw>(loc, i64Type);
case arm_sme::TypeSize::Double:
return rewriter.create<arm_sme::aarch64_sme_cntsd>(loc, i64Type);
}
}();
rewriter.replaceOpWithNewOp<arith::IndexCastOp>(
streamingVlOp, rewriter.getIndexType(), intrOp->getResult(0));
return success();
}
};
} // namespace
namespace {
struct ConvertArmSMEToLLVMPass
: public impl::ConvertArmSMEToLLVMBase<ConvertArmSMEToLLVMPass> {
ConvertArmSMEToLLVMPass(bool dumpTileLiveRanges) {
this->dumpTileLiveRanges = dumpTileLiveRanges;
}
void runOnOperation() override {
auto function = getOperation();
if (failed(arm_sme::allocateSMETiles(function, dumpTileLiveRanges)))
return signalPassFailure();
LLVMConversionTarget target(getContext());
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext());
configureArmSMEToLLVMConversionLegality(target);
populateArmSMEToLLVMConversionPatterns(converter, patterns);
if (failed(applyPartialConversion(function, target, std::move(patterns))))
signalPassFailure();
// Walk the function and fail if there are unexpected operations on SME
// tile types after conversion.
function->walk([&](Operation *op) {
// These ops are legal post conversion, skip these.
if (isa<arm_sme::CopyTileOp, arm_sme::GetTileOp, cf::BranchOp>(op) ||
!op->isRegistered())
return;
auto isSMETileType = [](Type type) {
return arm_sme::isValidSMETileVectorType(type);
};
if (llvm::any_of(op->getResultTypes(), isSMETileType) ||
llvm::any_of(op->getOperandTypes(), isSMETileType)) {
op->emitOpError("unexpected operation with SME tile type after "
"conversion to LLVM");
signalPassFailure();
}
});
}
};
} // namespace
void mlir::configureArmSMEToLLVMConversionLegality(ConversionTarget &target) {
target.addIllegalDialect<arm_sme::ArmSMEDialect>();
target.addLegalOp<
arm_sme::aarch64_sme_zero, arm_sme::aarch64_sme_str,
arm_sme::aarch64_sme_ld1b_horiz, arm_sme::aarch64_sme_ld1h_horiz,
arm_sme::aarch64_sme_ld1w_horiz, arm_sme::aarch64_sme_ld1d_horiz,
arm_sme::aarch64_sme_ld1q_horiz, arm_sme::aarch64_sme_st1b_horiz,
arm_sme::aarch64_sme_st1h_horiz, arm_sme::aarch64_sme_st1w_horiz,
arm_sme::aarch64_sme_st1d_horiz, arm_sme::aarch64_sme_st1q_horiz,
arm_sme::aarch64_sme_ld1b_vert, arm_sme::aarch64_sme_ld1h_vert,
arm_sme::aarch64_sme_ld1w_vert, arm_sme::aarch64_sme_ld1d_vert,
arm_sme::aarch64_sme_ld1q_vert, arm_sme::aarch64_sme_st1b_vert,
arm_sme::aarch64_sme_st1h_vert, arm_sme::aarch64_sme_st1w_vert,
arm_sme::aarch64_sme_st1d_vert, arm_sme::aarch64_sme_st1q_vert,
arm_sme::aarch64_sme_read_horiz, arm_sme::aarch64_sme_read_vert,
arm_sme::aarch64_sme_write_horiz, arm_sme::aarch64_sme_write_vert,
arm_sme::aarch64_sme_mopa, arm_sme::aarch64_sme_mopa_wide,
arm_sme::aarch64_sme_mops_wide, arm_sme::aarch64_sme_smopa_wide,
arm_sme::aarch64_sme_smops_wide, arm_sme::aarch64_sme_umopa_wide,
arm_sme::aarch64_sme_umops_wide, arm_sme::aarch64_sme_smopa_za32,
arm_sme::aarch64_sme_smops_za32, arm_sme::aarch64_sme_umopa_za32,
arm_sme::aarch64_sme_umops_za32, arm_sme::aarch64_sme_sumopa_wide,
arm_sme::aarch64_sme_sumops_wide, arm_sme::aarch64_sme_usmopa_wide,
arm_sme::aarch64_sme_usmops_wide, arm_sme::aarch64_sme_cntsb,
arm_sme::aarch64_sme_cntsh, arm_sme::aarch64_sme_cntsw,
arm_sme::aarch64_sme_cntsd>();
target.addLegalDialect<arith::ArithDialect,
/* The following are used to lower tile spills/fills */
vector::VectorDialect, scf::SCFDialect,
memref::MemRefDialect>();
// Pseudo operations. These cannot be code-generated but may exist in the
// input IR, or be generated during the conversion. They need to be eliminated
// before the final conversion to LLVM IR (and likely will be due to DCE).
target.addLegalOp<arm_sme::GetTileOp, arm_sme::CopyTileOp,
UnrealizedConversionCastOp>();
}
void mlir::populateArmSMEToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
converter.addConversion([&](VectorType type) -> std::optional<Type> {
// There's no LLVM type for SME tiles, but after lowering to intrinsics all
// SME vector types should be eliminated.
if (arm_sme::isValidSMETileVectorType(type))
return type;
return std::nullopt;
});
addArmSMEConversionPatterns<
LoadTileSliceConversion, MoveTileSliceToVectorConversion,
MoveVectorToTileSliceConversion, StoreTileSliceConversion,
StreamingVLOpConversion, OuterProductOpConversion,
OuterProductWideningOpConversion<arm_sme::FMopa2WayOp,
arm_sme::aarch64_sme_mopa_wide>,
OuterProductWideningOpConversion<arm_sme::FMops2WayOp,
arm_sme::aarch64_sme_mops_wide>,
OuterProductWideningOpConversion<arm_sme::SMopa2WayOp,
arm_sme::aarch64_sme_smopa_za32>,
OuterProductWideningOpConversion<arm_sme::SMops2WayOp,
arm_sme::aarch64_sme_smops_za32>,
OuterProductWideningOpConversion<arm_sme::UMopa2WayOp,
arm_sme::aarch64_sme_umopa_za32>,
OuterProductWideningOpConversion<arm_sme::UMops2WayOp,
arm_sme::aarch64_sme_umops_za32>,
OuterProductWideningOpConversion<arm_sme::SMopa4WayOp,
arm_sme::aarch64_sme_smopa_wide>,
OuterProductWideningOpConversion<arm_sme::SMops4WayOp,
arm_sme::aarch64_sme_smops_wide>,
OuterProductWideningOpConversion<arm_sme::UMopa4WayOp,
arm_sme::aarch64_sme_umopa_wide>,
OuterProductWideningOpConversion<arm_sme::UMops4WayOp,
arm_sme::aarch64_sme_umops_wide>,
OuterProductWideningOpConversion<arm_sme::SuMopa4WayOp,
arm_sme::aarch64_sme_sumopa_wide>,
OuterProductWideningOpConversion<arm_sme::SuMops4WayOp,
arm_sme::aarch64_sme_sumops_wide>,
OuterProductWideningOpConversion<arm_sme::UsMopa4WayOp,
arm_sme::aarch64_sme_usmopa_wide>,
OuterProductWideningOpConversion<arm_sme::UsMops4WayOp,
arm_sme::aarch64_sme_usmops_wide>,
ZeroOpConversion>(patterns, converter);
}
std::unique_ptr<Pass>
mlir::createConvertArmSMEToLLVMPass(bool dumpTileLiveRanges) {
return std::make_unique<ConvertArmSMEToLLVMPass>(dumpTileLiveRanges);
}
|