1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
//===- SCFToOpenMP.cpp - Structured Control Flow to OpenMP conversion -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert scf.parallel operations into OpenMP
// parallel loops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SCFToOpenMP/SCFToOpenMP.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTSCFTOOPENMPPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
/// Matches a block containing a "simple" reduction. The expected shape of the
/// block is as follows.
///
/// ^bb(%arg0, %arg1):
/// %0 = OpTy(%arg0, %arg1)
/// scf.reduce.return %0
template <typename... OpTy>
static bool matchSimpleReduction(Block &block) {
if (block.empty() || llvm::hasSingleElement(block) ||
std::next(block.begin(), 2) != block.end())
return false;
if (block.getNumArguments() != 2)
return false;
SmallVector<Operation *, 4> combinerOps;
Value reducedVal = matchReduction({block.getArguments()[1]},
/*redPos=*/0, combinerOps);
if (!reducedVal || !isa<BlockArgument>(reducedVal) || combinerOps.size() != 1)
return false;
return isa<OpTy...>(combinerOps[0]) &&
isa<scf::ReduceReturnOp>(block.back()) &&
block.front().getOperands() == block.getArguments();
}
/// Matches a block containing a select-based min/max reduction. The types of
/// select and compare operations are provided as template arguments. The
/// comparison predicates suitable for min and max are provided as function
/// arguments. If a reduction is matched, `ifMin` will be set if the reduction
/// compute the minimum and unset if it computes the maximum, otherwise it
/// remains unmodified. The expected shape of the block is as follows.
///
/// ^bb(%arg0, %arg1):
/// %0 = CompareOpTy(<one-of-predicates>, %arg0, %arg1)
/// %1 = SelectOpTy(%0, %arg0, %arg1) // %arg0, %arg1 may be swapped here.
/// scf.reduce.return %1
template <
typename CompareOpTy, typename SelectOpTy,
typename Predicate = decltype(std::declval<CompareOpTy>().getPredicate())>
static bool
matchSelectReduction(Block &block, ArrayRef<Predicate> lessThanPredicates,
ArrayRef<Predicate> greaterThanPredicates, bool &isMin) {
static_assert(
llvm::is_one_of<SelectOpTy, arith::SelectOp, LLVM::SelectOp>::value,
"only arithmetic and llvm select ops are supported");
// Expect exactly three operations in the block.
if (block.empty() || llvm::hasSingleElement(block) ||
std::next(block.begin(), 2) == block.end() ||
std::next(block.begin(), 3) != block.end())
return false;
// Check op kinds.
auto compare = dyn_cast<CompareOpTy>(block.front());
auto select = dyn_cast<SelectOpTy>(block.front().getNextNode());
auto terminator = dyn_cast<scf::ReduceReturnOp>(block.back());
if (!compare || !select || !terminator)
return false;
// Block arguments must be compared.
if (compare->getOperands() != block.getArguments())
return false;
// Detect whether the comparison is less-than or greater-than, otherwise bail.
bool isLess;
if (llvm::is_contained(lessThanPredicates, compare.getPredicate())) {
isLess = true;
} else if (llvm::is_contained(greaterThanPredicates,
compare.getPredicate())) {
isLess = false;
} else {
return false;
}
if (select.getCondition() != compare.getResult())
return false;
// Detect if the operands are swapped between cmpf and select. Match the
// comparison type with the requested type or with the opposite of the
// requested type if the operands are swapped. Use generic accessors because
// std and LLVM versions of select have different operand names but identical
// positions.
constexpr unsigned kTrueValue = 1;
constexpr unsigned kFalseValue = 2;
bool sameOperands = select.getOperand(kTrueValue) == compare.getLhs() &&
select.getOperand(kFalseValue) == compare.getRhs();
bool swappedOperands = select.getOperand(kTrueValue) == compare.getRhs() &&
select.getOperand(kFalseValue) == compare.getLhs();
if (!sameOperands && !swappedOperands)
return false;
if (select.getResult() != terminator.getResult())
return false;
// The reduction is a min if it uses less-than predicates with same operands
// or greather-than predicates with swapped operands. Similarly for max.
isMin = (isLess && sameOperands) || (!isLess && swappedOperands);
return isMin || (isLess & swappedOperands) || (!isLess && sameOperands);
}
/// Returns the float semantics for the given float type.
static const llvm::fltSemantics &fltSemanticsForType(FloatType type) {
if (type.isF16())
return llvm::APFloat::IEEEhalf();
if (type.isF32())
return llvm::APFloat::IEEEsingle();
if (type.isF64())
return llvm::APFloat::IEEEdouble();
if (type.isF128())
return llvm::APFloat::IEEEquad();
if (type.isBF16())
return llvm::APFloat::BFloat();
if (type.isF80())
return llvm::APFloat::x87DoubleExtended();
llvm_unreachable("unknown float type");
}
/// Returns an attribute with the minimum (if `min` is set) or the maximum value
/// (otherwise) for the given float type.
static Attribute minMaxValueForFloat(Type type, bool min) {
auto fltType = cast<FloatType>(type);
return FloatAttr::get(
type, llvm::APFloat::getLargest(fltSemanticsForType(fltType), min));
}
/// Returns an attribute with the signed integer minimum (if `min` is set) or
/// the maximum value (otherwise) for the given integer type, regardless of its
/// signedness semantics (only the width is considered).
static Attribute minMaxValueForSignedInt(Type type, bool min) {
auto intType = cast<IntegerType>(type);
unsigned bitwidth = intType.getWidth();
return IntegerAttr::get(type, min ? llvm::APInt::getSignedMinValue(bitwidth)
: llvm::APInt::getSignedMaxValue(bitwidth));
}
/// Returns an attribute with the unsigned integer minimum (if `min` is set) or
/// the maximum value (otherwise) for the given integer type, regardless of its
/// signedness semantics (only the width is considered).
static Attribute minMaxValueForUnsignedInt(Type type, bool min) {
auto intType = cast<IntegerType>(type);
unsigned bitwidth = intType.getWidth();
return IntegerAttr::get(type, min ? llvm::APInt::getZero(bitwidth)
: llvm::APInt::getAllOnes(bitwidth));
}
/// Creates an OpenMP reduction declaration and inserts it into the provided
/// symbol table. The declaration has a constant initializer with the neutral
/// value `initValue`, and the `reductionIndex`-th reduction combiner carried
/// over from `reduce`.
static omp::DeclareReductionOp
createDecl(PatternRewriter &builder, SymbolTable &symbolTable,
scf::ReduceOp reduce, int64_t reductionIndex, Attribute initValue) {
OpBuilder::InsertionGuard guard(builder);
Type type = reduce.getOperands()[reductionIndex].getType();
auto decl = builder.create<omp::DeclareReductionOp>(reduce.getLoc(),
"__scf_reduction", type);
symbolTable.insert(decl);
builder.createBlock(&decl.getInitializerRegion(),
decl.getInitializerRegion().end(), {type},
{reduce.getOperands()[reductionIndex].getLoc()});
builder.setInsertionPointToEnd(&decl.getInitializerRegion().back());
Value init =
builder.create<LLVM::ConstantOp>(reduce.getLoc(), type, initValue);
builder.create<omp::YieldOp>(reduce.getLoc(), init);
Operation *terminator =
&reduce.getReductions()[reductionIndex].front().back();
assert(isa<scf::ReduceReturnOp>(terminator) &&
"expected reduce op to be terminated by redure return");
builder.setInsertionPoint(terminator);
builder.replaceOpWithNewOp<omp::YieldOp>(terminator,
terminator->getOperands());
builder.inlineRegionBefore(reduce.getReductions()[reductionIndex],
decl.getReductionRegion(),
decl.getReductionRegion().end());
return decl;
}
/// Adds an atomic reduction combiner to the given OpenMP reduction declaration
/// using llvm.atomicrmw of the given kind.
static omp::DeclareReductionOp addAtomicRMW(OpBuilder &builder,
LLVM::AtomicBinOp atomicKind,
omp::DeclareReductionOp decl,
scf::ReduceOp reduce,
int64_t reductionIndex) {
OpBuilder::InsertionGuard guard(builder);
auto ptrType = LLVM::LLVMPointerType::get(builder.getContext());
Location reduceOperandLoc = reduce.getOperands()[reductionIndex].getLoc();
builder.createBlock(&decl.getAtomicReductionRegion(),
decl.getAtomicReductionRegion().end(), {ptrType, ptrType},
{reduceOperandLoc, reduceOperandLoc});
Block *atomicBlock = &decl.getAtomicReductionRegion().back();
builder.setInsertionPointToEnd(atomicBlock);
Value loaded = builder.create<LLVM::LoadOp>(reduce.getLoc(), decl.getType(),
atomicBlock->getArgument(1));
builder.create<LLVM::AtomicRMWOp>(reduce.getLoc(), atomicKind,
atomicBlock->getArgument(0), loaded,
LLVM::AtomicOrdering::monotonic);
builder.create<omp::YieldOp>(reduce.getLoc(), ArrayRef<Value>());
return decl;
}
/// Creates an OpenMP reduction declaration that corresponds to the given SCF
/// reduction and returns it. Recognizes common reductions in order to identify
/// the neutral value, necessary for the OpenMP declaration. If the reduction
/// cannot be recognized, returns null.
static omp::DeclareReductionOp declareReduction(PatternRewriter &builder,
scf::ReduceOp reduce,
int64_t reductionIndex) {
Operation *container = SymbolTable::getNearestSymbolTable(reduce);
SymbolTable symbolTable(container);
// Insert reduction declarations in the symbol-table ancestor before the
// ancestor of the current insertion point.
Operation *insertionPoint = reduce;
while (insertionPoint->getParentOp() != container)
insertionPoint = insertionPoint->getParentOp();
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPoint(insertionPoint);
assert(llvm::hasSingleElement(reduce.getReductions()[reductionIndex]) &&
"expected reduction region to have a single element");
// Match simple binary reductions that can be expressed with atomicrmw.
Type type = reduce.getOperands()[reductionIndex].getType();
Block &reduction = reduce.getReductions()[reductionIndex].front();
if (matchSimpleReduction<arith::AddFOp, LLVM::FAddOp>(reduction)) {
omp::DeclareReductionOp decl =
createDecl(builder, symbolTable, reduce, reductionIndex,
builder.getFloatAttr(type, 0.0));
return addAtomicRMW(builder, LLVM::AtomicBinOp::fadd, decl, reduce,
reductionIndex);
}
if (matchSimpleReduction<arith::AddIOp, LLVM::AddOp>(reduction)) {
omp::DeclareReductionOp decl =
createDecl(builder, symbolTable, reduce, reductionIndex,
builder.getIntegerAttr(type, 0));
return addAtomicRMW(builder, LLVM::AtomicBinOp::add, decl, reduce,
reductionIndex);
}
if (matchSimpleReduction<arith::OrIOp, LLVM::OrOp>(reduction)) {
omp::DeclareReductionOp decl =
createDecl(builder, symbolTable, reduce, reductionIndex,
builder.getIntegerAttr(type, 0));
return addAtomicRMW(builder, LLVM::AtomicBinOp::_or, decl, reduce,
reductionIndex);
}
if (matchSimpleReduction<arith::XOrIOp, LLVM::XOrOp>(reduction)) {
omp::DeclareReductionOp decl =
createDecl(builder, symbolTable, reduce, reductionIndex,
builder.getIntegerAttr(type, 0));
return addAtomicRMW(builder, LLVM::AtomicBinOp::_xor, decl, reduce,
reductionIndex);
}
if (matchSimpleReduction<arith::AndIOp, LLVM::AndOp>(reduction)) {
omp::DeclareReductionOp decl = createDecl(
builder, symbolTable, reduce, reductionIndex,
builder.getIntegerAttr(
type, llvm::APInt::getAllOnes(type.getIntOrFloatBitWidth())));
return addAtomicRMW(builder, LLVM::AtomicBinOp::_and, decl, reduce,
reductionIndex);
}
// Match simple binary reductions that cannot be expressed with atomicrmw.
// TODO: add atomic region using cmpxchg (which needs atomic load to be
// available as an op).
if (matchSimpleReduction<arith::MulFOp, LLVM::FMulOp>(reduction)) {
return createDecl(builder, symbolTable, reduce, reductionIndex,
builder.getFloatAttr(type, 1.0));
}
if (matchSimpleReduction<arith::MulIOp, LLVM::MulOp>(reduction)) {
return createDecl(builder, symbolTable, reduce, reductionIndex,
builder.getIntegerAttr(type, 1));
}
// Match select-based min/max reductions.
bool isMin;
if (matchSelectReduction<arith::CmpFOp, arith::SelectOp>(
reduction, {arith::CmpFPredicate::OLT, arith::CmpFPredicate::OLE},
{arith::CmpFPredicate::OGT, arith::CmpFPredicate::OGE}, isMin) ||
matchSelectReduction<LLVM::FCmpOp, LLVM::SelectOp>(
reduction, {LLVM::FCmpPredicate::olt, LLVM::FCmpPredicate::ole},
{LLVM::FCmpPredicate::ogt, LLVM::FCmpPredicate::oge}, isMin)) {
return createDecl(builder, symbolTable, reduce, reductionIndex,
minMaxValueForFloat(type, !isMin));
}
if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
reduction, {arith::CmpIPredicate::slt, arith::CmpIPredicate::sle},
{arith::CmpIPredicate::sgt, arith::CmpIPredicate::sge}, isMin) ||
matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
reduction, {LLVM::ICmpPredicate::slt, LLVM::ICmpPredicate::sle},
{LLVM::ICmpPredicate::sgt, LLVM::ICmpPredicate::sge}, isMin)) {
omp::DeclareReductionOp decl =
createDecl(builder, symbolTable, reduce, reductionIndex,
minMaxValueForSignedInt(type, !isMin));
return addAtomicRMW(builder,
isMin ? LLVM::AtomicBinOp::min : LLVM::AtomicBinOp::max,
decl, reduce, reductionIndex);
}
if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
reduction, {arith::CmpIPredicate::ult, arith::CmpIPredicate::ule},
{arith::CmpIPredicate::ugt, arith::CmpIPredicate::uge}, isMin) ||
matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
reduction, {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::ule},
{LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::uge}, isMin)) {
omp::DeclareReductionOp decl =
createDecl(builder, symbolTable, reduce, reductionIndex,
minMaxValueForUnsignedInt(type, !isMin));
return addAtomicRMW(
builder, isMin ? LLVM::AtomicBinOp::umin : LLVM::AtomicBinOp::umax,
decl, reduce, reductionIndex);
}
return nullptr;
}
namespace {
struct ParallelOpLowering : public OpRewritePattern<scf::ParallelOp> {
static constexpr unsigned kUseOpenMPDefaultNumThreads = 0;
unsigned numThreads;
ParallelOpLowering(MLIRContext *context,
unsigned numThreads = kUseOpenMPDefaultNumThreads)
: OpRewritePattern<scf::ParallelOp>(context), numThreads(numThreads) {}
LogicalResult matchAndRewrite(scf::ParallelOp parallelOp,
PatternRewriter &rewriter) const override {
// Declare reductions.
// TODO: consider checking it here is already a compatible reduction
// declaration and use it instead of redeclaring.
SmallVector<Attribute> reductionDeclSymbols;
SmallVector<omp::DeclareReductionOp> ompReductionDecls;
auto reduce = cast<scf::ReduceOp>(parallelOp.getBody()->getTerminator());
for (int64_t i = 0, e = parallelOp.getNumReductions(); i < e; ++i) {
omp::DeclareReductionOp decl = declareReduction(rewriter, reduce, i);
ompReductionDecls.push_back(decl);
if (!decl)
return failure();
reductionDeclSymbols.push_back(
SymbolRefAttr::get(rewriter.getContext(), decl.getSymName()));
}
// Allocate reduction variables. Make sure the we don't overflow the stack
// with local `alloca`s by saving and restoring the stack pointer.
Location loc = parallelOp.getLoc();
Value one = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getIntegerType(64), rewriter.getI64IntegerAttr(1));
SmallVector<Value> reductionVariables;
reductionVariables.reserve(parallelOp.getNumReductions());
auto ptrType = LLVM::LLVMPointerType::get(parallelOp.getContext());
for (Value init : parallelOp.getInitVals()) {
assert((LLVM::isCompatibleType(init.getType()) ||
isa<LLVM::PointerElementTypeInterface>(init.getType())) &&
"cannot create a reduction variable if the type is not an LLVM "
"pointer element");
Value storage =
rewriter.create<LLVM::AllocaOp>(loc, ptrType, init.getType(), one, 0);
rewriter.create<LLVM::StoreOp>(loc, init, storage);
reductionVariables.push_back(storage);
}
// Replace the reduction operations contained in this loop. Must be done
// here rather than in a separate pattern to have access to the list of
// reduction variables.
for (auto [x, y, rD] : llvm::zip_equal(
reductionVariables, reduce.getOperands(), ompReductionDecls)) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(reduce);
Region &redRegion = rD.getReductionRegion();
// The SCF dialect by definition contains only structured operations
// and hence the SCF reduction region will contain a single block.
// The ompReductionDecls region is a copy of the SCF reduction region
// and hence has the same property.
assert(redRegion.hasOneBlock() &&
"expect reduction region to have one block");
Value pvtRedVar = parallelOp.getRegion().addArgument(x.getType(), loc);
Value pvtRedVal = rewriter.create<LLVM::LoadOp>(reduce.getLoc(),
rD.getType(), pvtRedVar);
// Make a copy of the reduction combiner region in the body
mlir::OpBuilder builder(rewriter.getContext());
builder.setInsertionPoint(reduce);
mlir::IRMapping mapper;
assert(redRegion.getNumArguments() == 2 &&
"expect reduction region to have two arguments");
mapper.map(redRegion.getArgument(0), pvtRedVal);
mapper.map(redRegion.getArgument(1), y);
for (auto &op : redRegion.getOps()) {
Operation *cloneOp = builder.clone(op, mapper);
if (auto yieldOp = dyn_cast<omp::YieldOp>(*cloneOp)) {
assert(yieldOp && yieldOp.getResults().size() == 1 &&
"expect YieldOp in reduction region to return one result");
Value redVal = yieldOp.getResults()[0];
rewriter.create<LLVM::StoreOp>(loc, redVal, pvtRedVar);
rewriter.eraseOp(yieldOp);
break;
}
}
}
rewriter.eraseOp(reduce);
Value numThreadsVar;
if (numThreads > 0) {
numThreadsVar = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32IntegerAttr(numThreads));
}
// Create the parallel wrapper.
auto ompParallel = rewriter.create<omp::ParallelOp>(
loc,
/* if_expr = */ Value{},
/* num_threads_var = */ numThreadsVar,
/* allocate_vars = */ llvm::SmallVector<Value>{},
/* allocators_vars = */ llvm::SmallVector<Value>{},
/* reduction_vars = */ llvm::SmallVector<Value>{},
/* reduction_vars_isbyref = */ DenseBoolArrayAttr{},
/* reductions = */ ArrayAttr{},
/* proc_bind_val = */ omp::ClauseProcBindKindAttr{},
/* private_vars = */ ValueRange(),
/* privatizers = */ nullptr);
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.createBlock(&ompParallel.getRegion());
// Replace the loop.
{
OpBuilder::InsertionGuard allocaGuard(rewriter);
// Create worksharing loop wrapper.
auto wsloopOp = rewriter.create<omp::WsloopOp>(parallelOp.getLoc());
if (!reductionVariables.empty()) {
wsloopOp.setReductionsAttr(
ArrayAttr::get(rewriter.getContext(), reductionDeclSymbols));
wsloopOp.getReductionVarsMutable().append(reductionVariables);
llvm::SmallVector<bool> byRefVec;
// false because these reductions always reduce scalars and so do
// not need to pass by reference
byRefVec.resize(reductionVariables.size(), false);
wsloopOp.setReductionVarsByref(
DenseBoolArrayAttr::get(rewriter.getContext(), byRefVec));
}
rewriter.create<omp::TerminatorOp>(loc); // omp.parallel terminator.
// The wrapper's entry block arguments will define the reduction
// variables.
llvm::SmallVector<mlir::Type> reductionTypes;
reductionTypes.reserve(reductionVariables.size());
llvm::transform(reductionVariables, std::back_inserter(reductionTypes),
[](mlir::Value v) { return v.getType(); });
rewriter.createBlock(
&wsloopOp.getRegion(), {}, reductionTypes,
llvm::SmallVector<mlir::Location>(reductionVariables.size(),
parallelOp.getLoc()));
rewriter.setInsertionPoint(
rewriter.create<omp::TerminatorOp>(parallelOp.getLoc()));
// Create loop nest and populate region with contents of scf.parallel.
auto loopOp = rewriter.create<omp::LoopNestOp>(
parallelOp.getLoc(), parallelOp.getLowerBound(),
parallelOp.getUpperBound(), parallelOp.getStep());
rewriter.inlineRegionBefore(parallelOp.getRegion(), loopOp.getRegion(),
loopOp.getRegion().begin());
// Remove reduction-related block arguments from omp.loop_nest and
// redirect uses to the corresponding omp.wsloop block argument.
mlir::Block &loopOpEntryBlock = loopOp.getRegion().front();
unsigned numLoops = parallelOp.getNumLoops();
rewriter.replaceAllUsesWith(
loopOpEntryBlock.getArguments().drop_front(numLoops),
wsloopOp.getRegion().getArguments());
loopOpEntryBlock.eraseArguments(
numLoops, loopOpEntryBlock.getNumArguments() - numLoops);
Block *ops =
rewriter.splitBlock(&loopOpEntryBlock, loopOpEntryBlock.begin());
rewriter.setInsertionPointToStart(&loopOpEntryBlock);
auto scope = rewriter.create<memref::AllocaScopeOp>(parallelOp.getLoc(),
TypeRange());
rewriter.create<omp::YieldOp>(loc, ValueRange());
Block *scopeBlock = rewriter.createBlock(&scope.getBodyRegion());
rewriter.mergeBlocks(ops, scopeBlock);
rewriter.setInsertionPointToEnd(&*scope.getBodyRegion().begin());
rewriter.create<memref::AllocaScopeReturnOp>(loc, ValueRange());
}
}
// Load loop results.
SmallVector<Value> results;
results.reserve(reductionVariables.size());
for (auto [variable, type] :
llvm::zip(reductionVariables, parallelOp.getResultTypes())) {
Value res = rewriter.create<LLVM::LoadOp>(loc, type, variable);
results.push_back(res);
}
rewriter.replaceOp(parallelOp, results);
return success();
}
};
/// Applies the conversion patterns in the given function.
static LogicalResult applyPatterns(ModuleOp module, unsigned numThreads) {
ConversionTarget target(*module.getContext());
target.addIllegalOp<scf::ReduceOp, scf::ReduceReturnOp, scf::ParallelOp>();
target.addLegalDialect<omp::OpenMPDialect, LLVM::LLVMDialect,
memref::MemRefDialect>();
RewritePatternSet patterns(module.getContext());
patterns.add<ParallelOpLowering>(module.getContext(), numThreads);
FrozenRewritePatternSet frozen(std::move(patterns));
return applyPartialConversion(module, target, frozen);
}
/// A pass converting SCF operations to OpenMP operations.
struct SCFToOpenMPPass
: public impl::ConvertSCFToOpenMPPassBase<SCFToOpenMPPass> {
using Base::Base;
/// Pass entry point.
void runOnOperation() override {
if (failed(applyPatterns(getOperation(), numThreads)))
signalPassFailure();
}
};
} // namespace
|