File: ArmSMEToSCF.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (418 lines) | stat: -rw-r--r-- 16,879 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
//===- ArmSMEToSCF.cpp - Convert ArmSME to SCF dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of ArmSME operations to SCF.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArmSMEToSCF/ArmSMEToSCF.h"

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"

namespace mlir {
#define GEN_PASS_DEF_CONVERTARMSMETOSCF
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {
/// Returns adjusted (1-D or 2-D) `indices` for a tile slice as follows:
///   rank 1: (indices[0] + (tileSliceIndex * tileSliceNumElts))
///   rank 2: (indices[0] + tileSliceIndex, indices[1])
SmallVector<Value, 2> getMemrefIndices(ValueRange indices, unsigned rank,
                                       Value tileSliceIndex,
                                       Value tileSliceNumElts, Location loc,
                                       PatternRewriter &rewriter) {
  assert((rank == 1 || rank == 2) && "memref has unexpected rank!");
  SmallVector<Value, 2> outIndices;

  auto tileSliceOffset = tileSliceIndex;
  if (rank == 1)
    tileSliceOffset =
        rewriter.create<arith::MulIOp>(loc, tileSliceOffset, tileSliceNumElts);

  auto baseIndexPlusTileSliceOffset =
      rewriter.create<arith::AddIOp>(loc, indices[0], tileSliceOffset);
  outIndices.push_back(baseIndexPlusTileSliceOffset);

  if (rank == 2)
    outIndices.push_back(indices[1]);

  return outIndices;
}

/// Creates an scf.for for the load/store of an ArmSME tile.
FailureOr<scf::ForOp> createLoadStoreForOverTileSlices(
    PatternRewriter &rewriter, Location loc, VectorType tileType,
    ValueRange memrefIndices, int memrefRank, Value mask, Value initTile,
    function_ref<Value(/*index=*/Value, ValueRange, /*predicate=*/Value,
                       /*currentTile=*/Value)>
        makeLoopBody) {
  PatternRewriter::InsertionGuard guard(rewriter);

  auto minTileSlices = rewriter.create<arith::ConstantIndexOp>(
      loc, arm_sme::getSMETileSliceMinNumElts(tileType.getElementType()));
  auto vscale =
      rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
  auto predicateType =
      VectorType::get(tileType.getDimSize(1), rewriter.getI1Type(), true);

  // This describes both the number of ZA tile slices and the number of
  // elements in a vector of SVL bits for a given element type (SVL_B,
  // SVL_H, ..., SVL_Q).
  auto numTileSlices =
      rewriter.create<arith::MulIOp>(loc, minTileSlices, vscale);

  Value predicate;
  Value upperBound;
  if (mask) {
    auto createMaskOp = mask.getDefiningOp<vector::CreateMaskOp>();
    if (!createMaskOp)
      return rewriter.notifyMatchFailure(
          loc, "unsupported mask op, only 'vector.create_mask' is "
               "currently supported");

    auto maskDim0 = createMaskOp.getOperands()[0];
    auto maskDim1 = createMaskOp.getOperands()[1];

    // The upper bound of the loop must be clamped at `numTileSlices` as
    // `vector.create_mask` allows operands to be greater than the size of a
    // dimension.
    auto numRowI64 = rewriter.create<arith::IndexCastOp>(
        loc, rewriter.getI64Type(), maskDim0);
    auto numTileSlicesI64 = rewriter.create<arith::IndexCastOp>(
        loc, rewriter.getI64Type(), numTileSlices);
    auto upperBoundI64 =
        rewriter.create<arith::MinSIOp>(loc, numRowI64, numTileSlicesI64);
    upperBound = rewriter.create<arith::IndexCastOp>(
        loc, rewriter.getIndexType(), upperBoundI64);

    predicate =
        rewriter.create<vector::CreateMaskOp>(loc, predicateType, maskDim1);
  } else {
    upperBound = numTileSlices;
    // No mask. Create an 'all true' predicate for the tile slice.
    predicate = rewriter.create<arith::ConstantOp>(
        loc, DenseElementsAttr::get(predicateType, true));
  }

  bool hasCarriedArgs = bool(initTile);
  auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
  auto forOp = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step,
                                           hasCarriedArgs ? ValueRange{initTile}
                                                          : ValueRange{});

  rewriter.setInsertionPointToStart(forOp.getBody());
  Value tileSliceIndex = forOp.getInductionVar();

  auto adjustedIndices = getMemrefIndices(
      memrefIndices, memrefRank, tileSliceIndex, numTileSlices, loc, rewriter);
  auto nextTile = makeLoopBody(
      tileSliceIndex, adjustedIndices, predicate,
      /*currentTile=*/hasCarriedArgs ? forOp.getRegionIterArg(0) : Value{});

  assert(bool(nextTile) == hasCarriedArgs);
  if (nextTile)
    rewriter.create<scf::YieldOp>(loc, nextTile);

  return forOp;
}

FailureOr<scf::ForOp> createLoadStoreForOverTileSlices(
    PatternRewriter &rewriter, Location loc, VectorType tileType,
    ValueRange memrefIndices, int memrefRank, Value mask,
    function_ref<void(/*index=*/Value, ValueRange, /*predicate=*/Value)>
        makeLoopBody) {
  return createLoadStoreForOverTileSlices(
      rewriter, loc, tileType, memrefIndices, memrefRank, mask, Value{},
      [&](Value index, ValueRange adjustedIndices, Value predicate,
          Value) -> Value {
        makeLoopBody(index, adjustedIndices, predicate);
        return {};
      });
}

/// Lower `arm_sme.tile_load` without a mask, or with a mask and a zero pad.
///
///  With a mask:
///
///  BEFORE:
///  ```mlir
///  %pad = arith.constant 0 : i32
///  %mask = vector.create_mask %num_rows, %num_cols : vector<[4]x[4]xi1>
///  %tile = arm_sme.tile_load %src[%c0, %c0], %pad, %mask :
///    memref<?x?xi32>, vector<[4]x[4]xi32>
///  ```
///
///  AFTER:
///  ```mlir
///  %init_tile = arm_sme.zero : vector<[4]x[4]xi32>
///  %mask_cols = vector.create_mask %num_cols : vector<[4]xi1>
///  %loop_rows = arith.minsi %num_rows, %svl_s : index
///  %tile = scf.for %tile_slice_idx = %c0 to %loop_rows step %c1
///                iter_args(%iter_tile = %init_tile) -> (vector<[4]x[4]xi32>) {
///    %tile_update = arm_sme.load_tile_slice
///      %src[%tile_slice_idx], %num_cols, %iter_tile, %tile_slice_idx :
///      memref<?x?xi32>, vector<[1]xi32>, vector<[4]x[4]xi32>
///    scf.yield %tile_update : vector<[4]x[4]xi32>
///  }
///  ```
///
/// Without a mask the lowering is pretty much identical. The only difference is
/// %mask_cols becomes an all-true mask, and %loop_rows becomes %svl_s.
///
/// NOTE: Only mask of 'vector.create_mask' op is currently supported.
struct TileLoadOpConversion : public OpRewritePattern<arm_sme::TileLoadOp> {
  using OpRewritePattern<arm_sme::TileLoadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(arm_sme::TileLoadOp tileLoadOp,
                                PatternRewriter &rewriter) const override {
    auto loc = tileLoadOp.getLoc();
    auto tileType = tileLoadOp.getVectorType();
    auto mask = tileLoadOp.getMask();

    Value initTile;
    if (mask) {
      auto padOp = tileLoadOp.getPadding();
      assert(padOp && "expected padding when masking!");

      auto constPadOp = padOp.getDefiningOp<arith::ConstantOp>();
      if (!constPadOp || constPadOp.getValue() !=
                             rewriter.getZeroAttr(tileType.getElementType()))
        return rewriter.notifyMatchFailure(
            tileLoadOp, "op has non-zero pad, needs non-zero pad pattern");

      // Initialize tile with zero to satisfy padding. Inactive cols will be
      // zeroed anyway since the loads use zeroing predication. For inactive
      // rows however, no load will occur so these need to be zeroed.
      initTile = rewriter.create<arm_sme::ZeroOp>(loc, tileType);
    } else {
      initTile = rewriter.create<arm_sme::GetTileOp>(loc, tileType);
    }

    // Create a loop to load the active tile slices from memory.
    auto forOp = createLoadStoreForOverTileSlices(
        rewriter, loc, tileType, tileLoadOp.getIndices(),
        tileLoadOp.getMemRefType().getRank(), mask, initTile,
        [&](Value tileSliceIndex, ValueRange memrefIndices, Value predicate,
            Value currentTile) -> Value {
          // Create 'arm_sme.load_tile_slice' to load tile slice from memory
          // into tile.
          return rewriter.create<arm_sme::LoadTileSliceOp>(
              loc, tileType, tileLoadOp.getBase(), predicate, currentTile,
              memrefIndices, tileSliceIndex, tileLoadOp.getLayout());
        });

    if (failed(forOp))
      return forOp;

    // Replace 'arm_sme.tile_load' with the result.
    rewriter.replaceOp(tileLoadOp, forOp->getResult(0));

    return success();
  }
};

/// Lower `arm_sme.tile_load` with mask and non-zero pad.
///
///  BEFORE:
///  ```mlir
///  %mask = vector.create_mask %num_rows, %num_cols : vector<[4]x[4]xi1>
///  %tile = arm_sme.tile_load %src[%c0, %c0], %pad, %mask :
///    memref<?x?xi32>, vector<[4]x[4]xi32>
///  ```
///
///  AFTER:
///  ```mlir
///  ...
///  %pad_1d = vector.splat %pad : vector<[4]xi32>
///  %tile = scf.for %tile_slice_idx = %c0 to %svl_s step %c1
///                iter_args(%iter_tile = %init_tile) -> (vector<[4]x[4]xi32>) {
///    ...
///    %mask_1d = vector.create_mask <combined_mask> : vector<[4]xi1>
///    %slice = vector.maskedload %base[%tile_slice_idx, %c0], %mask_1d, %pad_1d
///      : memref<?x?xi32>, vector<[4]xi1>,
///        vector<[4]xi32> into vector<[4]xi32>
///    // Insert slice into tile
///    %tile_update = arm_sme.move_vector_to_tile_slice
///      %slice, %iter_tile, %tile_slice_idx :
///      vector<[4]xi32> into vector<[4]x[4]xi32>
///    scf.yield %tile_update : vector<[4]x[4]xi32>
///  }
///  ```
struct TileLoadOpWithMaskAndPadNonZeroConversion
    : public OpRewritePattern<arm_sme::TileLoadOp> {
  using OpRewritePattern<arm_sme::TileLoadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(arm_sme::TileLoadOp tileLoadOp,
                                PatternRewriter &rewriter) const override {
    OpBuilder::InsertionGuard g(rewriter);
    auto loc = tileLoadOp.getLoc();
    auto tileType = tileLoadOp.getVectorType();
    auto tileElementType = tileType.getElementType();

    auto maskOp = tileLoadOp.getMask();
    if (!maskOp)
      return rewriter.notifyMatchFailure(
          tileLoadOp, "op has no mask, needs unmasked pattern");

    auto padOp = tileLoadOp.getPadding();
    assert(padOp && "expected padding when masking!");

    auto createMaskOp = maskOp.getDefiningOp<vector::CreateMaskOp>();
    if (!createMaskOp)
      return rewriter.notifyMatchFailure(
          tileLoadOp, "unsupported mask op, only 'vector.create_mask' is "
                      "currently supported");

    auto constPadOp = padOp.getDefiningOp<arith::ConstantOp>();
    if (constPadOp &&
        constPadOp.getValue() == rewriter.getZeroAttr(tileElementType))
      return rewriter.notifyMatchFailure(
          tileLoadOp, "op has constant zero pad, needs zero pad pattern");

    auto numRows = createMaskOp.getOperands()[0];
    auto numCols = createMaskOp.getOperands()[1];

    auto numColsI32 = rewriter.create<arith::IndexCastUIOp>(
        loc, rewriter.getI32Type(), numCols);

    auto initTile = rewriter.create<arm_sme::GetTileOp>(loc, tileType);

    // Create a loop that loads each ZA tile slice from memory.
    auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
    auto minTileSlices = rewriter.create<arith::ConstantIndexOp>(
        loc, arm_sme::getSMETileSliceMinNumElts(tileElementType));
    auto vscale =
        rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
    auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    auto numTileSlices =
        rewriter.create<arith::MulIOp>(loc, minTileSlices, vscale);
    auto forOp = rewriter.create<scf::ForOp>(loc, lowerBound, numTileSlices,
                                             step, ValueRange{initTile});

    rewriter.setInsertionPointToStart(forOp.getBody());

    auto tileSliceIndex = forOp.getInductionVar();
    auto currentTile = forOp.getRegionIterArg(0);

    // Combine masks.
    auto rowIsActive = rewriter.create<arith::CmpIOp>(
        loc, arith::CmpIPredicate::ult, tileSliceIndex, numRows);
    auto rowIsActiveI32 = rewriter.create<arith::ExtSIOp>(
        loc, rewriter.getI32Type(), rowIsActive);
    auto mask = rewriter.create<arith::AndIOp>(loc, rowIsActiveI32, numColsI32);
    auto maskIndex =
        rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), mask);
    auto predicateType =
        VectorType::get(tileType.getDimSize(1), rewriter.getI1Type(), true);
    auto maskOp1D = rewriter.create<vector::CreateMaskOp>(
        loc, predicateType, maskIndex.getResult());

    auto memrefIndices = getMemrefIndices(
        tileLoadOp.getIndices(), tileLoadOp.getMemRefType().getRank(),
        tileSliceIndex, numTileSlices, loc, rewriter);

    // Splat pad into 1-D vector matching type of tile slice.
    VectorType tileSliceType = VectorType::Builder(tileType).dropDim(0);
    auto pad1DOp = rewriter.create<vector::SplatOp>(loc, tileSliceType, padOp);

    auto loadSlice = rewriter.create<vector::MaskedLoadOp>(
        loc, tileSliceType, tileLoadOp.getBase(), memrefIndices, maskOp1D,
        /*passthru=*/pad1DOp);

    // Create 'arm_sme.move_vector_to_tile_slice' to move slice into tile.
    auto moveSlice = rewriter.create<arm_sme::MoveVectorToTileSliceOp>(
        loc, tileType, loadSlice->getResult(0), currentTile, tileSliceIndex,
        tileLoadOp.getLayout());
    rewriter.create<scf::YieldOp>(loc, moveSlice.getResult());

    rewriter.setInsertionPointAfter(forOp);

    // Replace 'arm_sme.tile_load' with the result.
    rewriter.replaceOp(tileLoadOp, forOp.getResult(0));

    return success();
  }
};

/// Lower `arm_sme.tile_store` to a loop over the tile slices and store each
/// slice using `arm_sme.store_tile_slice`.
///
///  BEFORE:
///  ```mlir
///  arm_sme.tile_store %tile, %dest[%c0, %c0] layout<vertical>
///    : memref<?x?xi32>, vector<[4]x[4]xi32
///  ```
///
///  AFTER:
///  ```mlir
///  %vscale = vector.vscale
///  %c0 = arith.constant 0 : index
///  %c1 = arith.constant 1 : index
///  %min_svl_s = arith.constant 4 : index
///  %svl_s = arith.muli %min_svl_s, %vscale : index
///  scf.for %tile_slice_idx = %c0 to %svl_s step %c1 {
///    arm_sme.store_tile_slice %tile, %tile_slice_idx, %dest[%tile_slice_idx],
///      layout<vertical> : memref<?x?xi32>, vector<[4]x[4]xi32>
///  }
///  ```
struct TileStoreOpConversion : public OpRewritePattern<arm_sme::TileStoreOp> {
  using OpRewritePattern<arm_sme::TileStoreOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(arm_sme::TileStoreOp tileStoreOp,
                                PatternRewriter &rewriter) const override {
    // Create a loop that stores each active ZA tile slice from memory.
    return createLoadStoreForOverTileSlices(
        rewriter, tileStoreOp.getLoc(), tileStoreOp.getVectorType(),
        tileStoreOp.getIndices(), tileStoreOp.getMemRefType().getRank(),
        tileStoreOp.getMask(),
        [&](Value tileSliceIndex, ValueRange memrefIndices, Value predicate) {
          rewriter.replaceOpWithNewOp<arm_sme::StoreTileSliceOp>(
              tileStoreOp, tileStoreOp.getValueToStore(), tileSliceIndex,
              predicate, tileStoreOp.getBase(), memrefIndices,
              tileStoreOp.getLayout());
        });
  }
};

} // namespace

void mlir::populateArmSMEToSCFConversionPatterns(RewritePatternSet &patterns) {
  patterns.add<TileLoadOpConversion, TileLoadOpWithMaskAndPadNonZeroConversion,
               TileStoreOpConversion>(patterns.getContext());
}

namespace {

struct ConvertArmSMEToSCFPass
    : public impl::ConvertArmSMEToSCFBase<ConvertArmSMEToSCFPass> {
  void runOnOperation() override {
    RewritePatternSet patterns(&getContext());
    ConversionTarget target(getContext());
    populateArmSMEToSCFConversionPatterns(patterns);
    target.addLegalDialect<arm_sme::ArmSMEDialect, vector::VectorDialect,
                           arith::ArithDialect, scf::SCFDialect>();
    target.addIllegalOp<arm_sme::TileLoadOp, arm_sme::TileStoreOp>();
    if (failed(applyPartialConversion(getOperation(), target,
                                      std::move(patterns))))
      signalPassFailure();
  }
};

} // namespace

std::unique_ptr<Pass> mlir::createConvertArmSMEToSCFPass() {
  return std::make_unique<ConvertArmSMEToSCFPass>();
}