1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
|
//===- ComplexToStandard.cpp - conversion from Complex to Standard dialect ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include <memory>
#include <type_traits>
namespace mlir {
#define GEN_PASS_DEF_CONVERTCOMPLEXTOSTANDARD
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
enum class AbsFn { abs, sqrt, rsqrt };
// Returns the absolute value, its square root or its reciprocal square root.
Value computeAbs(Value real, Value imag, arith::FastMathFlags fmf,
ImplicitLocOpBuilder &b, AbsFn fn = AbsFn::abs) {
Value one = b.create<arith::ConstantOp>(real.getType(),
b.getFloatAttr(real.getType(), 1.0));
Value absReal = b.create<math::AbsFOp>(real, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);
Value max = b.create<arith::MaximumFOp>(absReal, absImag, fmf);
Value min = b.create<arith::MinimumFOp>(absReal, absImag, fmf);
// The lowering below requires NaNs and infinities to work correctly.
arith::FastMathFlags fmfWithNaNInf = arith::bitEnumClear(
fmf, arith::FastMathFlags::nnan | arith::FastMathFlags::ninf);
Value ratio = b.create<arith::DivFOp>(min, max, fmfWithNaNInf);
Value ratioSq = b.create<arith::MulFOp>(ratio, ratio, fmfWithNaNInf);
Value ratioSqPlusOne = b.create<arith::AddFOp>(ratioSq, one, fmfWithNaNInf);
Value result;
if (fn == AbsFn::rsqrt) {
ratioSqPlusOne = b.create<math::RsqrtOp>(ratioSqPlusOne, fmfWithNaNInf);
min = b.create<math::RsqrtOp>(min, fmfWithNaNInf);
max = b.create<math::RsqrtOp>(max, fmfWithNaNInf);
}
if (fn == AbsFn::sqrt) {
Value quarter = b.create<arith::ConstantOp>(
real.getType(), b.getFloatAttr(real.getType(), 0.25));
// sqrt(sqrt(a*b)) would avoid the pow, but will overflow more easily.
Value sqrt = b.create<math::SqrtOp>(max, fmfWithNaNInf);
Value p025 = b.create<math::PowFOp>(ratioSqPlusOne, quarter, fmfWithNaNInf);
result = b.create<arith::MulFOp>(sqrt, p025, fmfWithNaNInf);
} else {
Value sqrt = b.create<math::SqrtOp>(ratioSqPlusOne, fmfWithNaNInf);
result = b.create<arith::MulFOp>(max, sqrt, fmfWithNaNInf);
}
Value isNaN = b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, result,
result, fmfWithNaNInf);
return b.create<arith::SelectOp>(isNaN, min, result);
}
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
Value real = b.create<complex::ReOp>(adaptor.getComplex());
Value imag = b.create<complex::ImOp>(adaptor.getComplex());
rewriter.replaceOp(op, computeAbs(real, imag, fmf, b));
return success();
}
};
// atan2(y,x) = -i * log((x + i * y)/sqrt(x**2+y**2))
struct Atan2OpConversion : public OpConversionPattern<complex::Atan2Op> {
using OpConversionPattern<complex::Atan2Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Atan2Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(op.getType());
Type elementType = type.getElementType();
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value lhs = adaptor.getLhs();
Value rhs = adaptor.getRhs();
Value rhsSquared = b.create<complex::MulOp>(type, rhs, rhs, fmf);
Value lhsSquared = b.create<complex::MulOp>(type, lhs, lhs, fmf);
Value rhsSquaredPlusLhsSquared =
b.create<complex::AddOp>(type, rhsSquared, lhsSquared, fmf);
Value sqrtOfRhsSquaredPlusLhsSquared =
b.create<complex::SqrtOp>(type, rhsSquaredPlusLhsSquared, fmf);
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value i = b.create<complex::CreateOp>(type, zero, one);
Value iTimesLhs = b.create<complex::MulOp>(i, lhs, fmf);
Value rhsPlusILhs = b.create<complex::AddOp>(rhs, iTimesLhs, fmf);
Value divResult = b.create<complex::DivOp>(
rhsPlusILhs, sqrtOfRhsSquaredPlusLhsSquared, fmf);
Value logResult = b.create<complex::LogOp>(divResult, fmf);
Value negativeOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1));
Value negativeI = b.create<complex::CreateOp>(type, zero, negativeOne);
rewriter.replaceOpWithNewOp<complex::MulOp>(op, negativeI, logResult, fmf);
return success();
}
};
template <typename ComparisonOp, arith::CmpFPredicate p>
struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> {
using OpConversionPattern<ComparisonOp>::OpConversionPattern;
using ResultCombiner =
std::conditional_t<std::is_same<ComparisonOp, complex::EqualOp>::value,
arith::AndIOp, arith::OrIOp>;
LogicalResult
matchAndRewrite(ComparisonOp op, typename ComparisonOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getLhs().getType()).getElementType();
Value realLhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getLhs());
Value imagLhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getLhs());
Value realRhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getRhs());
Value imagRhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getRhs());
Value realComparison =
rewriter.create<arith::CmpFOp>(loc, p, realLhs, realRhs);
Value imagComparison =
rewriter.create<arith::CmpFOp>(loc, p, imagLhs, imagRhs);
rewriter.replaceOpWithNewOp<ResultCombiner>(op, realComparison,
imagComparison);
return success();
}
};
// Default conversion which applies the BinaryStandardOp separately on the real
// and imaginary parts. Can for example be used for complex::AddOp and
// complex::SubOp.
template <typename BinaryComplexOp, typename BinaryStandardOp>
struct BinaryComplexOpConversion : public OpConversionPattern<BinaryComplexOp> {
using OpConversionPattern<BinaryComplexOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BinaryComplexOp op, typename BinaryComplexOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value realLhs = b.create<complex::ReOp>(elementType, adaptor.getLhs());
Value realRhs = b.create<complex::ReOp>(elementType, adaptor.getRhs());
Value resultReal = b.create<BinaryStandardOp>(elementType, realLhs, realRhs,
fmf.getValue());
Value imagLhs = b.create<complex::ImOp>(elementType, adaptor.getLhs());
Value imagRhs = b.create<complex::ImOp>(elementType, adaptor.getRhs());
Value resultImag = b.create<BinaryStandardOp>(elementType, imagLhs, imagRhs,
fmf.getValue());
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
template <typename TrigonometricOp>
struct TrigonometricOpConversion : public OpConversionPattern<TrigonometricOp> {
using OpAdaptor = typename OpConversionPattern<TrigonometricOp>::OpAdaptor;
using OpConversionPattern<TrigonometricOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TrigonometricOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
// Trigonometric ops use a set of common building blocks to convert to real
// ops. Here we create these building blocks and call into an op-specific
// implementation in the subclass to combine them.
Value half = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 0.5));
Value exp = rewriter.create<math::ExpOp>(loc, imag, fmf);
Value scaledExp = rewriter.create<arith::MulFOp>(loc, half, exp, fmf);
Value reciprocalExp = rewriter.create<arith::DivFOp>(loc, half, exp, fmf);
Value sin = rewriter.create<math::SinOp>(loc, real, fmf);
Value cos = rewriter.create<math::CosOp>(loc, real, fmf);
auto resultPair =
combine(loc, scaledExp, reciprocalExp, sin, cos, rewriter, fmf);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultPair.first,
resultPair.second);
return success();
}
virtual std::pair<Value, Value>
combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin,
Value cos, ConversionPatternRewriter &rewriter,
arith::FastMathFlagsAttr fmf) const = 0;
};
struct CosOpConversion : public TrigonometricOpConversion<complex::CosOp> {
using TrigonometricOpConversion<complex::CosOp>::TrigonometricOpConversion;
std::pair<Value, Value> combine(Location loc, Value scaledExp,
Value reciprocalExp, Value sin, Value cos,
ConversionPatternRewriter &rewriter,
arith::FastMathFlagsAttr fmf) const override {
// Complex cosine is defined as;
// cos(x + iy) = 0.5 * (exp(i(x + iy)) + exp(-i(x + iy)))
// Plugging in:
// exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
// exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
// and defining t := exp(y)
// We get:
// Re(cos(x + iy)) = (0.5/t + 0.5*t) * cos x
// Im(cos(x + iy)) = (0.5/t - 0.5*t) * sin x
Value sum =
rewriter.create<arith::AddFOp>(loc, reciprocalExp, scaledExp, fmf);
Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, cos, fmf);
Value diff =
rewriter.create<arith::SubFOp>(loc, reciprocalExp, scaledExp, fmf);
Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, sin, fmf);
return {resultReal, resultImag};
}
};
struct DivOpConversion : public OpConversionPattern<complex::DivOp> {
using OpConversionPattern<complex::DivOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::DivOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value lhsReal =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getLhs());
Value lhsImag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getLhs());
Value rhsReal =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getRhs());
Value rhsImag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getRhs());
// Smith's algorithm to divide complex numbers. It is just a bit smarter
// way to compute the following formula:
// (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i)
// = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) /
// ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i))
// = ((lhsReal * rhsReal + lhsImag * rhsImag) +
// (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2
//
// Depending on whether |rhsReal| < |rhsImag| we compute either
// rhsRealImagRatio = rhsReal / rhsImag
// rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio
// resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom
// resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom
//
// or
//
// rhsImagRealRatio = rhsImag / rhsReal
// rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio
// resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom
// resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom
//
// See https://dl.acm.org/citation.cfm?id=368661 for more details.
Value rhsRealImagRatio =
rewriter.create<arith::DivFOp>(loc, rhsReal, rhsImag, fmf);
Value rhsRealImagDenom = rewriter.create<arith::AddFOp>(
loc, rhsImag,
rewriter.create<arith::MulFOp>(loc, rhsRealImagRatio, rhsReal, fmf),
fmf);
Value realNumerator1 = rewriter.create<arith::AddFOp>(
loc,
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealImagRatio, fmf),
lhsImag, fmf);
Value resultReal1 = rewriter.create<arith::DivFOp>(loc, realNumerator1,
rhsRealImagDenom, fmf);
Value imagNumerator1 = rewriter.create<arith::SubFOp>(
loc,
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealImagRatio, fmf),
lhsReal, fmf);
Value resultImag1 = rewriter.create<arith::DivFOp>(loc, imagNumerator1,
rhsRealImagDenom, fmf);
Value rhsImagRealRatio =
rewriter.create<arith::DivFOp>(loc, rhsImag, rhsReal, fmf);
Value rhsImagRealDenom = rewriter.create<arith::AddFOp>(
loc, rhsReal,
rewriter.create<arith::MulFOp>(loc, rhsImagRealRatio, rhsImag, fmf),
fmf);
Value realNumerator2 = rewriter.create<arith::AddFOp>(
loc, lhsReal,
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagRealRatio, fmf),
fmf);
Value resultReal2 = rewriter.create<arith::DivFOp>(loc, realNumerator2,
rhsImagRealDenom, fmf);
Value imagNumerator2 = rewriter.create<arith::SubFOp>(
loc, lhsImag,
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagRealRatio, fmf),
fmf);
Value resultImag2 = rewriter.create<arith::DivFOp>(loc, imagNumerator2,
rhsImagRealDenom, fmf);
// Consider corner cases.
// Case 1. Zero denominator, numerator contains at most one NaN value.
Value zero = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getZeroAttr(elementType));
Value rhsRealAbs = rewriter.create<math::AbsFOp>(loc, rhsReal, fmf);
Value rhsRealIsZero = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsRealAbs, zero);
Value rhsImagAbs = rewriter.create<math::AbsFOp>(loc, rhsImag, fmf);
Value rhsImagIsZero = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsImagAbs, zero);
Value lhsRealIsNotNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ORD, lhsReal, zero);
Value lhsImagIsNotNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ORD, lhsImag, zero);
Value lhsContainsNotNaNValue =
rewriter.create<arith::OrIOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN);
Value resultIsInfinity = rewriter.create<arith::AndIOp>(
loc, lhsContainsNotNaNValue,
rewriter.create<arith::AndIOp>(loc, rhsRealIsZero, rhsImagIsZero));
Value inf = rewriter.create<arith::ConstantOp>(
loc, elementType,
rewriter.getFloatAttr(
elementType, APFloat::getInf(elementType.getFloatSemantics())));
Value infWithSignOfRhsReal =
rewriter.create<math::CopySignOp>(loc, inf, rhsReal);
Value infinityResultReal =
rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsReal, fmf);
Value infinityResultImag =
rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsImag, fmf);
// Case 2. Infinite numerator, finite denominator.
Value rhsRealFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, rhsRealAbs, inf);
Value rhsImagFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, rhsImagAbs, inf);
Value rhsFinite =
rewriter.create<arith::AndIOp>(loc, rhsRealFinite, rhsImagFinite);
Value lhsRealAbs = rewriter.create<math::AbsFOp>(loc, lhsReal, fmf);
Value lhsRealInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagAbs = rewriter.create<math::AbsFOp>(loc, lhsImag, fmf);
Value lhsImagInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsInfinite =
rewriter.create<arith::OrIOp>(loc, lhsRealInfinite, lhsImagInfinite);
Value infNumFiniteDenom =
rewriter.create<arith::AndIOp>(loc, lhsInfinite, rhsFinite);
Value one = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 1));
Value lhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, lhsRealInfinite, one, zero),
lhsReal);
Value lhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, lhsImagInfinite, one, zero),
lhsImag);
Value lhsRealIsInfWithSignTimesRhsReal =
rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsReal, fmf);
Value lhsImagIsInfWithSignTimesRhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsImag, fmf);
Value resultReal3 = rewriter.create<arith::MulFOp>(
loc, inf,
rewriter.create<arith::AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal,
lhsImagIsInfWithSignTimesRhsImag, fmf),
fmf);
Value lhsRealIsInfWithSignTimesRhsImag =
rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsImag, fmf);
Value lhsImagIsInfWithSignTimesRhsReal =
rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsReal, fmf);
Value resultImag3 = rewriter.create<arith::MulFOp>(
loc, inf,
rewriter.create<arith::SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal,
lhsRealIsInfWithSignTimesRhsImag, fmf),
fmf);
// Case 3: Finite numerator, infinite denominator.
Value lhsRealFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, lhsRealAbs, inf);
Value lhsImagFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, lhsImagAbs, inf);
Value lhsFinite =
rewriter.create<arith::AndIOp>(loc, lhsRealFinite, lhsImagFinite);
Value rhsRealInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsInfinite =
rewriter.create<arith::OrIOp>(loc, rhsRealInfinite, rhsImagInfinite);
Value finiteNumInfiniteDenom =
rewriter.create<arith::AndIOp>(loc, lhsFinite, rhsInfinite);
Value rhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, rhsRealInfinite, one, zero),
rhsReal);
Value rhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, rhsImagInfinite, one, zero),
rhsImag);
Value rhsRealIsInfWithSignTimesLhsReal =
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealIsInfWithSign, fmf);
Value rhsImagIsInfWithSignTimesLhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagIsInfWithSign, fmf);
Value resultReal4 = rewriter.create<arith::MulFOp>(
loc, zero,
rewriter.create<arith::AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal,
rhsImagIsInfWithSignTimesLhsImag, fmf),
fmf);
Value rhsRealIsInfWithSignTimesLhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealIsInfWithSign, fmf);
Value rhsImagIsInfWithSignTimesLhsReal =
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagIsInfWithSign, fmf);
Value resultImag4 = rewriter.create<arith::MulFOp>(
loc, zero,
rewriter.create<arith::SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag,
rhsImagIsInfWithSignTimesLhsReal, fmf),
fmf);
Value realAbsSmallerThanImagAbs = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs);
Value resultReal = rewriter.create<arith::SelectOp>(
loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2);
Value resultImag = rewriter.create<arith::SelectOp>(
loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2);
Value resultRealSpecialCase3 = rewriter.create<arith::SelectOp>(
loc, finiteNumInfiniteDenom, resultReal4, resultReal);
Value resultImagSpecialCase3 = rewriter.create<arith::SelectOp>(
loc, finiteNumInfiniteDenom, resultImag4, resultImag);
Value resultRealSpecialCase2 = rewriter.create<arith::SelectOp>(
loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3);
Value resultImagSpecialCase2 = rewriter.create<arith::SelectOp>(
loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3);
Value resultRealSpecialCase1 = rewriter.create<arith::SelectOp>(
loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2);
Value resultImagSpecialCase1 = rewriter.create<arith::SelectOp>(
loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2);
Value resultRealIsNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, resultReal, zero);
Value resultImagIsNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, resultImag, zero);
Value resultIsNaN =
rewriter.create<arith::AndIOp>(loc, resultRealIsNaN, resultImagIsNaN);
Value resultRealWithSpecialCases = rewriter.create<arith::SelectOp>(
loc, resultIsNaN, resultRealSpecialCase1, resultReal);
Value resultImagWithSpecialCases = rewriter.create<arith::SelectOp>(
loc, resultIsNaN, resultImagSpecialCase1, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(
op, type, resultRealWithSpecialCases, resultImagWithSpecialCases);
return success();
}
};
struct ExpOpConversion : public OpConversionPattern<complex::ExpOp> {
using OpConversionPattern<complex::ExpOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::ExpOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value expReal = rewriter.create<math::ExpOp>(loc, real, fmf.getValue());
Value cosImag = rewriter.create<math::CosOp>(loc, imag, fmf.getValue());
Value resultReal =
rewriter.create<arith::MulFOp>(loc, expReal, cosImag, fmf.getValue());
Value sinImag = rewriter.create<math::SinOp>(loc, imag, fmf.getValue());
Value resultImag =
rewriter.create<arith::MulFOp>(loc, expReal, sinImag, fmf.getValue());
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct Expm1OpConversion : public OpConversionPattern<complex::Expm1Op> {
using OpConversionPattern<complex::Expm1Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Expm1Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value exp = b.create<complex::ExpOp>(adaptor.getComplex(), fmf.getValue());
Value real = b.create<complex::ReOp>(elementType, exp);
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value realMinusOne = b.create<arith::SubFOp>(real, one, fmf.getValue());
Value imag = b.create<complex::ImOp>(elementType, exp);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, realMinusOne,
imag);
return success();
}
};
struct LogOpConversion : public OpConversionPattern<complex::LogOp> {
using OpConversionPattern<complex::LogOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::LogOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(),
fmf.getValue());
Value resultReal = b.create<math::LogOp>(elementType, abs, fmf.getValue());
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value resultImag =
b.create<math::Atan2Op>(elementType, imag, real, fmf.getValue());
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> {
using OpConversionPattern<complex::Log1pOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Log1pOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value real = b.create<complex::ReOp>(adaptor.getComplex());
Value imag = b.create<complex::ImOp>(adaptor.getComplex());
Value half = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 0.5));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf);
Value absRealPlusOne = b.create<math::AbsFOp>(realPlusOne, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);
Value maxAbs = b.create<arith::MaximumFOp>(absRealPlusOne, absImag, fmf);
Value minAbs = b.create<arith::MinimumFOp>(absRealPlusOne, absImag, fmf);
Value useReal = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT,
realPlusOne, absImag, fmf);
Value maxMinusOne = b.create<arith::SubFOp>(maxAbs, one, fmf);
Value maxAbsOfRealPlusOneAndImagMinusOne =
b.create<arith::SelectOp>(useReal, real, maxMinusOne);
arith::FastMathFlags fmfWithNaNInf = arith::bitEnumClear(
fmf, arith::FastMathFlags::nnan | arith::FastMathFlags::ninf);
Value minMaxRatio = b.create<arith::DivFOp>(minAbs, maxAbs, fmfWithNaNInf);
Value logOfMaxAbsOfRealPlusOneAndImag =
b.create<math::Log1pOp>(maxAbsOfRealPlusOneAndImagMinusOne, fmf);
Value logOfSqrtPart = b.create<math::Log1pOp>(
b.create<arith::MulFOp>(minMaxRatio, minMaxRatio, fmfWithNaNInf),
fmfWithNaNInf);
Value r = b.create<arith::AddFOp>(
b.create<arith::MulFOp>(half, logOfSqrtPart, fmfWithNaNInf),
logOfMaxAbsOfRealPlusOneAndImag, fmfWithNaNInf);
Value resultReal = b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, r, r, fmfWithNaNInf),
minAbs, r);
Value resultImag = b.create<math::Atan2Op>(imag, realPlusOne, fmf);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct MulOpConversion : public OpConversionPattern<complex::MulOp> {
using OpConversionPattern<complex::MulOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::MulOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
auto fmfValue = fmf.getValue();
Value lhsReal = b.create<complex::ReOp>(elementType, adaptor.getLhs());
Value lhsRealAbs = b.create<math::AbsFOp>(lhsReal, fmfValue);
Value lhsImag = b.create<complex::ImOp>(elementType, adaptor.getLhs());
Value lhsImagAbs = b.create<math::AbsFOp>(lhsImag, fmfValue);
Value rhsReal = b.create<complex::ReOp>(elementType, adaptor.getRhs());
Value rhsRealAbs = b.create<math::AbsFOp>(rhsReal, fmfValue);
Value rhsImag = b.create<complex::ImOp>(elementType, adaptor.getRhs());
Value rhsImagAbs = b.create<math::AbsFOp>(rhsImag, fmfValue);
Value lhsRealTimesRhsReal =
b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue);
Value lhsRealTimesRhsRealAbs =
b.create<math::AbsFOp>(lhsRealTimesRhsReal, fmfValue);
Value lhsImagTimesRhsImag =
b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue);
Value lhsImagTimesRhsImagAbs =
b.create<math::AbsFOp>(lhsImagTimesRhsImag, fmfValue);
Value real = b.create<arith::SubFOp>(lhsRealTimesRhsReal,
lhsImagTimesRhsImag, fmfValue);
Value lhsImagTimesRhsReal =
b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue);
Value lhsImagTimesRhsRealAbs =
b.create<math::AbsFOp>(lhsImagTimesRhsReal, fmfValue);
Value lhsRealTimesRhsImag =
b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue);
Value lhsRealTimesRhsImagAbs =
b.create<math::AbsFOp>(lhsRealTimesRhsImag, fmfValue);
Value imag = b.create<arith::AddFOp>(lhsImagTimesRhsReal,
lhsRealTimesRhsImag, fmfValue);
// Handle cases where the "naive" calculation results in NaN values.
Value realIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real);
Value imagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, imag, imag);
Value isNan = b.create<arith::AndIOp>(realIsNan, imagIsNan);
Value inf = b.create<arith::ConstantOp>(
elementType,
b.getFloatAttr(elementType,
APFloat::getInf(elementType.getFloatSemantics())));
// Case 1. `lhsReal` or `lhsImag` are infinite.
Value lhsRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsIsInf = b.create<arith::OrIOp>(lhsRealIsInf, lhsImagIsInf);
Value rhsRealIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsReal, rhsReal);
Value rhsImagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsImag, rhsImag);
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value lhsRealIsInfFloat =
b.create<arith::SelectOp>(lhsRealIsInf, one, zero);
lhsReal = b.create<arith::SelectOp>(
lhsIsInf, b.create<math::CopySignOp>(lhsRealIsInfFloat, lhsReal),
lhsReal);
Value lhsImagIsInfFloat =
b.create<arith::SelectOp>(lhsImagIsInf, one, zero);
lhsImag = b.create<arith::SelectOp>(
lhsIsInf, b.create<math::CopySignOp>(lhsImagIsInfFloat, lhsImag),
lhsImag);
Value lhsIsInfAndRhsRealIsNan =
b.create<arith::AndIOp>(lhsIsInf, rhsRealIsNan);
rhsReal = b.create<arith::SelectOp>(
lhsIsInfAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
rhsReal);
Value lhsIsInfAndRhsImagIsNan =
b.create<arith::AndIOp>(lhsIsInf, rhsImagIsNan);
rhsImag = b.create<arith::SelectOp>(
lhsIsInfAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
rhsImag);
// Case 2. `rhsReal` or `rhsImag` are infinite.
Value rhsRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsIsInf = b.create<arith::OrIOp>(rhsRealIsInf, rhsImagIsInf);
Value lhsRealIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsReal, lhsReal);
Value lhsImagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsImag, lhsImag);
Value rhsRealIsInfFloat =
b.create<arith::SelectOp>(rhsRealIsInf, one, zero);
rhsReal = b.create<arith::SelectOp>(
rhsIsInf, b.create<math::CopySignOp>(rhsRealIsInfFloat, rhsReal),
rhsReal);
Value rhsImagIsInfFloat =
b.create<arith::SelectOp>(rhsImagIsInf, one, zero);
rhsImag = b.create<arith::SelectOp>(
rhsIsInf, b.create<math::CopySignOp>(rhsImagIsInfFloat, rhsImag),
rhsImag);
Value rhsIsInfAndLhsRealIsNan =
b.create<arith::AndIOp>(rhsIsInf, lhsRealIsNan);
lhsReal = b.create<arith::SelectOp>(
rhsIsInfAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
lhsReal);
Value rhsIsInfAndLhsImagIsNan =
b.create<arith::AndIOp>(rhsIsInf, lhsImagIsNan);
lhsImag = b.create<arith::SelectOp>(
rhsIsInfAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
lhsImag);
Value recalc = b.create<arith::OrIOp>(lhsIsInf, rhsIsInf);
// Case 3. One of the pairwise products of left hand side with right hand
// side is infinite.
Value lhsRealTimesRhsRealIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsRealTimesRhsRealAbs, inf);
Value lhsImagTimesRhsImagIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsImagTimesRhsImagAbs, inf);
Value isSpecialCase = b.create<arith::OrIOp>(lhsRealTimesRhsRealIsInf,
lhsImagTimesRhsImagIsInf);
Value lhsRealTimesRhsImagIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsRealTimesRhsImagAbs, inf);
isSpecialCase =
b.create<arith::OrIOp>(isSpecialCase, lhsRealTimesRhsImagIsInf);
Value lhsImagTimesRhsRealIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsImagTimesRhsRealAbs, inf);
isSpecialCase =
b.create<arith::OrIOp>(isSpecialCase, lhsImagTimesRhsRealIsInf);
Type i1Type = b.getI1Type();
Value notRecalc = b.create<arith::XOrIOp>(
recalc,
b.create<arith::ConstantOp>(i1Type, b.getIntegerAttr(i1Type, 1)));
isSpecialCase = b.create<arith::AndIOp>(isSpecialCase, notRecalc);
Value isSpecialCaseAndLhsRealIsNan =
b.create<arith::AndIOp>(isSpecialCase, lhsRealIsNan);
lhsReal = b.create<arith::SelectOp>(
isSpecialCaseAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
lhsReal);
Value isSpecialCaseAndLhsImagIsNan =
b.create<arith::AndIOp>(isSpecialCase, lhsImagIsNan);
lhsImag = b.create<arith::SelectOp>(
isSpecialCaseAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
lhsImag);
Value isSpecialCaseAndRhsRealIsNan =
b.create<arith::AndIOp>(isSpecialCase, rhsRealIsNan);
rhsReal = b.create<arith::SelectOp>(
isSpecialCaseAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
rhsReal);
Value isSpecialCaseAndRhsImagIsNan =
b.create<arith::AndIOp>(isSpecialCase, rhsImagIsNan);
rhsImag = b.create<arith::SelectOp>(
isSpecialCaseAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
rhsImag);
recalc = b.create<arith::OrIOp>(recalc, isSpecialCase);
recalc = b.create<arith::AndIOp>(isNan, recalc);
// Recalculate real part.
lhsRealTimesRhsReal = b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue);
lhsImagTimesRhsImag = b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue);
Value newReal = b.create<arith::SubFOp>(lhsRealTimesRhsReal,
lhsImagTimesRhsImag, fmfValue);
real = b.create<arith::SelectOp>(
recalc, b.create<arith::MulFOp>(inf, newReal, fmfValue), real);
// Recalculate imag part.
lhsImagTimesRhsReal = b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue);
lhsRealTimesRhsImag = b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue);
Value newImag = b.create<arith::AddFOp>(lhsImagTimesRhsReal,
lhsRealTimesRhsImag, fmfValue);
imag = b.create<arith::SelectOp>(
recalc, b.create<arith::MulFOp>(inf, newImag, fmfValue), imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, imag);
return success();
}
};
struct NegOpConversion : public OpConversionPattern<complex::NegOp> {
using OpConversionPattern<complex::NegOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::NegOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negReal = rewriter.create<arith::NegFOp>(loc, real);
Value negImag = rewriter.create<arith::NegFOp>(loc, imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, negReal, negImag);
return success();
}
};
struct SinOpConversion : public TrigonometricOpConversion<complex::SinOp> {
using TrigonometricOpConversion<complex::SinOp>::TrigonometricOpConversion;
std::pair<Value, Value> combine(Location loc, Value scaledExp,
Value reciprocalExp, Value sin, Value cos,
ConversionPatternRewriter &rewriter,
arith::FastMathFlagsAttr fmf) const override {
// Complex sine is defined as;
// sin(x + iy) = -0.5i * (exp(i(x + iy)) - exp(-i(x + iy)))
// Plugging in:
// exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
// exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
// and defining t := exp(y)
// We get:
// Re(sin(x + iy)) = (0.5*t + 0.5/t) * sin x
// Im(cos(x + iy)) = (0.5*t - 0.5/t) * cos x
Value sum =
rewriter.create<arith::AddFOp>(loc, scaledExp, reciprocalExp, fmf);
Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, sin, fmf);
Value diff =
rewriter.create<arith::SubFOp>(loc, scaledExp, reciprocalExp, fmf);
Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, cos, fmf);
return {resultReal, resultImag};
}
};
// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> {
using OpConversionPattern<complex::SqrtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::SqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(op.getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
auto cst = [&](APFloat v) {
return b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, v));
};
const auto &floatSemantics = elementType.getFloatSemantics();
Value zero = cst(APFloat::getZero(floatSemantics));
Value half = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 0.5));
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value absSqrt = computeAbs(real, imag, fmf, b, AbsFn::sqrt);
Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
Value sqrtArg = b.create<arith::MulFOp>(argArg, half, fmf);
Value cos = b.create<math::CosOp>(sqrtArg, fmf);
Value sin = b.create<math::SinOp>(sqrtArg, fmf);
// sin(atan2(0, inf)) = 0, sqrt(abs(inf)) = inf, but we can't multiply
// 0 * inf.
Value sinIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, sin, zero, fmf);
Value resultReal = b.create<arith::MulFOp>(absSqrt, cos, fmf);
Value resultImag = b.create<arith::SelectOp>(
sinIsZero, zero, b.create<arith::MulFOp>(absSqrt, sin, fmf));
if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
arith::FastMathFlags::ninf)) {
Value inf = cst(APFloat::getInf(floatSemantics));
Value negInf = cst(APFloat::getInf(floatSemantics, true));
Value nan = cst(APFloat::getNaN(floatSemantics));
Value absImag = b.create<math::AbsFOp>(elementType, imag, fmf);
Value absImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
Value absImagIsNotInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, absImag, inf, fmf);
Value realIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, inf, fmf);
Value realIsNegInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, negInf, fmf);
resultReal = b.create<arith::SelectOp>(
b.create<arith::AndIOp>(realIsNegInf, absImagIsNotInf), zero,
resultReal);
resultReal = b.create<arith::SelectOp>(
b.create<arith::OrIOp>(absImagIsInf, realIsInf), inf, resultReal);
Value imagSignInf = b.create<math::CopySignOp>(inf, imag, fmf);
resultImag = b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, absSqrt, absSqrt),
nan, resultImag);
resultImag = b.create<arith::SelectOp>(
b.create<arith::OrIOp>(absImagIsInf, realIsNegInf), imagSignInf,
resultImag);
}
Value resultIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absSqrt, zero, fmf);
resultReal = b.create<arith::SelectOp>(resultIsZero, zero, resultReal);
resultImag = b.create<arith::SelectOp>(resultIsZero, zero, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct SignOpConversion : public OpConversionPattern<complex::SignOp> {
using OpConversionPattern<complex::SignOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::SignOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);
Value isZero = b.create<arith::AndIOp>(realIsZero, imagIsZero);
auto abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(), fmf);
Value realSign = b.create<arith::DivFOp>(real, abs, fmf);
Value imagSign = b.create<arith::DivFOp>(imag, abs, fmf);
Value sign = b.create<complex::CreateOp>(type, realSign, imagSign);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isZero,
adaptor.getComplex(), sign);
return success();
}
};
template <typename Op>
struct TanTanhOpConversion : public OpConversionPattern<Op> {
using OpConversionPattern<Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(Op op, typename Op::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
const auto &floatSemantics = elementType.getFloatSemantics();
Value real =
b.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
b.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1.0));
if constexpr (std::is_same_v<Op, complex::TanOp>) {
// tan(x+yi) = -i*tanh(-y + xi)
std::swap(real, imag);
real = b.create<arith::MulFOp>(real, negOne, fmf);
}
auto cst = [&](APFloat v) {
return b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, v));
};
Value inf = cst(APFloat::getInf(floatSemantics));
Value four = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 4.0));
Value twoReal = b.create<arith::AddFOp>(real, real, fmf);
Value negTwoReal = b.create<arith::MulFOp>(negOne, twoReal, fmf);
Value expTwoRealMinusOne = b.create<math::ExpM1Op>(twoReal, fmf);
Value expNegTwoRealMinusOne = b.create<math::ExpM1Op>(negTwoReal, fmf);
Value realNum =
b.create<arith::SubFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf);
Value cosImag = b.create<math::CosOp>(imag, fmf);
Value cosImagSq = b.create<arith::MulFOp>(cosImag, cosImag, fmf);
Value twoCosTwoImagPlusOne = b.create<arith::MulFOp>(cosImagSq, four, fmf);
Value sinImag = b.create<math::SinOp>(imag, fmf);
Value imagNum = b.create<arith::MulFOp>(
four, b.create<arith::MulFOp>(cosImag, sinImag, fmf), fmf);
Value expSumMinusTwo =
b.create<arith::AddFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf);
Value denom =
b.create<arith::AddFOp>(expSumMinusTwo, twoCosTwoImagPlusOne, fmf);
Value isInf = b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
expSumMinusTwo, inf, fmf);
Value realLimit = b.create<math::CopySignOp>(negOne, real, fmf);
Value resultReal = b.create<arith::SelectOp>(
isInf, realLimit, b.create<arith::DivFOp>(realNum, denom, fmf));
Value resultImag = b.create<arith::DivFOp>(imagNum, denom, fmf);
if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
arith::FastMathFlags::ninf)) {
Value absReal = b.create<math::AbsFOp>(real, fmf);
Value zero = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, 0.0));
Value nan = cst(APFloat::getNaN(floatSemantics));
Value absRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
Value absRealIsNotInf = b.create<arith::XOrIOp>(
absRealIsInf, b.create<arith::ConstantIntOp>(true, /*width=*/1));
Value imagNumIsNaN = b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO,
imagNum, imagNum, fmf);
Value resultRealIsNaN =
b.create<arith::AndIOp>(imagNumIsNaN, absRealIsNotInf);
Value resultImagIsZero = b.create<arith::OrIOp>(
imagIsZero, b.create<arith::AndIOp>(absRealIsInf, imagNumIsNaN));
resultReal = b.create<arith::SelectOp>(resultRealIsNaN, nan, resultReal);
resultImag =
b.create<arith::SelectOp>(resultImagIsZero, zero, resultImag);
}
if constexpr (std::is_same_v<Op, complex::TanOp>) {
// tan(x+yi) = -i*tanh(-y + xi)
std::swap(resultReal, resultImag);
resultImag = b.create<arith::MulFOp>(resultImag, negOne, fmf);
}
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct ConjOpConversion : public OpConversionPattern<complex::ConjOp> {
using OpConversionPattern<complex::ConjOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::ConjOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negImag = rewriter.create<arith::NegFOp>(loc, elementType, imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, negImag);
return success();
}
};
/// Converts lhs^y = (a+bi)^(c+di) to
/// (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)) * (cos(q) + i*sin(q)),
/// where q = c*atan2(b,a)+0.5d*ln(a*a+b*b)
static Value powOpConversionImpl(mlir::ImplicitLocOpBuilder &builder,
ComplexType type, Value lhs, Value c, Value d,
arith::FastMathFlags fmf) {
auto elementType = cast<FloatType>(type.getElementType());
Value a = builder.create<complex::ReOp>(lhs);
Value b = builder.create<complex::ImOp>(lhs);
Value abs = builder.create<complex::AbsOp>(lhs, fmf);
Value absToC = builder.create<math::PowFOp>(abs, c, fmf);
Value negD = builder.create<arith::NegFOp>(d, fmf);
Value argLhs = builder.create<math::Atan2Op>(b, a, fmf);
Value negDArgLhs = builder.create<arith::MulFOp>(negD, argLhs, fmf);
Value expNegDArgLhs = builder.create<math::ExpOp>(negDArgLhs, fmf);
Value coeff = builder.create<arith::MulFOp>(absToC, expNegDArgLhs, fmf);
Value lnAbs = builder.create<math::LogOp>(abs, fmf);
Value cArgLhs = builder.create<arith::MulFOp>(c, argLhs, fmf);
Value dLnAbs = builder.create<arith::MulFOp>(d, lnAbs, fmf);
Value q = builder.create<arith::AddFOp>(cArgLhs, dLnAbs, fmf);
Value cosQ = builder.create<math::CosOp>(q, fmf);
Value sinQ = builder.create<math::SinOp>(q, fmf);
Value inf = builder.create<arith::ConstantOp>(
elementType,
builder.getFloatAttr(elementType,
APFloat::getInf(elementType.getFloatSemantics())));
Value zero = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 0.0));
Value one = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 1.0));
Value complexOne = builder.create<complex::CreateOp>(type, one, zero);
Value complexZero = builder.create<complex::CreateOp>(type, zero, zero);
Value complexInf = builder.create<complex::CreateOp>(type, inf, zero);
// Case 0:
// d^c is 0 if d is 0 and c > 0. 0^0 is defined to be 1.0, see
// Branch Cuts for Complex Elementary Functions or Much Ado About
// Nothing's Sign Bit, W. Kahan, Section 10.
Value absEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, abs, zero, fmf);
Value dEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, d, zero, fmf);
Value cEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, c, zero, fmf);
Value bEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, b, zero, fmf);
Value zeroLeC =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLE, zero, c, fmf);
Value coeffCosQ = builder.create<arith::MulFOp>(coeff, cosQ, fmf);
Value coeffSinQ = builder.create<arith::MulFOp>(coeff, sinQ, fmf);
Value complexOneOrZero =
builder.create<arith::SelectOp>(cEqZero, complexOne, complexZero);
Value coeffCosSin =
builder.create<complex::CreateOp>(type, coeffCosQ, coeffSinQ);
Value cutoff0 = builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(
builder.create<arith::AndIOp>(absEqZero, dEqZero), zeroLeC),
complexOneOrZero, coeffCosSin);
// Case 1:
// x^0 is defined to be 1 for any x, see
// Branch Cuts for Complex Elementary Functions or Much Ado About
// Nothing's Sign Bit, W. Kahan, Section 10.
Value rhsEqZero = builder.create<arith::AndIOp>(cEqZero, dEqZero);
Value cutoff1 =
builder.create<arith::SelectOp>(rhsEqZero, complexOne, cutoff0);
// Case 2:
// 1^(c + d*i) = 1 + 0*i
Value lhsEqOne = builder.create<arith::AndIOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, one, fmf),
bEqZero);
Value cutoff2 =
builder.create<arith::SelectOp>(lhsEqOne, complexOne, cutoff1);
// Case 3:
// inf^(c + 0*i) = inf + 0*i, c > 0
Value lhsEqInf = builder.create<arith::AndIOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, inf, fmf),
bEqZero);
Value rhsGt0 = builder.create<arith::AndIOp>(
dEqZero,
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, c, zero, fmf));
Value cutoff3 = builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(lhsEqInf, rhsGt0), complexInf, cutoff2);
// Case 4:
// inf^(c + 0*i) = 0 + 0*i, c < 0
Value rhsLt0 = builder.create<arith::AndIOp>(
dEqZero,
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, c, zero, fmf));
Value cutoff4 = builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(lhsEqInf, rhsLt0), complexZero, cutoff3);
return cutoff4;
}
struct PowOpConversion : public OpConversionPattern<complex::PowOp> {
using OpConversionPattern<complex::PowOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::PowOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
Value c = builder.create<complex::ReOp>(elementType, adaptor.getRhs());
Value d = builder.create<complex::ImOp>(elementType, adaptor.getRhs());
rewriter.replaceOp(op, {powOpConversionImpl(builder, type, adaptor.getLhs(),
c, d, op.getFastmath())});
return success();
}
};
struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> {
using OpConversionPattern<complex::RsqrtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
auto cst = [&](APFloat v) {
return b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, v));
};
const auto &floatSemantics = elementType.getFloatSemantics();
Value zero = cst(APFloat::getZero(floatSemantics));
Value inf = cst(APFloat::getInf(floatSemantics));
Value negHalf = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -0.5));
Value nan = cst(APFloat::getNaN(floatSemantics));
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value absRsqrt = computeAbs(real, imag, fmf, b, AbsFn::rsqrt);
Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
Value rsqrtArg = b.create<arith::MulFOp>(argArg, negHalf, fmf);
Value cos = b.create<math::CosOp>(rsqrtArg, fmf);
Value sin = b.create<math::SinOp>(rsqrtArg, fmf);
Value resultReal = b.create<arith::MulFOp>(absRsqrt, cos, fmf);
Value resultImag = b.create<arith::MulFOp>(absRsqrt, sin, fmf);
if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
arith::FastMathFlags::ninf)) {
Value negOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1));
Value realSignedZero = b.create<math::CopySignOp>(zero, real, fmf);
Value imagSignedZero = b.create<math::CopySignOp>(zero, imag, fmf);
Value negImagSignedZero =
b.create<arith::MulFOp>(negOne, imagSignedZero, fmf);
Value absReal = b.create<math::AbsFOp>(real, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);
Value absImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
Value realIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real, fmf);
Value realIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
Value inIsNanInf = b.create<arith::AndIOp>(absImagIsInf, realIsNan);
Value resultIsZero = b.create<arith::OrIOp>(inIsNanInf, realIsInf);
resultReal =
b.create<arith::SelectOp>(resultIsZero, realSignedZero, resultReal);
resultImag = b.create<arith::SelectOp>(resultIsZero, negImagSignedZero,
resultImag);
}
Value isRealZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero, fmf);
Value isImagZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
Value isZero = b.create<arith::AndIOp>(isRealZero, isImagZero);
resultReal = b.create<arith::SelectOp>(isZero, inf, resultReal);
resultImag = b.create<arith::SelectOp>(isZero, nan, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct AngleOpConversion : public OpConversionPattern<complex::AngleOp> {
using OpConversionPattern<complex::AngleOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AngleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = op.getType();
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
rewriter.replaceOpWithNewOp<math::Atan2Op>(op, imag, real, fmf);
return success();
}
};
} // namespace
void mlir::populateComplexToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AbsOpConversion,
AngleOpConversion,
Atan2OpConversion,
BinaryComplexOpConversion<complex::AddOp, arith::AddFOp>,
BinaryComplexOpConversion<complex::SubOp, arith::SubFOp>,
ComparisonOpConversion<complex::EqualOp, arith::CmpFPredicate::OEQ>,
ComparisonOpConversion<complex::NotEqualOp, arith::CmpFPredicate::UNE>,
ConjOpConversion,
CosOpConversion,
DivOpConversion,
ExpOpConversion,
Expm1OpConversion,
Log1pOpConversion,
LogOpConversion,
MulOpConversion,
NegOpConversion,
SignOpConversion,
SinOpConversion,
SqrtOpConversion,
TanTanhOpConversion<complex::TanOp>,
TanTanhOpConversion<complex::TanhOp>,
PowOpConversion,
RsqrtOpConversion
>(patterns.getContext());
// clang-format on
}
namespace {
struct ConvertComplexToStandardPass
: public impl::ConvertComplexToStandardBase<ConvertComplexToStandardPass> {
void runOnOperation() override;
};
void ConvertComplexToStandardPass::runOnOperation() {
// Convert to the Standard dialect using the converter defined above.
RewritePatternSet patterns(&getContext());
populateComplexToStandardConversionPatterns(patterns);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithDialect, math::MathDialect>();
target.addLegalOp<complex::CreateOp, complex::ImOp, complex::ReOp>();
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
} // namespace
std::unique_ptr<Pass> mlir::createConvertComplexToStandardPass() {
return std::make_unique<ConvertComplexToStandardPass>();
}
|