1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
//===- ArmSMEToSCF.cpp - Convert ArmSME to SCF dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of ArmSME operations to SCF.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArmSMEToSCF/ArmSMEToSCF.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTARMSMETOSCF
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Returns adjusted (1-D or 2-D) `indices` for a tile slice as follows:
/// rank 1: (indices[0] + (tileSliceIndex * tileSliceNumElts))
/// rank 2: (indices[0] + tileSliceIndex, indices[1])
SmallVector<Value, 2> getMemrefIndices(ValueRange indices, unsigned rank,
Value tileSliceIndex,
Value tileSliceNumElts, Location loc,
PatternRewriter &rewriter) {
assert((rank == 1 || rank == 2) && "memref has unexpected rank!");
SmallVector<Value, 2> outIndices;
auto tileSliceOffset = tileSliceIndex;
if (rank == 1)
tileSliceOffset =
rewriter.create<arith::MulIOp>(loc, tileSliceOffset, tileSliceNumElts);
auto baseIndexPlusTileSliceOffset =
rewriter.create<arith::AddIOp>(loc, indices[0], tileSliceOffset);
outIndices.push_back(baseIndexPlusTileSliceOffset);
if (rank == 2)
outIndices.push_back(indices[1]);
return outIndices;
}
/// Creates an scf.for for the load/store of an ArmSME tile.
FailureOr<scf::ForOp> createLoadStoreForOverTileSlices(
PatternRewriter &rewriter, Location loc, VectorType tileType,
ValueRange memrefIndices, int memrefRank, Value mask, Value initTile,
function_ref<Value(/*index=*/Value, ValueRange, /*predicate=*/Value,
/*currentTile=*/Value)>
makeLoopBody) {
PatternRewriter::InsertionGuard guard(rewriter);
auto minTileSlices = rewriter.create<arith::ConstantIndexOp>(
loc, arm_sme::getSMETileSliceMinNumElts(tileType.getElementType()));
auto vscale =
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
auto predicateType =
VectorType::get(tileType.getDimSize(1), rewriter.getI1Type(), true);
// This describes both the number of ZA tile slices and the number of
// elements in a vector of SVL bits for a given element type (SVL_B,
// SVL_H, ..., SVL_Q).
auto numTileSlices =
rewriter.create<arith::MulIOp>(loc, minTileSlices, vscale);
Value predicate;
Value upperBound;
if (mask) {
auto createMaskOp = mask.getDefiningOp<vector::CreateMaskOp>();
if (!createMaskOp)
return rewriter.notifyMatchFailure(
loc, "unsupported mask op, only 'vector.create_mask' is "
"currently supported");
auto maskDim0 = createMaskOp.getOperands()[0];
auto maskDim1 = createMaskOp.getOperands()[1];
// The upper bound of the loop must be clamped at `numTileSlices` as
// `vector.create_mask` allows operands to be greater than the size of a
// dimension.
auto numRowI64 = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI64Type(), maskDim0);
auto numTileSlicesI64 = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI64Type(), numTileSlices);
auto upperBoundI64 =
rewriter.create<arith::MinSIOp>(loc, numRowI64, numTileSlicesI64);
upperBound = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIndexType(), upperBoundI64);
predicate =
rewriter.create<vector::CreateMaskOp>(loc, predicateType, maskDim1);
} else {
upperBound = numTileSlices;
// No mask. Create an 'all true' predicate for the tile slice.
predicate = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(predicateType, true));
}
bool hasCarriedArgs = bool(initTile);
auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto forOp = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step,
hasCarriedArgs ? ValueRange{initTile}
: ValueRange{});
rewriter.setInsertionPointToStart(forOp.getBody());
Value tileSliceIndex = forOp.getInductionVar();
auto adjustedIndices = getMemrefIndices(
memrefIndices, memrefRank, tileSliceIndex, numTileSlices, loc, rewriter);
auto nextTile = makeLoopBody(
tileSliceIndex, adjustedIndices, predicate,
/*currentTile=*/hasCarriedArgs ? forOp.getRegionIterArg(0) : Value{});
assert(bool(nextTile) == hasCarriedArgs);
if (nextTile)
rewriter.create<scf::YieldOp>(loc, nextTile);
return forOp;
}
FailureOr<scf::ForOp> createLoadStoreForOverTileSlices(
PatternRewriter &rewriter, Location loc, VectorType tileType,
ValueRange memrefIndices, int memrefRank, Value mask,
function_ref<void(/*index=*/Value, ValueRange, /*predicate=*/Value)>
makeLoopBody) {
return createLoadStoreForOverTileSlices(
rewriter, loc, tileType, memrefIndices, memrefRank, mask, Value{},
[&](Value index, ValueRange adjustedIndices, Value predicate,
Value) -> Value {
makeLoopBody(index, adjustedIndices, predicate);
return {};
});
}
/// Lower `arm_sme.tile_load` without a mask, or with a mask and a zero pad.
///
/// With a mask:
///
/// BEFORE:
/// ```mlir
/// %pad = arith.constant 0 : i32
/// %mask = vector.create_mask %num_rows, %num_cols : vector<[4]x[4]xi1>
/// %tile = arm_sme.tile_load %src[%c0, %c0], %pad, %mask :
/// memref<?x?xi32>, vector<[4]x[4]xi32>
/// ```
///
/// AFTER:
/// ```mlir
/// %init_tile = arm_sme.zero : vector<[4]x[4]xi32>
/// %mask_cols = vector.create_mask %num_cols : vector<[4]xi1>
/// %loop_rows = arith.minsi %num_rows, %svl_s : index
/// %tile = scf.for %tile_slice_idx = %c0 to %loop_rows step %c1
/// iter_args(%iter_tile = %init_tile) -> (vector<[4]x[4]xi32>) {
/// %tile_update = arm_sme.load_tile_slice
/// %src[%tile_slice_idx], %num_cols, %iter_tile, %tile_slice_idx :
/// memref<?x?xi32>, vector<[1]xi32>, vector<[4]x[4]xi32>
/// scf.yield %tile_update : vector<[4]x[4]xi32>
/// }
/// ```
///
/// Without a mask the lowering is pretty much identical. The only difference is
/// %mask_cols becomes an all-true mask, and %loop_rows becomes %svl_s.
///
/// NOTE: Only mask of 'vector.create_mask' op is currently supported.
struct TileLoadOpConversion : public OpRewritePattern<arm_sme::TileLoadOp> {
using OpRewritePattern<arm_sme::TileLoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(arm_sme::TileLoadOp tileLoadOp,
PatternRewriter &rewriter) const override {
auto loc = tileLoadOp.getLoc();
auto tileType = tileLoadOp.getVectorType();
auto mask = tileLoadOp.getMask();
Value initTile;
if (mask) {
auto padOp = tileLoadOp.getPadding();
assert(padOp && "expected padding when masking!");
auto constPadOp = padOp.getDefiningOp<arith::ConstantOp>();
if (!constPadOp || constPadOp.getValue() !=
rewriter.getZeroAttr(tileType.getElementType()))
return rewriter.notifyMatchFailure(
tileLoadOp, "op has non-zero pad, needs non-zero pad pattern");
// Initialize tile with zero to satisfy padding. Inactive cols will be
// zeroed anyway since the loads use zeroing predication. For inactive
// rows however, no load will occur so these need to be zeroed.
initTile = rewriter.create<arm_sme::ZeroOp>(loc, tileType);
} else {
initTile = rewriter.create<arm_sme::GetTileOp>(loc, tileType);
}
// Create a loop to load the active tile slices from memory.
auto forOp = createLoadStoreForOverTileSlices(
rewriter, loc, tileType, tileLoadOp.getIndices(),
tileLoadOp.getMemRefType().getRank(), mask, initTile,
[&](Value tileSliceIndex, ValueRange memrefIndices, Value predicate,
Value currentTile) -> Value {
// Create 'arm_sme.load_tile_slice' to load tile slice from memory
// into tile.
return rewriter.create<arm_sme::LoadTileSliceOp>(
loc, tileType, tileLoadOp.getBase(), predicate, currentTile,
memrefIndices, tileSliceIndex, tileLoadOp.getLayout());
});
if (failed(forOp))
return forOp;
// Replace 'arm_sme.tile_load' with the result.
rewriter.replaceOp(tileLoadOp, forOp->getResult(0));
return success();
}
};
/// Lower `arm_sme.tile_load` with mask and non-zero pad.
///
/// BEFORE:
/// ```mlir
/// %mask = vector.create_mask %num_rows, %num_cols : vector<[4]x[4]xi1>
/// %tile = arm_sme.tile_load %src[%c0, %c0], %pad, %mask :
/// memref<?x?xi32>, vector<[4]x[4]xi32>
/// ```
///
/// AFTER:
/// ```mlir
/// ...
/// %pad_1d = vector.splat %pad : vector<[4]xi32>
/// %tile = scf.for %tile_slice_idx = %c0 to %svl_s step %c1
/// iter_args(%iter_tile = %init_tile) -> (vector<[4]x[4]xi32>) {
/// ...
/// %mask_1d = vector.create_mask <combined_mask> : vector<[4]xi1>
/// %slice = vector.maskedload %base[%tile_slice_idx, %c0], %mask_1d, %pad_1d
/// : memref<?x?xi32>, vector<[4]xi1>,
/// vector<[4]xi32> into vector<[4]xi32>
/// // Insert slice into tile
/// %tile_update = arm_sme.move_vector_to_tile_slice
/// %slice, %iter_tile, %tile_slice_idx :
/// vector<[4]xi32> into vector<[4]x[4]xi32>
/// scf.yield %tile_update : vector<[4]x[4]xi32>
/// }
/// ```
struct TileLoadOpWithMaskAndPadNonZeroConversion
: public OpRewritePattern<arm_sme::TileLoadOp> {
using OpRewritePattern<arm_sme::TileLoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(arm_sme::TileLoadOp tileLoadOp,
PatternRewriter &rewriter) const override {
OpBuilder::InsertionGuard g(rewriter);
auto loc = tileLoadOp.getLoc();
auto tileType = tileLoadOp.getVectorType();
auto tileElementType = tileType.getElementType();
auto maskOp = tileLoadOp.getMask();
if (!maskOp)
return rewriter.notifyMatchFailure(
tileLoadOp, "op has no mask, needs unmasked pattern");
auto padOp = tileLoadOp.getPadding();
assert(padOp && "expected padding when masking!");
auto createMaskOp = maskOp.getDefiningOp<vector::CreateMaskOp>();
if (!createMaskOp)
return rewriter.notifyMatchFailure(
tileLoadOp, "unsupported mask op, only 'vector.create_mask' is "
"currently supported");
auto constPadOp = padOp.getDefiningOp<arith::ConstantOp>();
if (constPadOp &&
constPadOp.getValue() == rewriter.getZeroAttr(tileElementType))
return rewriter.notifyMatchFailure(
tileLoadOp, "op has constant zero pad, needs zero pad pattern");
auto numRows = createMaskOp.getOperands()[0];
auto numCols = createMaskOp.getOperands()[1];
auto numColsI32 = rewriter.create<arith::IndexCastUIOp>(
loc, rewriter.getI32Type(), numCols);
auto initTile = rewriter.create<arm_sme::GetTileOp>(loc, tileType);
// Create a loop that loads each ZA tile slice from memory.
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto minTileSlices = rewriter.create<arith::ConstantIndexOp>(
loc, arm_sme::getSMETileSliceMinNumElts(tileElementType));
auto vscale =
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto numTileSlices =
rewriter.create<arith::MulIOp>(loc, minTileSlices, vscale);
auto forOp = rewriter.create<scf::ForOp>(loc, lowerBound, numTileSlices,
step, ValueRange{initTile});
rewriter.setInsertionPointToStart(forOp.getBody());
auto tileSliceIndex = forOp.getInductionVar();
auto currentTile = forOp.getRegionIterArg(0);
// Combine masks.
auto rowIsActive = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, tileSliceIndex, numRows);
auto rowIsActiveI32 = rewriter.create<arith::ExtSIOp>(
loc, rewriter.getI32Type(), rowIsActive);
auto mask = rewriter.create<arith::AndIOp>(loc, rowIsActiveI32, numColsI32);
auto maskIndex =
rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), mask);
auto predicateType =
VectorType::get(tileType.getDimSize(1), rewriter.getI1Type(), true);
auto maskOp1D = rewriter.create<vector::CreateMaskOp>(
loc, predicateType, maskIndex.getResult());
auto memrefIndices = getMemrefIndices(
tileLoadOp.getIndices(), tileLoadOp.getMemRefType().getRank(),
tileSliceIndex, numTileSlices, loc, rewriter);
// Splat pad into 1-D vector matching type of tile slice.
VectorType tileSliceType = VectorType::Builder(tileType).dropDim(0);
auto pad1DOp = rewriter.create<vector::SplatOp>(loc, tileSliceType, padOp);
auto loadSlice = rewriter.create<vector::MaskedLoadOp>(
loc, tileSliceType, tileLoadOp.getBase(), memrefIndices, maskOp1D,
/*passthru=*/pad1DOp);
// Create 'arm_sme.move_vector_to_tile_slice' to move slice into tile.
auto moveSlice = rewriter.create<arm_sme::MoveVectorToTileSliceOp>(
loc, tileType, loadSlice->getResult(0), currentTile, tileSliceIndex,
tileLoadOp.getLayout());
rewriter.create<scf::YieldOp>(loc, moveSlice.getResult());
rewriter.setInsertionPointAfter(forOp);
// Replace 'arm_sme.tile_load' with the result.
rewriter.replaceOp(tileLoadOp, forOp.getResult(0));
return success();
}
};
/// Lower `arm_sme.tile_store` to a loop over the tile slices and store each
/// slice using `arm_sme.store_tile_slice`.
///
/// BEFORE:
/// ```mlir
/// arm_sme.tile_store %tile, %dest[%c0, %c0] layout<vertical>
/// : memref<?x?xi32>, vector<[4]x[4]xi32
/// ```
///
/// AFTER:
/// ```mlir
/// %vscale = vector.vscale
/// %c0 = arith.constant 0 : index
/// %c1 = arith.constant 1 : index
/// %min_svl_s = arith.constant 4 : index
/// %svl_s = arith.muli %min_svl_s, %vscale : index
/// scf.for %tile_slice_idx = %c0 to %svl_s step %c1 {
/// arm_sme.store_tile_slice %tile, %tile_slice_idx, %dest[%tile_slice_idx],
/// layout<vertical> : memref<?x?xi32>, vector<[4]x[4]xi32>
/// }
/// ```
struct TileStoreOpConversion : public OpRewritePattern<arm_sme::TileStoreOp> {
using OpRewritePattern<arm_sme::TileStoreOp>::OpRewritePattern;
LogicalResult matchAndRewrite(arm_sme::TileStoreOp tileStoreOp,
PatternRewriter &rewriter) const override {
// Create a loop that stores each active ZA tile slice from memory.
return createLoadStoreForOverTileSlices(
rewriter, tileStoreOp.getLoc(), tileStoreOp.getVectorType(),
tileStoreOp.getIndices(), tileStoreOp.getMemRefType().getRank(),
tileStoreOp.getMask(),
[&](Value tileSliceIndex, ValueRange memrefIndices, Value predicate) {
rewriter.replaceOpWithNewOp<arm_sme::StoreTileSliceOp>(
tileStoreOp, tileStoreOp.getValueToStore(), tileSliceIndex,
predicate, tileStoreOp.getBase(), memrefIndices,
tileStoreOp.getLayout());
});
}
};
} // namespace
void mlir::populateArmSMEToSCFConversionPatterns(RewritePatternSet &patterns) {
patterns.add<TileLoadOpConversion, TileLoadOpWithMaskAndPadNonZeroConversion,
TileStoreOpConversion>(patterns.getContext());
}
namespace {
struct ConvertArmSMEToSCFPass
: public impl::ConvertArmSMEToSCFBase<ConvertArmSMEToSCFPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
ConversionTarget target(getContext());
populateArmSMEToSCFConversionPatterns(patterns);
target.addLegalDialect<arm_sme::ArmSMEDialect, vector::VectorDialect,
arith::ArithDialect, scf::SCFDialect>();
target.addIllegalOp<arm_sme::TileLoadOp, arm_sme::TileStoreOp>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createConvertArmSMEToSCFPass() {
return std::make_unique<ConvertArmSMEToSCFPass>();
}
|