1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
|
//===- NVGPUToNVVM.cpp - NVGPU to NVVM dialect conversion -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/NVGPUToNVVM/NVGPUToNVVM.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "nvgpu-to-nvvm"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define DBGSE() (llvm::dbgs())
namespace mlir {
#define GEN_PASS_DEF_CONVERTNVGPUTONVVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
/// Number of bits that needs to be excluded when building matrix descriptor for
/// wgmma operations.
constexpr int exclude4LSB = 4;
/// GPU has 32 bit registers, this function truncates values when larger width
/// is not needed.
static Value truncToI32(ImplicitLocOpBuilder &b, Value value) {
Type type = value.getType();
assert(llvm::isa<IntegerType>(type) && "expected an integer Value");
if (type.getIntOrFloatBitWidth() <= 32)
return value;
return b.create<LLVM::TruncOp>(b.getI32Type(), value);
}
/// Returns the type for the intrinsic given the vectorResultType of the
/// `gpu.mma.sync` operation.
static Type inferIntrinsicResultType(Type vectorResultType) {
MLIRContext *ctx = vectorResultType.getContext();
auto a = cast<LLVM::LLVMArrayType>(vectorResultType);
auto f16x2Ty = LLVM::getFixedVectorType(Float16Type::get(ctx), 2);
auto i32Ty = IntegerType::get(ctx, 32);
auto i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
Type f64Ty = Float64Type::get(ctx);
Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
Type f32Ty = Float32Type::get(ctx);
Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
if (a.getElementType() == f16x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(a.getNumElements(), f16x2Ty));
}
if (a.getElementType() == i32x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx,
SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, i32Ty));
}
if (a.getElementType() == f64x2Ty) {
return LLVM::LLVMStructType::getLiteral(ctx, {f64Ty, f64Ty});
}
if (a.getElementType() == f32x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx,
SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, f32Ty));
}
if (a.getElementType() == LLVM::getFixedVectorType(f32Ty, 1)) {
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(static_cast<size_t>(a.getNumElements()), f32Ty));
}
return vectorResultType;
}
/// Convert the SSA result of the NVVM intrinsic `nvvm.mma.sync` (which is
/// always an LLVM struct) into a fragment that is compatible with the vector
/// type of this operation. This involves extracting elements from the struct
/// and inserting them into an LLVM array. These extra data-movement
/// operations should be canonicalized away by the LLVM backend.
static Value convertIntrinsicResult(Location loc, Type intrinsicResultType,
Type resultType, Value intrinsicResult,
RewriterBase &rewriter) {
MLIRContext *ctx = rewriter.getContext();
auto structType = dyn_cast<LLVM::LLVMStructType>(intrinsicResultType);
auto arrayType = dyn_cast<LLVM::LLVMArrayType>(resultType);
Type i32Ty = rewriter.getI32Type();
Type f32Ty = rewriter.getF32Type();
Type f64Ty = rewriter.getF64Type();
Type f16x2Ty = LLVM::getFixedVectorType(rewriter.getF16Type(), 2);
Type i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
auto makeConst = [&](int32_t index) -> Value {
return rewriter.create<LLVM::ConstantOp>(loc, IntegerType::get(ctx, 32),
rewriter.getI32IntegerAttr(index));
};
if (arrayType) {
SmallVector<Value, 4> elements;
// The intrinsic returns 32-bit wide elements in a form which can be
// directly bitcasted and inserted into the result vector.
if (arrayType.getElementType() == f16x2Ty ||
arrayType.getElementType() == f32x1Ty) {
for (unsigned i = 0; i < structType.getBody().size(); i++) {
Value el =
rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i);
el = rewriter.createOrFold<LLVM::BitcastOp>(
loc, arrayType.getElementType(), el);
elements.push_back(el);
}
}
// The intrinsic returns i32, f64, and f32 values as individual scalars,
// even when the result is notionally a 64-bit wide element (e.g. f32x2). We
// need to extract them from the struct and pack them into the 64-bit wide
// rows of the vector result.
if (arrayType.getElementType() == i32x2Ty ||
arrayType.getElementType() == f64x2Ty ||
arrayType.getElementType() == f32x2Ty) {
for (unsigned i = 0, e = structType.getBody().size() / 2; i < e; i++) {
Value vec =
rewriter.create<LLVM::UndefOp>(loc, arrayType.getElementType());
Value x1 =
rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i * 2);
Value x2 = rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult,
i * 2 + 1);
vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
x1, makeConst(0));
vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
x2, makeConst(1));
elements.push_back(vec);
}
}
// Create the final vectorized result.
Value result = rewriter.create<LLVM::UndefOp>(loc, arrayType);
for (const auto &el : llvm::enumerate(elements)) {
result = rewriter.create<LLVM::InsertValueOp>(loc, result, el.value(),
el.index());
}
return result;
}
return intrinsicResult;
}
/// The `gpu.mma.sync` converter below expects matrix fragment operands to be
/// given as 2D `vectors` where the rows are 32b or 64b wide. The
/// `nvvm.mma.sync` op expects these argments to be a given in a long list of
/// scalars of certain types. This function helps unpack the `vector` arguments
/// and cast them to the types expected by `nvvm.mma.sync`.
static SmallVector<Value> unpackOperandVector(ImplicitLocOpBuilder &b,
Value operand,
NVVM::MMATypes operandPtxType) {
SmallVector<Value> result;
Type i32Ty = b.getI32Type();
Type f64Ty = b.getF64Type();
Type f32Ty = b.getF32Type();
Type i64Ty = b.getI64Type();
Type i8x4Ty = LLVM::getFixedVectorType(b.getI8Type(), 4);
Type i4x8Ty = LLVM::getFixedVectorType(b.getIntegerType(4), 8);
Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
auto arrayTy = cast<LLVM::LLVMArrayType>(operand.getType());
for (unsigned i = 0, e = arrayTy.getNumElements(); i < e; ++i) {
Value toUse = b.create<LLVM::ExtractValueOp>(operand, i);
// For 4xi8 vectors, the intrinsic expects these to be provided as i32
// scalar types.
if (arrayTy.getElementType() == i8x4Ty ||
arrayTy.getElementType() == i4x8Ty ||
(arrayTy.getElementType() == f32x1Ty &&
operandPtxType == NVVM::MMATypes::tf32)) {
result.push_back(b.create<LLVM::BitcastOp>(i32Ty, toUse));
continue;
}
// For some element types (i32, f32, f64), we need to unpack the inner
// vector/array type as well because the intrinsic expects individual
// scalars to be provided.
VectorType innerArrayTy = dyn_cast<VectorType>(arrayTy.getElementType());
if (innerArrayTy && (innerArrayTy.getElementType() == i32Ty ||
innerArrayTy.getElementType() == f64Ty ||
innerArrayTy.getElementType() == f32Ty)) {
for (unsigned idx = 0, innerSize = innerArrayTy.getNumElements();
idx < innerSize; idx++) {
result.push_back(b.create<LLVM::ExtractElementOp>(
toUse,
b.create<LLVM::ConstantOp>(i64Ty, b.getI64IntegerAttr(idx))));
}
continue;
}
result.push_back(toUse);
}
return result;
}
/// Returns whether mbarrier object has shared memory address space.
static bool isMbarrierShared(nvgpu::MBarrierGroupType barrierType) {
return (mlir::nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(
barrierType.getMemorySpace()));
}
/// Returns the memory space attribute of the mbarrier object.
Attribute nvgpu::getMbarrierMemorySpace(MLIRContext *context,
nvgpu::MBarrierGroupType barrierType) {
Attribute memorySpace = {};
if (isMbarrierShared(barrierType)) {
memorySpace =
IntegerAttr::get(IntegerType::get(context, 64),
nvgpu::NVGPUDialect::kSharedMemoryAddressSpace);
}
return memorySpace;
}
/// Returns memref type of the mbarrier object. The type is defined in the
/// MBarrierGroupType.
MemRefType nvgpu::getMBarrierMemrefType(MLIRContext *context,
nvgpu::MBarrierGroupType barrierType) {
Attribute memorySpace = nvgpu::getMbarrierMemorySpace(context, barrierType);
MemRefLayoutAttrInterface layout;
return MemRefType::get({barrierType.getNumBarriers()},
IntegerType::get(context, 64), layout, memorySpace);
}
namespace {
struct MmaLdMatrixOpToNVVM : public ConvertOpToLLVMPattern<nvgpu::LdMatrixOp> {
using ConvertOpToLLVMPattern<nvgpu::LdMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::LdMatrixOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MLIRContext *ctx = getContext();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// The result type of ldmatrix will always be a struct of 32bit integer
// registers if more than one 32bit value is returned. Otherwise, the result
// is a single i32. The result type of the GPU operation is always a vector
// of shape (NumRegisters, VectorRegister) where VectorRegister is the
// vector type of the result and always 32 bits long. We bitcast the result
// of the NVVM::LdMatrix to this vector type.
auto vectorResultType = dyn_cast<VectorType>(op->getResultTypes()[0]);
if (!vectorResultType) {
return failure();
}
Type innerVectorType = LLVM::getFixedVectorType(
vectorResultType.getElementType(), vectorResultType.getDimSize(1));
int64_t num32BitRegs = vectorResultType.getDimSize(0);
Type ldMatrixResultType;
if (num32BitRegs > 1) {
ldMatrixResultType = LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(num32BitRegs, rewriter.getI32Type()));
} else {
ldMatrixResultType = rewriter.getI32Type();
}
auto srcMemrefType = cast<MemRefType>(op.getSrcMemref().getType());
Value srcPtr =
getStridedElementPtr(b.getLoc(), srcMemrefType, adaptor.getSrcMemref(),
adaptor.getIndices(), rewriter);
Value ldMatrixResult = b.create<NVVM::LdMatrixOp>(
ldMatrixResultType, srcPtr,
/*num=*/op.getNumTiles(),
/*layout=*/op.getTranspose() ? NVVM::MMALayout::col
: NVVM::MMALayout::row);
// The ldmatrix operation returns either a single i32 value or a struct of
// i32 values. Here we unpack those values and cast them back to their
// actual vector type (still of width 32b) and repack them into a result
// struct.
Type finalResultType = typeConverter->convertType(vectorResultType);
Value result = b.create<LLVM::UndefOp>(finalResultType);
for (int64_t i = 0, e = vectorResultType.getDimSize(0); i < e; i++) {
Value i32Register =
num32BitRegs > 1 ? b.create<LLVM::ExtractValueOp>(ldMatrixResult, i)
: ldMatrixResult;
Value casted = b.create<LLVM::BitcastOp>(innerVectorType, i32Register);
result = b.create<LLVM::InsertValueOp>(result, casted, i);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Convert the given type into the corresponding PTX type (NVVM::MMATypes
/// enum).
static FailureOr<NVVM::MMATypes> getNvvmMmaType(Type t) {
Type elType = getElementTypeOrSelf(t);
if (elType.isInteger(8))
return NVVM::MMATypes::s8;
if (elType.isInteger(4))
return NVVM::MMATypes::s4;
if (elType.isF16())
return NVVM::MMATypes::f16;
if (elType.isF64())
return NVVM::MMATypes::f64;
if (elType.isF32())
return NVVM::MMATypes::tf32;
return failure();
}
struct MmaSyncOptoNVVM : public ConvertOpToLLVMPattern<nvgpu::MmaSyncOp> {
using ConvertOpToLLVMPattern<nvgpu::MmaSyncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::MmaSyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
VectorType aType = op.getMatrixA().getType();
VectorType bType = op.getMatrixA().getType();
VectorType cType = op.getMatrixC().getType();
std::array<int64_t, 3> gemmShape = op.getMmaShapeAsArray();
// Tensor Cores (mma.sync) on F32 works only with TensorFloat32 (TF32).
bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
if (aType.getElementType().isF32() && !tf32Enabled)
return failure();
FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
if (failed(ptxTypeA))
return op->emitOpError("failed to deduce operand PTX types");
FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
if (failed(ptxTypeB))
return op->emitOpError("failed to deduce operand PTX types");
std::optional<NVVM::MMATypes> ptxTypeC =
NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
/*isAccumulator=*/true);
if (!ptxTypeC)
return op->emitError(
"could not infer the PTX type for the accumulator/result");
// TODO: add an attribute to the op to customize this behavior.
std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
if (isa<IntegerType>(aType.getElementType()))
overflow = NVVM::MMAIntOverflow::satfinite;
SmallVector<Value> matA =
unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
SmallVector<Value> matB =
unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
SmallVector<Value> matC =
unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
Type intrinsicResTy = inferIntrinsicResultType(
typeConverter->convertType(op->getResultTypes()[0]));
Value intrinsicResult = b.create<NVVM::MmaOp>(
intrinsicResTy, matA, matB, matC,
/*shape=*/gemmShape,
/*b1Op=*/std::nullopt,
/*intOverflow=*/overflow,
/*multiplicandPtxTypes=*/
std::array<NVVM::MMATypes, 2>{*ptxTypeA, *ptxTypeB},
/*multiplicandLayouts=*/
std::array<NVVM::MMALayout, 2>{NVVM::MMALayout::row,
NVVM::MMALayout::col});
rewriter.replaceOp(op, convertIntrinsicResult(op.getLoc(), intrinsicResTy,
desiredRetTy, intrinsicResult,
rewriter));
return success();
}
};
struct ConvertNVGPUToNVVMPass
: public impl::ConvertNVGPUToNVVMPassBase<ConvertNVGPUToNVVMPass> {
using Base::Base;
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<memref::MemRefDialect, LLVM::LLVMDialect, NVVM::NVVMDialect,
arith::ArithDialect>();
}
void runOnOperation() override {
LowerToLLVMOptions options(&getContext());
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext(), options);
IRRewriter rewriter(&getContext());
populateGpuMemorySpaceAttributeConversions(
converter, [](gpu::AddressSpace space) -> unsigned {
switch (space) {
case gpu::AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case gpu::AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case gpu::AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
/// device-side async tokens cannot be materialized in nvvm. We just
/// convert them to a dummy i32 type in order to easily drop them during
/// conversion.
converter.addConversion([&](nvgpu::DeviceAsyncTokenType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 32));
});
converter.addConversion([&](nvgpu::WarpgroupAccumulatorType type) -> Type {
Type elemType = type.getFragmented().getElementType();
int64_t sizeM = type.getFragmented().getDimSize(0);
int64_t sizeN = type.getFragmented().getDimSize(1);
unsigned numMembers;
if (elemType.isF32() || elemType.isInteger(32))
numMembers = sizeN / 2;
else if (elemType.isF16())
numMembers = sizeN / 4;
else
llvm_unreachable("unsupported type for warpgroup accumulator");
SmallVector<Type> innerStructBody;
for (unsigned i = 0; i < numMembers; i++)
innerStructBody.push_back(elemType);
auto innerStructType =
LLVM::LLVMStructType::getLiteral(type.getContext(), innerStructBody);
SmallVector<Type> structBody;
for (int i = 0; i < sizeM; i += kWgmmaSizeM)
structBody.push_back(innerStructType);
auto convertedType =
LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
return converter.convertType(convertedType);
});
converter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 64));
});
converter.addConversion(
[&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 64));
});
converter.addConversion([&](nvgpu::MBarrierGroupType type) -> Type {
return converter.convertType(
nvgpu::getMBarrierMemrefType(rewriter.getContext(), type));
});
converter.addConversion([&](nvgpu::TensorMapDescriptorType type) -> Type {
return LLVM::LLVMPointerType::get(type.getContext());
});
populateNVGPUToNVVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::arith::ArithDialect>();
target.addLegalDialect<::mlir::memref::MemRefDialect>();
target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
mlir::scf::populateSCFStructuralTypeConversionsAndLegality(
converter, patterns, target);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
/// Returns the constraints for the sparse MMA inline assembly instruction.
static std::string buildMmaSparseAsmConstraintString(unsigned matASize,
unsigned matBSize,
unsigned matCSize) {
std::string str;
llvm::raw_string_ostream ss(str);
for (unsigned i = 0; i < matCSize; i++)
ss << "=r,";
for (unsigned i = 0; i < matASize + matBSize + matCSize; i++)
ss << "r,";
// The final operand is for the sparsity metadata.
// The sparsity selector appears as direct literal.
ss << "r";
ss.flush();
return str;
}
/// Returns the string for the `mma.sp.sync` instruction that corresponds to
/// the given parameters. Note that this function doesn't do any validation,
/// it's expected that the provided parameters correspond to a valid
/// instruction.
static std::string buildMmaSparseAsmString(
const std::array<int64_t, 3> &shape, unsigned matASize, unsigned matBSize,
unsigned matCSize, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
std::optional<NVVM::MMAIntOverflow> overflow, unsigned metaDataSelector) {
auto ptxTypeStr = [](NVVM::MMATypes ptxType) {
return NVVM::stringifyMMATypes(ptxType);
};
std::string asmStr;
llvm::raw_string_ostream ss(asmStr);
ss << "mma.sp.sync.aligned.m" << shape[0] << "n" << shape[1] << "k"
<< shape[2] << ".row.col.";
if (overflow)
ss << NVVM::stringifyMMAIntOverflow(*overflow) << ".";
ss << ptxTypeStr(ptxTypeD) << "." << ptxTypeStr(ptxTypeA) << "."
<< ptxTypeStr(ptxTypeB) << "." << ptxTypeStr(ptxTypeC) << " ";
unsigned asmArgIdx = 0;
// The operand string is structured into sections `{matC elements...},
// {matA elements...}, {matB elements...}, {matC elements}`.
for (const auto arrSize : {matCSize, matASize, matBSize, matCSize}) {
ss << "{";
for (unsigned i = 0; i < arrSize; i++)
ss << "$" << asmArgIdx++ << (i < arrSize - 1 ? "," : "");
ss << "},";
}
ss << "$" << asmArgIdx++ << ",";
assert(metaDataSelector <= 1);
ss << "0x" << metaDataSelector << ";";
ss.flush();
return asmStr;
}
/// Builds an inline assembly operation corresponding to the specified MMA
/// sparse sync operation.
static FailureOr<LLVM::InlineAsmOp> emitMmaSparseSyncOpAsm(
ImplicitLocOpBuilder &b, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
std::optional<NVVM::MMAIntOverflow> overflow, ArrayRef<Value> unpackedAData,
ArrayRef<Value> unpackedB, ArrayRef<Value> unpackedC, Value indexData,
int64_t metadataSelector, const std::array<int64_t, 3> &shape,
Type intrinsicResultType) {
auto asmDialectAttr =
LLVM::AsmDialectAttr::get(b.getContext(), LLVM::AsmDialect::AD_ATT);
const unsigned matASize = unpackedAData.size();
const unsigned matBSize = unpackedB.size();
const unsigned matCSize = unpackedC.size();
std::string asmStr = buildMmaSparseAsmString(
shape, matASize, matBSize, matCSize, ptxTypeA, ptxTypeB, ptxTypeC,
ptxTypeD, overflow, metadataSelector);
std::string constraintStr =
buildMmaSparseAsmConstraintString(matASize, matBSize, matCSize);
SmallVector<Value> asmVals;
asmVals.reserve(matASize + matBSize + matCSize + 1);
for (ArrayRef<Value> args : {unpackedAData, unpackedB, unpackedC})
llvm::append_range(asmVals, args);
asmVals.push_back(indexData);
return b.create<LLVM::InlineAsmOp>(
/*resultTypes=*/intrinsicResultType,
/*operands=*/asmVals,
/*asm_string=*/asmStr,
/*constraints=*/constraintStr,
/*has_side_effects=*/true,
/*is_align_stack=*/false,
/*asm_dialect=*/asmDialectAttr,
/*operand_attrs=*/ArrayAttr());
}
/// Lowers `nvgpu.mma.sp.sync` to inline assembly.
struct NVGPUMmaSparseSyncLowering
: public ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp> {
using ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::MmaSparseSyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
VectorType aType = op.getMatrixA().getType();
VectorType bType = op.getMatrixB().getType();
VectorType cType = op.getMatrixC().getType();
FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
if (failed(ptxTypeA))
return op->emitOpError("failed to deduce operand PTX types");
FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
if (failed(ptxTypeB))
return op->emitOpError("failed to deduce operand PTX types");
std::optional<NVVM::MMATypes> ptxTypeC =
NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
/*isAccumulator=*/true);
if (!ptxTypeC)
return op->emitError(
"could not infer the PTX type for the accumulator/result");
// Same as `mma.sync`, F32 works only with TensorFloat32 (TF32).
bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
if (aType.getElementType().isF32() && !tf32Enabled)
return failure();
// TODO: add an attribute to the op to customize this behavior.
std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
if (isa<IntegerType>(aType.getElementType()))
overflow = NVVM::MMAIntOverflow::satfinite;
SmallVector<Value> matA =
unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
SmallVector<Value> matB =
unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
SmallVector<Value> matC =
unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
Type intrinsicResTy = inferIntrinsicResultType(
typeConverter->convertType(op->getResultTypes()[0]));
// Bitcast the sparse metadata from vector<2xf16> to an i32.
Value sparseMetadata = adaptor.getSparseMetadata();
if (sparseMetadata.getType() !=
LLVM::getFixedVectorType(rewriter.getI16Type(), 2))
return op->emitOpError() << "Expected metadata type to be LLVM "
"VectorType of 2 i16 elements";
sparseMetadata =
b.create<LLVM::BitcastOp>(rewriter.getI32Type(), sparseMetadata);
FailureOr<LLVM::InlineAsmOp> intrinsicResult = emitMmaSparseSyncOpAsm(
b, *ptxTypeA, *ptxTypeB, *ptxTypeC, *ptxTypeC, overflow, matA, matB,
matC, sparseMetadata, op.getSparsitySelector(), op.getMmaShapeAsArray(),
intrinsicResTy);
if (failed(intrinsicResult))
return failure();
assert((*intrinsicResult).getNumResults() == 1 &&
"expected inline asm op returns a single LLVM struct type");
rewriter.replaceOp(
op, convertIntrinsicResult(op.getLoc(), intrinsicResTy, desiredRetTy,
(*intrinsicResult)->getResult(0), rewriter));
return success();
}
};
struct NVGPUAsyncCopyLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCopyOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncCopyOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncCopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Location loc = op.getLoc();
auto dstMemrefType = cast<MemRefType>(op.getDst().getType());
Value dstPtr =
getStridedElementPtr(b.getLoc(), dstMemrefType, adaptor.getDst(),
adaptor.getDstIndices(), rewriter);
FailureOr<unsigned> dstAddressSpace =
getTypeConverter()->getMemRefAddressSpace(dstMemrefType);
if (failed(dstAddressSpace))
return rewriter.notifyMatchFailure(
loc, "destination memref address space not convertible to integer");
auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
FailureOr<unsigned> srcAddressSpace =
getTypeConverter()->getMemRefAddressSpace(srcMemrefType);
if (failed(srcAddressSpace))
return rewriter.notifyMatchFailure(
loc, "source memref address space not convertible to integer");
Value scrPtr = getStridedElementPtr(loc, srcMemrefType, adaptor.getSrc(),
adaptor.getSrcIndices(), rewriter);
// Intrinsics takes a global pointer so we need an address space cast.
auto srcPointerGlobalType = LLVM::LLVMPointerType::get(
op->getContext(), NVVM::NVVMMemorySpace::kGlobalMemorySpace);
scrPtr = b.create<LLVM::AddrSpaceCastOp>(srcPointerGlobalType, scrPtr);
int64_t dstElements = adaptor.getDstElements().getZExtValue();
int64_t sizeInBytes =
(dstMemrefType.getElementTypeBitWidth() * dstElements) / 8;
// When the optional SrcElements argument is *not* present, the regular
// CpAsyncOp is generated. CopyAsyncOp reads bytes from source (global
// memory) to fill DstElements number of elements in the destination
// (shared memory).
Value srcBytes = adaptor.getSrcElements();
if (srcBytes) {
// When the optional SrcElements argument is present, the source (global
// memory) of CpAsyncOp is read only for SrcElements number of elements.
// The rest of the DstElements in the destination (shared memory) are
// filled with zeros.
Value c3I32 =
b.create<LLVM::ConstantOp>(b.getI32Type(), b.getI32IntegerAttr(3));
Value bitwidth = b.create<LLVM::ConstantOp>(
b.getI32Type(),
b.getI32IntegerAttr(srcMemrefType.getElementTypeBitWidth()));
Value srcElementsI32 = b.create<LLVM::TruncOp>(b.getI32Type(), srcBytes);
srcBytes = b.create<LLVM::LShrOp>(
b.create<LLVM::MulOp>(bitwidth, srcElementsI32), c3I32);
}
// Cache global (.cg) for 16 dst bytes, Cache all (.ca) for sizes other than
// 16 dst bytes.
NVVM::LoadCacheModifierKind cacheModifier =
(op.getBypassL1().value_or(false) && sizeInBytes == 16)
? NVVM::LoadCacheModifierKind::CG
: NVVM::LoadCacheModifierKind::CA;
b.create<NVVM::CpAsyncOp>(
dstPtr, scrPtr, rewriter.getI32IntegerAttr(sizeInBytes),
NVVM::LoadCacheModifierKindAttr::get(op->getContext(), cacheModifier),
srcBytes);
// Drop the result token.
Value zero = b.create<LLVM::ConstantOp>(
IntegerType::get(op.getContext(), 32), rewriter.getI32IntegerAttr(0));
rewriter.replaceOp(op, zero);
return success();
}
};
struct NVGPUAsyncCreateGroupLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCreateGroupOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncCreateGroupOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncCreateGroupOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.create<NVVM::CpAsyncCommitGroupOp>(op.getLoc());
// Drop the result token.
Value zero = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), IntegerType::get(op.getContext(), 32),
rewriter.getI32IntegerAttr(0));
rewriter.replaceOp(op, zero);
return success();
}
};
struct NVGPUAsyncWaitLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncWaitOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncWaitOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// If numGroup is not present pick 0 as a conservative correct value.
int32_t numGroups = adaptor.getNumGroups().value_or(0);
rewriter.create<NVVM::CpAsyncWaitGroupOp>(op.getLoc(), numGroups);
rewriter.eraseOp(op);
return success();
}
};
/// Creates mbarrier object in shared memory
struct NVGPUMBarrierCreateLowering
: public ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp> {
using ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp>::ConvertOpToLLVMPattern;
template <typename moduleT>
memref::GlobalOp generateGlobalBarrier(ConversionPatternRewriter &rewriter,
Operation *funcOp, moduleT moduleOp,
MemRefType barrierType) const {
SymbolTable symbolTable(moduleOp);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(&moduleOp.front());
auto global = rewriter.create<memref::GlobalOp>(
funcOp->getLoc(), "__mbarrier",
/*sym_visibility=*/rewriter.getStringAttr("private"),
/*type=*/barrierType,
/*initial_value=*/ElementsAttr(),
/*constant=*/false,
/*alignment=*/rewriter.getI64IntegerAttr(8));
symbolTable.insert(global);
return global;
}
LogicalResult
matchAndRewrite(nvgpu::MBarrierCreateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *funcOp = op->getParentOp();
MemRefType barrierType = nvgpu::getMBarrierMemrefType(
rewriter.getContext(), op.getBarriers().getType());
memref::GlobalOp global;
if (auto moduleOp = funcOp->getParentOfType<gpu::GPUModuleOp>())
global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
else if (auto moduleOp = funcOp->getParentOfType<ModuleOp>())
global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
rewriter.setInsertionPoint(op);
rewriter.replaceOpWithNewOp<memref::GetGlobalOp>(op, barrierType,
global.getName());
return success();
}
};
/// Base class for lowering mbarrier operations to nvvm intrinsics.
template <typename SourceOp>
struct MBarrierBasePattern : public ConvertOpToLLVMPattern<SourceOp> {
public:
using ConvertOpToLLVMPattern<SourceOp>::ConvertOpToLLVMPattern;
/// Returns the base pointer of the mbarrier object.
Value getMbarrierPtr(ImplicitLocOpBuilder &b,
nvgpu::MBarrierGroupType mbarType, Value memrefDesc,
Value mbarId,
ConversionPatternRewriter &rewriter) const {
MemRefType mbarrierMemrefType =
nvgpu::getMBarrierMemrefType(rewriter.getContext(), mbarType);
return ConvertToLLVMPattern::getStridedElementPtr(
b.getLoc(), mbarrierMemrefType, memrefDesc, {mbarId}, rewriter);
}
};
/// Lowers `nvgpu.mbarrier.init` to `nvvm.mbarrier.init`
struct NVGPUMBarrierInitLowering
: public MBarrierBasePattern<nvgpu::MBarrierInitOp> {
using MBarrierBasePattern<nvgpu::MBarrierInitOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierInitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::MBarrierGroupType mbarrierType = op.getBarriers().getType();
rewriter.setInsertionPoint(op);
Value barrier = getMbarrierPtr(b, mbarrierType, adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value count = truncToI32(b, adaptor.getCount());
if (isMbarrierShared(mbarrierType)) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierInitSharedOp>(
op, barrier, count, adaptor.getPredicate());
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierInitOp>(op, barrier, count,
adaptor.getPredicate());
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.arrive` to `nvvm.mbarrier.arrive`
struct NVGPUMBarrierArriveLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveOp> {
using MBarrierBasePattern<nvgpu::MBarrierArriveOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type tokenType = getTypeConverter()->convertType(
nvgpu::MBarrierTokenType::get(op->getContext()));
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveSharedOp>(op, tokenType,
barrier);
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveOp>(op, tokenType,
barrier);
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.arrive.nocomplete` to
/// `nvvm.mbarrier.arrive.nocomplete`
struct NVGPUMBarrierArriveNoCompleteLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveNoCompleteOp> {
using MBarrierBasePattern<
nvgpu::MBarrierArriveNoCompleteOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveNoCompleteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type tokenType = getTypeConverter()->convertType(
nvgpu::MBarrierTokenType::get(op->getContext()));
Value count = truncToI32(b, adaptor.getCount());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteSharedOp>(
op, tokenType, barrier, count);
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteOp>(
op, tokenType, barrier, count);
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.test.wait` to `nvvm.mbarrier.test.wait`
struct NVGPUMBarrierTestWaitLowering
: public MBarrierBasePattern<nvgpu::MBarrierTestWaitOp> {
using MBarrierBasePattern<nvgpu::MBarrierTestWaitOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierTestWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type retType = rewriter.getI1Type();
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitSharedOp>(
op, retType, barrier, adaptor.getToken());
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitOp>(
op, retType, barrier, adaptor.getToken());
}
return success();
}
};
struct NVGPUMBarrierArriveExpectTxLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveExpectTxOp> {
using MBarrierBasePattern<
nvgpu::MBarrierArriveExpectTxOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveExpectTxOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value txcount = truncToI32(b, adaptor.getTxcount());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxSharedOp>(
op, barrier, txcount, adaptor.getPredicate());
return success();
}
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxOp>(
op, barrier, txcount, adaptor.getPredicate());
return success();
}
};
struct NVGPUMBarrierTryWaitParityLowering
: public MBarrierBasePattern<nvgpu::MBarrierTryWaitParityOp> {
using MBarrierBasePattern<
nvgpu::MBarrierTryWaitParityOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierTryWaitParityOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value ticks = truncToI32(b, adaptor.getTicks());
Value phase =
b.create<LLVM::ZExtOp>(b.getI32Type(), adaptor.getPhaseParity());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParitySharedOp>(
op, barrier, phase, ticks);
return success();
}
rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParityOp>(op, barrier,
phase, ticks);
return success();
}
};
struct NVGPUTmaAsyncLoadOpLowering
: public MBarrierBasePattern<nvgpu::TmaAsyncLoadOp> {
using MBarrierBasePattern<nvgpu::TmaAsyncLoadOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::TmaAsyncLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto srcMemrefType = cast<MemRefType>(op.getDst().getType());
Value dest = getStridedElementPtr(op->getLoc(), srcMemrefType,
adaptor.getDst(), {}, rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
SmallVector<Value> coords = adaptor.getCoordinates();
for (auto [index, value] : llvm::enumerate(coords)) {
coords[index] = truncToI32(b, value);
}
rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorGlobalToSharedClusterOp>(
op, dest, adaptor.getTensorMapDescriptor(), coords, barrier,
ValueRange{}, adaptor.getMulticastMask(), Value{},
adaptor.getPredicate());
return success();
}
};
struct NVGPUTmaAsyncStoreOpLowering
: public MBarrierBasePattern<nvgpu::TmaAsyncStoreOp> {
using MBarrierBasePattern<nvgpu::TmaAsyncStoreOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::TmaAsyncStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
Value dest = getStridedElementPtr(op->getLoc(), srcMemrefType,
adaptor.getSrc(), {}, rewriter);
SmallVector<Value> coords = adaptor.getCoordinates();
for (auto [index, value] : llvm::enumerate(coords)) {
coords[index] = truncToI32(b, value);
}
rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorSharedCTAToGlobalOp>(
op, adaptor.getTensorMapDescriptor(), dest, coords,
adaptor.getPredicate());
return success();
}
};
struct NVGPUGenerateWarpgroupDescriptorLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupGenerateDescriptorOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupGenerateDescriptorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::WarpgroupGenerateDescriptorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::TensorMapSwizzleKind swizzleKind =
op.getTensorMap().getType().getSwizzle();
unsigned layout =
(swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 128
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 64
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 32
: 1;
unsigned swizzle =
(swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 1
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 2
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 3
: 0;
auto ti64 = b.getIntegerType(64);
auto makeConst = [&](uint64_t index) -> Value {
return b.create<LLVM::ConstantOp>(ti64, b.getI64IntegerAttr(index));
};
auto shiftLeft = [&](Value value, unsigned shift) -> Value {
return b.create<LLVM::ShlOp>(ti64, value, makeConst(shift));
};
auto shiftRight = [&](Value value, unsigned shift) -> Value {
return b.create<LLVM::LShrOp>(ti64, value, makeConst(shift));
};
auto insertBit = [&](Value desc, Value val, int startBit) {
return b.create<LLVM::OrOp>(ti64, desc, shiftLeft(val, startBit));
};
int64_t sizeN = op.getTensorMap().getType().getTensor().getDimSize(0);
uint64_t strideDimVal = (layout << 3) >> exclude4LSB;
uint64_t leadDimVal = (sizeN * layout) >> exclude4LSB;
uint64_t offsetVal = 0;
Value strideDim = makeConst(strideDimVal);
Value leadDim = makeConst(leadDimVal);
Value baseAddr = getStridedElementPtr(
op->getLoc(), cast<MemRefType>(op.getTensor().getType()),
adaptor.getTensor(), {}, rewriter);
Value basePtr = b.create<LLVM::PtrToIntOp>(ti64, baseAddr);
// Just use 14 bits for base address
Value basePtr14bit = shiftRight(shiftLeft(basePtr, 46), 50);
int startSwizzleBit = 62, startOffsetBit = 49, startStrideBit = 32,
startLeadBit = 16, startBaseAddrBit = 0;
Value dsc = makeConst(0);
// // [62,64) swizzle type
dsc = insertBit(dsc, makeConst(swizzle), startSwizzleBit);
// // [49,52) base_offset
dsc = insertBit(dsc, makeConst(offsetVal), startOffsetBit);
// // [32,46) stride
dsc = insertBit(dsc, strideDim, startStrideBit);
// // [16,30) leading dimension
dsc = insertBit(dsc, leadDim, startLeadBit);
// // [0,14) start_address
dsc = insertBit(dsc, basePtr14bit, startBaseAddrBit);
LLVM_DEBUG(DBGS() << "Generating warpgroup.descriptor: "
<< "leading_off:" << leadDimVal << "\t"
<< "stride_off :" << strideDimVal << "\t"
<< "base_offset:" << offsetVal << "\t"
<< "layout_type:" << swizzle << " ("
<< nvgpu::stringifyTensorMapSwizzleKind(swizzleKind)
<< ")\n start_addr : " << baseAddr << "\n");
rewriter.replaceOp(op, dsc);
return success();
}
};
static Value makeI64Const(ImplicitLocOpBuilder &b, int32_t index) {
return b.create<LLVM::ConstantOp>(b.getIntegerType(64),
b.getI32IntegerAttr(index));
}
/// Returns a Value that holds data type enum that is expected by CUDA driver.
static Value elementTypeAsLLVMConstant(ImplicitLocOpBuilder &b, Type type) {
// Enum is from CUDA driver API
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html
enum CUtensorMapDataTypeEnum {
CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0,
CU_TENSOR_MAP_DATA_TYPE_UINT16,
CU_TENSOR_MAP_DATA_TYPE_UINT32,
CU_TENSOR_MAP_DATA_TYPE_INT32,
CU_TENSOR_MAP_DATA_TYPE_UINT64,
CU_TENSOR_MAP_DATA_TYPE_INT64,
CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ
};
if (type.isUnsignedInteger(8))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT8);
if (type.isUnsignedInteger(16))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT16);
if (type.isUnsignedInteger(32))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT32);
if (type.isUnsignedInteger(64))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT64);
if (type.isSignlessInteger(32))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT32);
if (type.isSignlessInteger(64))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT64);
if (type.isF16())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT16);
if (type.isF32())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT32);
if (type.isF64())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT64);
if (type.isBF16())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_BFLOAT16);
llvm_unreachable("Not supported data type");
}
struct NVGPUTmaCreateDescriptorOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaCreateDescriptorOp> {
using ConvertOpToLLVMPattern<
nvgpu::TmaCreateDescriptorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaCreateDescriptorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto llvmPointerType = LLVM::LLVMPointerType::get(op->getContext());
Type llvmInt64Type = IntegerType::get(op->getContext(), 64);
Value tensorElementType =
elementTypeAsLLVMConstant(b, op.getTensor().getType().getElementType());
auto promotedOperands = getTypeConverter()->promoteOperands(
b.getLoc(), op->getOperands(), adaptor.getOperands(), b);
Value boxArrayPtr = b.create<LLVM::AllocaOp>(llvmPointerType, llvmInt64Type,
makeI64Const(b, 5));
for (auto [index, value] : llvm::enumerate(adaptor.getBoxDimensions())) {
Value gep = b.create<LLVM::GEPOp>(llvmPointerType, llvmPointerType,
boxArrayPtr, makeI64Const(b, index));
b.create<LLVM::StoreOp>(value, gep);
}
nvgpu::TensorMapDescriptorType desc = op.getTensorMap().getType();
// Set Arguments for the function call
SmallVector<Value> arguments;
arguments.push_back(promotedOperands[0]); // rank
arguments.push_back(promotedOperands[1]); // descriptor
arguments.push_back(tensorElementType); // data type
arguments.push_back(
makeI64Const(b, (int)desc.getInterleave())); // interleave
arguments.push_back(makeI64Const(b, (int)desc.getSwizzle())); // swizzle
arguments.push_back(makeI64Const(b, (int)desc.getL2promo())); // l2promo
arguments.push_back(makeI64Const(b, (int)desc.getOob())); // oob
arguments.push_back(boxArrayPtr); // box dimensions
// Set data types of the arguments
SmallVector<Type> argTypes = {
llvmInt64Type, /* int64_t tensorRank */
llvmPointerType, /* ptr */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmPointerType /* ptr */
};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuTensorMapEncodeTiledMemref", llvmPointerType, argTypes};
Value tensorMap =
hostRegisterCallBuilder.create(b.getLoc(), b, arguments).getResult();
rewriter.replaceOp(op, tensorMap);
return success();
}
};
struct NVGPUWarpgroupMmaOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp> {
using ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp>::ConvertOpToLLVMPattern;
/// This is a helper class to generate required NVVM Ops for warp-group level
/// matrix multiplication.
/// When the given GEMM shape is larger than the shape of
/// a wgmma instrution in PTX, it can generate multiple NVVM::WgmmaMmaAsyncOp
/// Op(s), group and execute them asynchronously. The class also handles
/// waiting for completion and iterates through WarpgroupMatrixDescriptor to
/// create descriptors for each instruction.
///
/// For example this is the case when the shape of GEMM is 128x128x128
///
/// nvvm.wgmma.fence.aligned
///
/// nvvm.wgmma.mma.async descA, descB
/// iterate(descA, descB)
/// nvvm.wgmma.mma.async descA, descB
/// [6x times more]
///
/// nvvm.wgmma.group.sync.aligned
/// nvvm.wgmma.wait.group.sync [groupId]
///
class WarpgroupGemm {
nvgpu::WarpgroupMmaOp op;
ImplicitLocOpBuilder b;
OpAdaptor adaptor;
// Entire shape of the given Op
int64_t totalM, totalN, totalK;
// Shape of one wgmma instruction
int wgmmaM = 0, wgmmaN = 0, wgmmaK = 0;
// Iteration counts for GEMM
int iterationM = 0, iterationN = 0, iterationK = 0;
/// The function returns the shape of wgmma instruction that is defined in
/// PTX programming guide.
/// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-shape
void findWgmmaShape(int64_t sizeM, int64_t sizeN, Type inputElemType) {
wgmmaM = 64;
wgmmaN = sizeN;
if (inputElemType.isTF32()) {
wgmmaK = 8;
} else if (inputElemType.isF16() || inputElemType.isBF16()) {
wgmmaK = 16;
} else if (inputElemType.isFloat8E4M3FN() ||
inputElemType.isFloat8E5M2() || inputElemType.isInteger(16)) {
wgmmaK = 32;
} else if (inputElemType.isInteger(1)) {
wgmmaK = 256;
} else {
llvm_unreachable("msg: not supported K shape");
}
LLVM_DEBUG(DBGS() << "Generating WgmmaMmaAsyncOp shape[m = " << wgmmaM
<< ", n = " << wgmmaN << ", k = " << wgmmaK << "]\n");
}
/// Generates WGMMATypesAttr from MLIR Type
NVVM::WGMMATypesAttr generateWgmmaType(Type type,
bool useF32 = false) const {
auto getWgmmaType = [=](Type elemType) {
if (elemType.isF32() || elemType.isTF32())
return useF32 ? NVVM::WGMMATypes::f32 : NVVM::WGMMATypes::tf32;
if (elemType.isF16())
return NVVM::WGMMATypes::f16;
if (elemType.isBF16())
return NVVM::WGMMATypes::bf16;
if (elemType.isFloat8E4M3FN())
return NVVM::WGMMATypes::e4m3;
if (elemType.isFloat8E5M2())
return NVVM::WGMMATypes::e5m2;
if (elemType.isInteger(1))
return NVVM::WGMMATypes::b1;
if (elemType.isInteger(8))
return NVVM::WGMMATypes::s8;
if (elemType.isUnsignedInteger(8))
return NVVM::WGMMATypes::u8;
if (elemType.isInteger(32))
return NVVM::WGMMATypes::s32;
llvm_unreachable("unsupported type");
};
return NVVM::WGMMATypesAttr::get(op->getContext(), getWgmmaType(type));
}
/// Generates layout attribute for the input matrix for wgmma instruction
NVVM::MMALayoutAttr
generateWgmmaLayout(std::optional<bool> transpose) const {
if (transpose.value_or(false))
return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::col);
return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::row);
}
/// Generates shape attribute for wgmma instruction
NVVM::MMAShapeAttr generateWgmmaShape() const {
return NVVM::MMAShapeAttr::get(op->getContext(), wgmmaM, wgmmaN, wgmmaK);
}
/// Generates scale attributes of output matrix for wgmma instruction
NVVM::WGMMAScaleOutAttr generateScaleOut() const {
return NVVM::WGMMAScaleOutAttr::get(op->getContext(),
NVVM::WGMMAScaleOut::one);
}
/// Generates scale attributes of input matrix for wgmma instruction
NVVM::WGMMAScaleInAttr generateScaleIn() const {
return NVVM::WGMMAScaleInAttr::get(op->getContext(),
NVVM::WGMMAScaleIn::one);
}
/// Basic function to generate Add
Value makeAdd(Value lhs, Value rhs) {
return b.create<LLVM::AddOp>(lhs.getType(), lhs, rhs);
};
/// Moves the descriptor pointer of matrix-A for the next wgmma instruction.
/// Currently, it only handles row-major.
///
/// It moves the pointer like below for [128][64] size:
/// +2 +4 +6
/// ↓ ↓ ↓
/// descA ---> +--+--+--+--+
/// |->|->|->|->|
/// | | | | |
/// | | | | |
/// | | | | |
/// descA+512---> +-----------+
/// | | | | |
/// | | | | |
/// | | | | |
/// | | | | |
/// +-----------+
///
Value iterateDescriptorA(Value desc, int i, int j, int k) {
MemRefType matrixTypeA = op.getDescriptorA().getType().getTensor();
Type elemA = matrixTypeA.getElementType();
int byte = elemA.getIntOrFloatBitWidth() / 8;
int tileShapeA = matrixTypeA.getDimSize(1);
int incrementVal = ((wgmmaK * k) + (totalK * tileShapeA * i)) * byte;
incrementVal = incrementVal >> exclude4LSB;
LLVM_DEBUG(DBGS() << "\t\t[m: " << i << " n: " << j << " k: " << k
<< "] [wgmma descriptors] Descriptor A + "
<< incrementVal << " | \t ");
if (!incrementVal)
return desc;
return makeAdd(desc, makeI64Const(b, incrementVal));
}
/// Moves the descriptor pointer of matrix-B for the next wgmma instruction.
/// Currently, it only handles column-major.
///
/// It moves the pointer like below for [128][64] size:
/// descB ---> +--+--+--+--+--+--+--+--+
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// +--+--+--+--+--+--+--+--+
///
Value iterateDescriptorB(Value desc, int i, int j, int k) {
MemRefType matrixTypeB = op.getDescriptorB().getType().getTensor();
Type elemB = matrixTypeB.getElementType();
int byte = elemB.getIntOrFloatBitWidth() / 8;
int incrementVal = matrixTypeB.getDimSize(0) * wgmmaK * k * byte;
incrementVal = incrementVal >> exclude4LSB;
LLVM_DEBUG(DBGSE() << "Descriptor B + " << incrementVal << "\n");
if (!incrementVal)
return desc;
return makeAdd(desc, makeI64Const(b, incrementVal));
}
/// This function generates a WgmmaMmaAsyncOp using provided GMMA matrix
/// descriptors and arranges them based on induction variables: i, j, and k.
Value generateWgmma(int i, int j, int k, Value matrixC) {
LLVM_DEBUG(DBGS() << "\t wgmma."
<< "m" << wgmmaM << "n" << wgmmaN << "k" << wgmmaK
<< "(A[" << (iterationM * wgmmaM) << ":"
<< (iterationM * wgmmaM) + wgmmaM << "]["
<< (iterationK * wgmmaK) << ":"
<< (iterationK * wgmmaK + wgmmaK) << "] * "
<< " B[" << (iterationK * wgmmaK) << ":"
<< (iterationK * wgmmaK + wgmmaK) << "][" << 0 << ":"
<< wgmmaN << "])\n");
Value descriptorA = iterateDescriptorA(adaptor.getDescriptorA(), i, j, k);
Value descriptorB = iterateDescriptorB(adaptor.getDescriptorB(), i, j, k);
Type elemA = op.getDescriptorA().getType().getTensor().getElementType();
NVVM::WGMMATypesAttr itypeA = generateWgmmaType(elemA);
Type elemB = op.getDescriptorB().getType().getTensor().getElementType();
NVVM::WGMMATypesAttr itypeB = generateWgmmaType(elemB);
Type elemD = op.getMatrixC().getType().getFragmented().getElementType();
NVVM::WGMMATypesAttr itypeD = generateWgmmaType(elemD, true);
NVVM::MMAShapeAttr shape = generateWgmmaShape();
NVVM::WGMMAScaleOutAttr scaleOut = generateScaleOut();
NVVM::WGMMAScaleInAttr scaleIn = generateScaleIn();
NVVM::MMALayoutAttr layoutA = generateWgmmaLayout(op.getTransposeA());
NVVM::MMALayoutAttr layoutB = generateWgmmaLayout(!op.getTransposeB());
auto overflow = NVVM::MMAIntOverflowAttr::get(
op->getContext(), NVVM::MMAIntOverflow::wrapped);
return b.create<NVVM::WgmmaMmaAsyncOp>(
matrixC.getType(), matrixC, descriptorA, descriptorB, shape, itypeA,
itypeB, itypeD, scaleOut, scaleIn, scaleIn, layoutA, layoutB,
overflow);
}
/// Generates multiple wgmma instructions to complete the given GEMM shape
Value generateWgmmaGroup() {
Value wgmmaResult =
b.create<LLVM::UndefOp>(adaptor.getMatrixC().getType());
// Perform GEMM
SmallVector<Value> wgmmaResults;
for (int i = 0; i < iterationM; ++i) {
Value matrixC = b.create<LLVM::ExtractValueOp>(adaptor.getMatrixC(), i);
for (int j = 0; j < iterationN; ++j)
for (int k = 0; k < iterationK; ++k)
matrixC = generateWgmma(i, j, k, matrixC);
wgmmaResults.push_back(matrixC);
}
for (auto [idx, matrix] : llvm::enumerate(wgmmaResults)) {
wgmmaResult = b.create<LLVM::InsertValueOp>(wgmmaResult.getType(),
wgmmaResult, matrix, idx);
}
return wgmmaResult;
}
public:
WarpgroupGemm(nvgpu::WarpgroupMmaOp op, ImplicitLocOpBuilder &b,
OpAdaptor adaptor)
: op(op), b(b), adaptor(adaptor) {
// Find the entire GEMM Shape
totalM = op.getDescriptorA().getType().getTensor().getDimSize(0);
totalN = op.getDescriptorB().getType().getTensor().getDimSize(1);
totalK = op.getDescriptorA().getType().getTensor().getDimSize(1);
LLVM_DEBUG(DBGS() << "===--- GEMM D[" << totalM << "][" << totalN
<< "] += A[" << totalM << "][" << totalK << "] * B["
<< totalK << "][" << totalN << "] ---===\n");
// Find the shape for one wgmma instruction
findWgmmaShape(
totalM, totalN,
op.getDescriptorA().getType().getTensor().getElementType());
// Iterations counts to complete the given shape with wgmma shape
iterationM = totalM / wgmmaM;
iterationN = totalN / wgmmaN;
iterationK = totalK / wgmmaK;
}
/// Generates WgmmaMmaAsync Ops to complete the specified GEMM shape. It
/// includes generating a fence Op (WgmmaFenceAlignedOp) before the
/// instructions and group synchronization, as well as waiting
/// (WgmmaGroupSyncAlignedOp) for group synchronization
/// (WgmmaWaitGroupSyncOp) after the instructions.
Value generateWarpgroupMma() {
b.create<NVVM::WgmmaFenceAlignedOp>();
Value wgmmaResult = generateWgmmaGroup();
b.create<NVVM::WgmmaGroupSyncAlignedOp>();
b.create<NVVM::WgmmaWaitGroupSyncOp>(op.getWaitGroup());
return wgmmaResult;
}
};
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
// Step 1. Build a helper class
WarpgroupGemm warpgroupGemm(op, b, adaptor);
// Step 2. Get the entire GEMM Shape
Value wgmmaResult = warpgroupGemm.generateWarpgroupMma();
// Step 3. Replace fragmented result struct with the op results
rewriter.replaceOp(op, wgmmaResult);
return success();
}
};
struct NVGPUWarpgroupMmaStoreOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaStoreOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupMmaStoreOp>::ConvertOpToLLVMPattern;
/// This function stores a fragmented register matrix owned by a warp group
/// (128 threads) into a memref. Each thread has 64 registers, each the size
/// of a struct.
/// Here is what each threads (T) holds, each `d` is struct value with a
/// number.
///
/// Threads in warp-group (128 threads) and what they owns in the matrixD:
/// 0-31 Warp-0 -> MatrixD[0:15 ][0:N]
/// 32-63 Warp-1 -> MatrixD[16:31][0:N]
/// 64-95 Warp-2 -> MatrixD[32:47][0:N]
/// 96-127 Warp-3 -> MatrixD[48:64][0:N]
///
/// Matrix-D:
/// +______________________________________________________________________+
/// | 0-1 | 2-3 | 4-5 | 6-7 | 8-9 | 10-11|..|N-8,N-7 |
/// 0 | T0:d0-d1 |T1:d0-d1 |T2:d0-d1 |T3:d0-d1 |T0:d4-d5| T1:d4-d5..|T0:dX-dY|
/// 1 | T4:d0-d1 |T5:d0-d1 |T6:d0-d1 |T7:d0-d1 |T4:d4-d5| T5:d4-d5..|T4:dX-dY|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 8 | T0:d2-d3 |T1:d2-d3 |T2:d2-d3 |T3:d2-d3 |T0:d6-d7|T1:d6-d7,..|T0:dZ-dW|
/// 9 | T4:d2-d3 |T5:d2-d3 |T6:d2-d3 |T7:d2-d3 |T4:d6-d7| T5:d6-d7..|T4:dZ-dW|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 15| T28:d2-d3|T29:d2-d3|T30:d2-d3|T31:d2-d3|........|...........|........|
/// 16| T32:d2-d3|T33:d2-d3|T34:d2-d3|T35:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 32| T64:d2-d3|T65:d2-d3|T66:d2-d3|T67:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 48| T96:d2-d3|T97:d2-d3|T98:d2-d3|T99:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// +______________________________________________________________________+
///
/// \param rewriter: The pattern rewriter.
/// \param matrixD: Result of the warp-group MMA operation (fragmented
/// matrix). It is holded by a thread and a struct with 64 elements.
/// \param dstMemref: The memref where the registers will be stored.
/// \param offset: the offset within the memref where the registers will be
/// stored.
void storeFragmentedMatrix(ImplicitLocOpBuilder &b, Value matrixD,
TypedValue<MemRefType> dstMemref,
int offset) const {
Type i32 = b.getI32Type();
auto makeConst = [&](int32_t index) -> Value {
return b.create<LLVM::ConstantOp>(i32, b.getI32IntegerAttr(index));
};
Value c1 = makeConst(1);
Value c2 = makeConst(2);
Value c4 = makeConst(4);
Value c8 = makeConst(8);
Value c16 = makeConst(16);
Value warpSize = makeConst(kWarpSize);
auto makeMul = [&](Value lhs, Value rhs) -> Value {
return b.create<LLVM::MulOp>(lhs.getType(), lhs, rhs);
};
auto makeAdd = [&](Value lhs, Value rhs) -> Value {
return b.create<LLVM::AddOp>(lhs.getType(), lhs, rhs);
};
auto makeExtractAndStore = [&](int i, Value wgmmaResult, Value x, Value y,
TypedValue<::mlir::MemRefType> memref) {
Type it = b.getIndexType();
Value idx = b.create<arith::IndexCastOp>(it, x);
Value idy0 = b.create<arith::IndexCastOp>(it, y);
Value idy1 = b.create<arith::IndexCastOp>(it, makeAdd(y, c1));
Value d0 = b.create<LLVM::ExtractValueOp>(wgmmaResult, i);
Value d1 = b.create<LLVM::ExtractValueOp>(wgmmaResult, i + 1);
b.create<memref::StoreOp>(d0, memref, ValueRange{idx, idy0});
b.create<memref::StoreOp>(d1, memref, ValueRange{idx, idy1});
};
Value tidx = b.create<NVVM::ThreadIdXOp>(i32);
Value laneId = b.create<LLVM::URemOp>(i32, tidx, warpSize);
Value warpId = b.create<LLVM::UDivOp>(i32, tidx, warpSize);
Value lane4Id = b.create<LLVM::UDivOp>(i32, laneId, c4);
Value lane4modId = b.create<LLVM::URemOp>(i32, laneId, c4);
Value tj = makeMul(lane4modId, c2);
Value ti = makeAdd(lane4Id, makeMul(warpId, c16));
if (offset)
ti = makeAdd(ti, makeConst(offset));
auto structType = cast<LLVM::LLVMStructType>(matrixD.getType());
// Number of 32-bit registers owns per thread
constexpr unsigned numAdjacentRegisters = 2;
// Number of 8x8 matrices one below another per warp
constexpr unsigned numStackedMatrices = 2;
size_t storeCount = (structType.getBody().size() /
(numStackedMatrices * numAdjacentRegisters));
for (size_t i = 0; i < numStackedMatrices; ++i) {
Value idx = makeAdd(ti, makeMul(makeConst(i), c8));
for (size_t j = 0; j < storeCount; ++j) {
Value idy = makeAdd(tj, makeMul(makeConst(j), c8));
size_t structIndex = (i * numAdjacentRegisters) +
(j * (numStackedMatrices * numAdjacentRegisters));
makeExtractAndStore(structIndex, matrixD, idx, idy, dstMemref);
}
}
}
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
int offset = 0;
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value matriDValue = adaptor.getMatrixD();
auto stype = cast<LLVM::LLVMStructType>(matriDValue.getType());
for (auto [idx, matrixD] : llvm::enumerate(stype.getBody())) {
auto structType = cast<LLVM::LLVMStructType>(matrixD);
Value innerStructValue = b.create<LLVM::ExtractValueOp>(matriDValue, idx);
storeFragmentedMatrix(b, innerStructValue, op.getDstMemref(), offset);
offset += structType.getBody().size();
}
rewriter.eraseOp(op);
return success();
}
};
struct NVGPUWarpgroupMmaInitAccumulatorOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaInitAccumulatorOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupMmaInitAccumulatorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaInitAccumulatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
LLVM::LLVMStructType packStructType = cast<LLVM::LLVMStructType>(
getTypeConverter()->convertType(op.getMatrixC().getType()));
Type elemType = cast<LLVM::LLVMStructType>(packStructType.getBody().front())
.getBody()
.front();
Value zero = b.create<LLVM::ConstantOp>(elemType, b.getZeroAttr(elemType));
Value packStruct = b.create<LLVM::UndefOp>(packStructType);
SmallVector<Value> innerStructs;
// Unpack the structs and set all values to zero
for (auto [idx, s] : llvm::enumerate(packStructType.getBody())) {
auto structType = cast<LLVM::LLVMStructType>(s);
Value structValue = b.create<LLVM::ExtractValueOp>(packStruct, idx);
for (unsigned i = 0; i < structType.getBody().size(); ++i) {
structValue = b.create<LLVM::InsertValueOp>(
structType, structValue, zero, ArrayRef<int64_t>({i}));
}
innerStructs.push_back(structValue);
}
// Pack the inner structs into a single struct
for (auto [idx, matrix] : llvm::enumerate(innerStructs)) {
packStruct = b.create<LLVM::InsertValueOp>(packStruct.getType(),
packStruct, matrix, idx);
}
rewriter.replaceOp(op, packStruct);
return success();
}
};
struct NVGPUTmaPrefetchOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp> {
using ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaPrefetchOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<NVVM::PrefetchTensorMapOp>(
op, adaptor.getTensorMapDescriptor(), adaptor.getPredicate());
return success();
}
};
} // namespace
void mlir::populateNVGPUToNVVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
patterns.add<
NVGPUMBarrierCreateLowering, // nvgpu.mbarrier.create
NVGPUMBarrierInitLowering, // nvgpu.mbarrier.init
NVGPUMBarrierArriveLowering, // nvgpu.mbarrier.arrive
NVGPUMBarrierArriveNoCompleteLowering, // nvgpu.mbarrier.arrive.no_complete
NVGPUMBarrierTestWaitLowering, // nvgpu.mbarrier.test_wait_parity
NVGPUMBarrierTryWaitParityLowering, // nvgpu.mbarrier.try_wait_parity
NVGPUTmaAsyncLoadOpLowering, // nvgpu.tma.async.load
NVGPUTmaAsyncStoreOpLowering, // nvgpu.tma.async.store
NVGPUTmaCreateDescriptorOpLowering, // nvgpu.tma.create.descriptor
NVGPUTmaPrefetchOpLowering, // nvgpu.tma.prefetch.descriptor
NVGPUMBarrierArriveExpectTxLowering, // nvgpu.mbarrier.arrive.expect_tx
NVGPUGenerateWarpgroupDescriptorLowering, // nvgpu.warpgroup.generate.descriptor
NVGPUWarpgroupMmaOpLowering, // nvgpu.warpgroup.mma
NVGPUWarpgroupMmaStoreOpLowering, // nvgpu.warpgroup.mma.store
NVGPUWarpgroupMmaInitAccumulatorOpLowering, // nvgpu.warpgroup.mma.init.accumulator
MmaSyncOptoNVVM, MmaLdMatrixOpToNVVM, NVGPUAsyncCopyLowering,
NVGPUAsyncCreateGroupLowering, NVGPUAsyncWaitLowering,
NVGPUMmaSparseSyncLowering>(converter);
}
|