1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
|
//===- TosaToLinalgNamed.cpp - Lowering Tosa to Linalg Named Ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These rewriters lower from the Tosa to the Linalg named ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include <numeric>
#include <type_traits>
using namespace mlir;
using namespace mlir::tosa;
static mlir::Value applyPad(Location loc, Value input, ArrayRef<int64_t> pad,
TypedAttr padAttr, OpBuilder &rewriter) {
// Input should be padded only if necessary.
if (llvm::all_of(pad, [](int64_t p) { return p == 0; }))
return input;
ShapedType inputTy = cast<ShapedType>(input.getType());
Type inputETy = inputTy.getElementType();
auto inputShape = inputTy.getShape();
assert((inputShape.size() * 2) == pad.size());
SmallVector<int64_t, 4> paddedShape;
SmallVector<OpFoldResult, 8> lowIndices;
SmallVector<OpFoldResult, 8> highIndices;
for (size_t i : llvm::seq(inputShape.size())) {
auto lowPad = pad[i * 2];
auto highPad = pad[i * 2 + 1];
if (ShapedType::isDynamic(inputShape[i]))
paddedShape.push_back(inputShape[i]);
else
paddedShape.push_back(inputShape[i] + highPad + lowPad);
lowIndices.push_back(rewriter.getIndexAttr(lowPad));
highIndices.push_back(rewriter.getIndexAttr(highPad));
}
Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr);
return rewriter.create<tensor::PadOp>(
loc, RankedTensorType::get(paddedShape, inputETy), input, lowIndices,
highIndices, padValue);
}
static mlir::Value
linalgIntBroadcastExtSIAdd(PatternRewriter &rewriter, Location loc, Value bias,
Value conv, Value result,
ArrayRef<AffineMap> indexingMaps) {
ShapedType resultTy = cast<ShapedType>(conv.getType());
return rewriter
.create<linalg::GenericOp>(
loc, resultTy, ValueRange({bias, conv}), result, indexingMaps,
getNParallelLoopsAttrs(resultTy.getRank()),
[](OpBuilder &builder, Location loc, ValueRange args) {
Value biasVal = args[0];
Type resType = args[1].getType();
if (resType != biasVal.getType()) {
biasVal = builder.create<arith::ExtSIOp>(loc, resType, biasVal);
}
Value added = builder.create<arith::AddIOp>(loc, biasVal, args[1]);
builder.create<linalg::YieldOp>(loc, added);
})
.getResult(0);
}
// Broadcast the source value to all the outer dimensions of the result value.
// If required, the element type is expanded using an arith.extsi operation.
static mlir::Value linalgBroadcastAndMaybeExtSI(PatternRewriter &rewriter,
Location loc, Value source,
Value result) {
ShapedType resultTy = cast<ShapedType>(result.getType());
ShapedType sourceTy = cast<ShapedType>(source.getType());
int64_t resultRank = resultTy.getRank();
int64_t sourceRank = sourceTy.getRank();
// The source tensor is broadcast to all the outer dimensions of the
// result tensor.
SmallVector<AffineExpr> sourceDims;
// In the case of a rank one source tensor with a single element TOSA
// specifies that the value be broadcast meaning we need an edge case for a
// constant map.
assert(sourceTy.hasStaticShape() &&
"Dynamic broadcasting shapes not supported!");
if (sourceRank == 1 && sourceTy.getDimSize(0) == 1) {
sourceDims.push_back(rewriter.getAffineConstantExpr(0));
} else {
for (auto dim : llvm::seq<int64_t>(0, sourceRank)) {
auto expr = rewriter.getAffineDimExpr(dim + resultRank - sourceRank);
sourceDims.push_back(expr);
}
}
// Creating maps for the input and output of the broacast-like generic op.
SmallVector<AffineMap, 2> indexingMaps = {
// Broadcast the last dimension of the bias to all output dimensions.
AffineMap::get(/*dimCount=*/resultRank,
/*symbolCount=*/0, sourceDims, rewriter.getContext()),
// Output indexing map.
rewriter.getMultiDimIdentityMap(resultRank)};
// Build the broadcast-like operation as a linalg.generic.
return rewriter
.create<linalg::GenericOp>(
loc, resultTy, ValueRange({source}), result, indexingMaps,
getNParallelLoopsAttrs(resultTy.getRank()),
[](OpBuilder &builder, Location loc, ValueRange args) {
Value biasVal = args[0];
Type resType = args[1].getType();
if (resType != biasVal.getType()) {
biasVal = builder.create<arith::ExtSIOp>(loc, resType, biasVal);
}
builder.create<linalg::YieldOp>(loc, biasVal);
})
.getResult(0);
}
static mlir::Value reifyConstantDim(int64_t attr,
ImplicitLocOpBuilder &builder) {
return builder.create<arith::ConstantIndexOp>(attr);
}
// Calculating the output width/height using the formula:
// H = ((IH+pad_top+pad_bottom-(dilation_y*(KH-1)+1))/stride_y)+1
// W = ((IW+pad_left+pad_right-(dilation_x*(KW-1)+1))/stride_x)+1
static mlir::Value getConvOrPoolOutputDim(Location loc, Value inputDim,
int64_t padBeforeAttr,
int64_t padAfterAttr, Value kernelDim,
int64_t strideAttr,
int64_t dilationAttr,
OpBuilder &rewriter) {
ImplicitLocOpBuilder builder(loc, rewriter);
auto one = rewriter.create<arith::ConstantOp>(
loc, IntegerAttr::get(inputDim.getType(), 1));
Value padBefore = reifyConstantDim(padBeforeAttr, builder);
Value paddedBefore = builder.create<arith::AddIOp>(inputDim, padBefore);
Value padAfter = reifyConstantDim(padAfterAttr, builder);
Value paddedAfter = builder.create<arith::AddIOp>(paddedBefore, padAfter);
Value subOne = builder.create<arith::SubIOp>(kernelDim, one);
Value dilation = reifyConstantDim(dilationAttr, builder);
Value dilated = builder.create<arith::MulIOp>(dilation, subOne);
Value addOne = builder.create<arith::AddIOp>(dilated, one);
Value subtract = builder.create<arith::SubIOp>(paddedAfter, addOne);
Value stride = reifyConstantDim(strideAttr, builder);
Value divide = builder.create<arith::DivUIOp>(subtract, stride);
return builder.create<arith::AddIOp>(divide, one);
}
// Creates a vector of the dynamic output dims for Conv2D and Depthwise_Conv2D
static SmallVector<Value> inferDynamicDimsForConv(
Location loc, Value input, Value weight, ShapedType resultTy,
ArrayRef<int64_t> padAttr, ArrayRef<int64_t> strideAttr,
ArrayRef<int64_t> dilationAttr, ArrayRef<int64_t> inputSizeDims,
ArrayRef<int64_t> kernelSizeDims, OpBuilder &rewriter) {
ShapedType inputTy = cast<ShapedType>(input.getType());
int64_t inputRank = inputTy.getRank();
SmallVector<Value> dynDims;
dynDims.resize(resultTy.getRank());
for (uint32_t i = 0, s = inputSizeDims.size(); i < s; ++i) {
int64_t inputDim = inputSizeDims[i];
int64_t kernelDim = kernelSizeDims[i];
if (resultTy.isDynamicDim(inputDim)) {
auto padTop = padAttr[i * 2];
auto padBottom = padAttr[i * 2 + 1];
auto stride = strideAttr[i];
auto dilation = dilationAttr[i];
Value initDynDim = rewriter.create<tensor::DimOp>(loc, input, inputDim);
Value kernelDynDim =
rewriter.create<tensor::DimOp>(loc, weight, kernelDim);
// H = F(IH, pad_top, pad_bottom, dilation_y, KH, stride_y)
dynDims[inputDim] =
getConvOrPoolOutputDim(loc, initDynDim, padTop, padBottom,
kernelDynDim, stride, dilation, rewriter);
}
}
// Get the batch/channels dimensions.
for (int i = 0; i < inputRank; i++) {
if (resultTy.isDynamicDim(i) && !dynDims[i])
dynDims[i] = rewriter.create<tensor::DimOp>(loc, input, i);
}
SmallVector<Value> filteredDims = condenseValues(dynDims);
return filteredDims;
}
// Creates a map to collapse the last dimension of the Depthwise convolution op
// due to a shape mismatch
static void createDepthwiseConvCollapseMap(
int64_t outputRank, SmallVector<ReassociationExprs, 4> &reassociationMap,
OpBuilder &rewriter) {
reassociationMap.resize(outputRank);
for (int i = 0; i < outputRank; i++) {
reassociationMap[i].push_back(rewriter.getAffineDimExpr(i));
}
reassociationMap[outputRank - 1].push_back(
rewriter.getAffineDimExpr(outputRank));
}
namespace {
template <typename TosaConvOp, typename LinalgConvOp, typename LinalgConvQOp>
class ConvConverter : public OpConversionPattern<TosaConvOp> {
public:
using OpConversionPattern<TosaConvOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TosaConvOp op, typename TosaConvOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Location loc = op->getLoc();
Value input = op->getOperand(0);
Value weight = op->getOperand(1);
Value bias = op->getOperand(2);
ShapedType inputTy = cast<ShapedType>(input.getType());
ShapedType weightTy = cast<ShapedType>(weight.getType());
ShapedType biasTy = cast<ShapedType>(bias.getType());
ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType());
Type inputETy = inputTy.getElementType();
Type resultETy = resultTy.getElementType();
DenseI64ArrayAttr padAttr = op.getPadAttr();
DenseI64ArrayAttr strideTosaAttr = op.getStrideAttr();
DenseI64ArrayAttr dilationTosaAttr = op.getDilationAttr();
bool isQuantized = op.getQuantizationInfo().has_value();
if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape())
return rewriter.notifyMatchFailure(
op, "tosa.conv ops require static shapes for weight and bias");
if (inputETy.isUnsignedInteger())
return rewriter.notifyMatchFailure(
op, "tosa.conv ops does not support unsigned integer input");
llvm::SmallVector<int64_t> inputSizeDims;
llvm::SmallVector<int64_t> kernelSizeDims;
for (int i = 1; i < resultTy.getRank() - 1; i++) {
inputSizeDims.push_back(i);
kernelSizeDims.push_back(i);
}
SmallVector<Value> filteredDims = inferDynamicDimsForConv(
loc, input, weight, resultTy, padAttr.asArrayRef(),
strideTosaAttr.asArrayRef(), dilationTosaAttr.asArrayRef(),
inputSizeDims, kernelSizeDims, rewriter);
auto weightShape = weightTy.getShape();
// Apply padding as necessary.
TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
if (isQuantized) {
auto quantizationInfo = *op.getQuantizationInfo();
int64_t iZp = quantizationInfo.getInputZp();
int64_t intMin =
APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
int64_t intMax =
APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
if (iZp < intMin || iZp > intMax)
return rewriter.notifyMatchFailure(
op, "tosa.conv op quantization has zp outside of input range");
zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
}
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
llvm::append_range(pad, padAttr.asArrayRef());
pad.resize(pad.size() + 2, 0);
input = applyPad(loc, input, pad, zeroAttr, rewriter);
if (4 == inputTy.getRank()) {
// For 2D convolutions, we need to check if the target convolution op
// wants a HWCF kernel layout.
bool wantHwcf =
isQuantized ? std::is_same_v<LinalgConvQOp, linalg::Conv2DNhwcHwcfQOp>
: std::is_same_v<LinalgConvOp, linalg::Conv2DNhwcHwcfOp>;
if (wantHwcf) {
// Transpose the kernel to match dimension ordering of the linalg
// convolution operation.
// TODO(suderman): See if this can be efficiently folded - check whether
// the input is used anywhere else, if not fold the constant.
SmallVector<int64_t> weightPerm;
for (int i = 1; i < resultTy.getRank(); i++)
weightPerm.push_back(i);
weightPerm.push_back(0);
SmallVector<int64_t> newWeightShape;
for (auto dim : weightPerm)
newWeightShape.push_back(weightShape[dim]);
auto weightPermAttr = rewriter.getI64TensorAttr(weightPerm);
Value weightPermValue =
rewriter.create<arith::ConstantOp>(loc, weightPermAttr);
Type newWeightTy =
RankedTensorType::get(newWeightShape, weightTy.getElementType());
weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight,
weightPermValue);
}
}
// For Conv3D transpose the kernel to match dimension ordering of the linalg
// convolution operation. Conv2D has a 1-1 mapping in linalg so better to
// map directly and then transpose later if desired.
if (5 == inputTy.getRank()) {
// TODO(suderman): See if this can be efficiently folded - check whether
// the input is used anywhere else, if not fold the constant.
SmallVector<int64_t> weightPerm;
for (int i = 1; i < resultTy.getRank(); i++)
weightPerm.push_back(i);
weightPerm.push_back(0);
SmallVector<int64_t> newWeightShape;
for (auto dim : weightPerm)
newWeightShape.push_back(weightShape[dim]);
auto weightPermAttr = rewriter.getI64TensorAttr(weightPerm);
Value weightPermValue =
rewriter.create<arith::ConstantOp>(loc, weightPermAttr);
Type newWeightTy =
RankedTensorType::get(newWeightShape, weightTy.getElementType());
weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight,
weightPermValue);
}
// Extract the attributes for convolution.
ArrayRef<int64_t> stride = strideTosaAttr;
ArrayRef<int64_t> dilation = dilationTosaAttr;
// Create the convolution op.
auto strideAttr = rewriter.getI64TensorAttr(stride);
auto dilationAttr = rewriter.getI64TensorAttr(dilation);
Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultTy.getShape(), resultETy, filteredDims);
Value broadcastBias =
linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);
if (isQuantized) {
auto quantizationInfo = *op.getQuantizationInfo();
auto iZp = rewriter.getI32IntegerAttr(quantizationInfo.getInputZp());
auto kZp = rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp());
auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
Value conv =
rewriter
.create<LinalgConvQOp>(
loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal},
ValueRange{broadcastBias}, strideAttr, dilationAttr)
->getResult(0);
rewriter.replaceOp(op, conv);
return success();
}
Value conv = rewriter
.create<LinalgConvOp>(
loc, resultTy, ValueRange{input, weight},
ValueRange{broadcastBias}, strideAttr, dilationAttr)
->getResult(0);
rewriter.replaceOp(op, conv);
return success();
}
};
class DepthwiseConvConverter
: public OpConversionPattern<tosa::DepthwiseConv2DOp> {
public:
using OpConversionPattern<tosa::DepthwiseConv2DOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Location loc = op->getLoc();
Value input = op->getOperand(0);
Value weight = op->getOperand(1);
Value bias = op->getOperand(2);
ShapedType inputTy = cast<ShapedType>(input.getType());
ShapedType weightTy = cast<ShapedType>(weight.getType());
ShapedType biasTy = cast<ShapedType>(bias.getType());
ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType());
int64_t resultRank = resultTy.getRank();
Type inputETy = inputTy.getElementType();
Type resultETy = resultTy.getElementType();
auto padAttr = cast<DenseI64ArrayAttr>(op->getAttr("pad"));
auto strideTosaAttr = cast<DenseI64ArrayAttr>(op->getAttr("stride"));
auto dilationTosaAttr = cast<DenseI64ArrayAttr>(op->getAttr("dilation"));
if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape())
return rewriter.notifyMatchFailure(
op, "tosa.depthwise_conv ops require static shapes");
// Compute output dynamic dims
SmallVector<Value> filteredDims = inferDynamicDimsForConv(
loc, input, weight, resultTy, padAttr.asArrayRef(),
strideTosaAttr.asArrayRef(), dilationTosaAttr.asArrayRef(),
/*inputSizeDims=*/{1, 2},
/*kernelSizeDims=*/{0, 1}, rewriter);
bool isQuantized = op->hasAttr("quantization_info");
IntegerAttr iZp;
IntegerAttr kZp;
if (isQuantized) {
auto quantizationInfo =
cast<tosa::ConvOpQuantizationAttr>(op->getAttr("quantization_info"));
iZp = rewriter.getI32IntegerAttr(quantizationInfo.getInputZp());
kZp = rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp());
}
auto weightShape = weightTy.getShape();
auto resultShape = resultTy.getShape();
// Apply padding as necessary.
TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
if (isQuantized) {
auto quantizationInfo =
cast<tosa::ConvOpQuantizationAttr>(op->getAttr("quantization_info"));
int64_t iZp = quantizationInfo.getInputZp();
int64_t intMin =
APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
int64_t intMax =
APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
if (iZp < intMin || iZp > intMax)
return rewriter.notifyMatchFailure(
op, "tosa.depthwise_conv op quantization has zp outside of input "
"range");
zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
}
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
llvm::append_range(pad, padAttr.asArrayRef());
pad.resize(pad.size() + 2, 0);
input = applyPad(loc, input, pad, zeroAttr, rewriter);
// Extract the attributes for convolution.
ArrayRef<int64_t> stride = strideTosaAttr;
ArrayRef<int64_t> dilation = dilationTosaAttr;
// Create the convolution op.
auto strideAttr = rewriter.getI64TensorAttr(stride);
auto dilationAttr = rewriter.getI64TensorAttr(dilation);
ShapedType linalgConvTy =
RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2],
weightShape[2], weightShape[3]},
resultETy);
// Broadcast the initial value to the output tensor before convolving.
SmallVector<AffineMap, 4> indexingMaps;
indexingMaps.push_back(AffineMap::get(
/*dimCount=*/resultRank, /*symbolCount=*/0,
{rewriter.getAffineDimExpr(3)}, rewriter.getContext()));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
auto resultZeroAttr = rewriter.getZeroAttr(resultETy);
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, linalgConvTy.getShape(), resultETy, filteredDims);
Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
Value zeroTensor = rewriter
.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{emptyTensor})
.result();
Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultTy.getShape(), resultETy, filteredDims);
if (!isQuantized) {
Value conv = rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
loc, linalgConvTy, ValueRange{input, weight},
ValueRange{zeroTensor}, strideAttr, dilationAttr)
.getResult(0);
SmallVector<ReassociationExprs, 4> reassociationMap;
createDepthwiseConvCollapseMap(resultRank, reassociationMap, rewriter);
Value convReshape = rewriter.create<tensor::CollapseShapeOp>(
loc, resultTy, conv, reassociationMap);
Value result =
rewriter
.create<linalg::GenericOp>(
loc, resultTy, ValueRange({bias, convReshape}),
biasEmptyTensor, indexingMaps,
getNParallelLoopsAttrs(resultRank),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
Value added = nestedBuilder.create<arith::AddFOp>(
loc, args[0], args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);
rewriter.replaceOp(op, result);
} else {
auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
Value conv =
rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmQOp>(
loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal},
ValueRange{zeroTensor}, strideAttr, dilationAttr)
.getResult(0);
SmallVector<ReassociationExprs, 4> reassociationMap;
createDepthwiseConvCollapseMap(resultRank, reassociationMap, rewriter);
Value convReshape = rewriter.create<tensor::CollapseShapeOp>(
loc, resultTy, conv, reassociationMap);
Value result = linalgIntBroadcastExtSIAdd(
rewriter, loc, bias, convReshape, biasEmptyTensor, indexingMaps);
rewriter.replaceOp(op, result);
}
return success();
}
};
class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
public:
using OpConversionPattern<tosa::MatMulOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Location loc = op.getLoc();
auto outputTy = cast<ShapedType>(op.getType());
auto outputElementTy = outputTy.getElementType();
SmallVector<Value> dynDims;
dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank());
if (!outputTy.hasRank() || outputTy.isDynamicDim(0)) {
dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0);
}
if (!outputTy.hasRank() || outputTy.isDynamicDim(1)) {
dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1);
}
if (!outputTy.hasRank() || outputTy.isDynamicDim(2)) {
dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2);
}
SmallVector<Value> filteredDims = condenseValues(dynDims);
auto zeroAttr = rewriter.getZeroAttr(outputElementTy);
Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
auto emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, outputTy.getShape(), outputTy.getElementType(), filteredDims);
Value zeroTensor = rewriter
.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{emptyTensor})
.result();
if (!op.getQuantizationInfo()) {
rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
op, TypeRange{op.getType()},
ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor});
return success();
}
auto quantizationInfo = *op.getQuantizationInfo();
auto aZp = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32IntegerAttr(quantizationInfo.getAZp()));
auto bZp = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32IntegerAttr(quantizationInfo.getBZp()));
rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
op, TypeRange{op.getType()},
ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor);
return success();
}
};
class FullyConnectedConverter
: public OpConversionPattern<tosa::FullyConnectedOp> {
public:
using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Location loc = op.getLoc();
auto outputTy = cast<ShapedType>(op.getType());
auto input = op.getInput();
auto inputTy = cast<ShapedType>(input.getType());
auto bias = op.getBias();
auto weight = op.getWeight();
auto weightTy = cast<ShapedType>(weight.getType());
auto weightShape = weightTy.getShape();
auto outputETy = outputTy.getElementType();
SmallVector<Value> dynDims;
dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank());
if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) {
dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0);
}
if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) {
dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0);
}
SmallVector<Value> filteredDims = condenseValues(dynDims);
SmallVector<int64_t> permutation{1, 0};
auto permutationAttr = rewriter.getI64TensorAttr(permutation);
Value permutationValue =
rewriter.create<arith::ConstantOp>(loc, permutationAttr);
SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[0]};
Type newWeightTy =
RankedTensorType::get(newWeightShape, weightTy.getElementType());
Value transposedWeight = rewriter.create<tosa::TransposeOp>(
loc, newWeightTy, weight, permutationValue);
Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, outputTy.getShape(), outputETy, filteredDims);
Value broadcastBias =
linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);
if (!op.getQuantizationInfo()) {
Value matmul = rewriter
.create<linalg::MatmulOp>(
loc, TypeRange{op.getType()},
ValueRange{input, transposedWeight}, broadcastBias)
->getResult(0);
rewriter.replaceOp(op, matmul);
return success();
}
auto quantizationInfo = *op.getQuantizationInfo();
auto inputZp = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32IntegerAttr(quantizationInfo.getInputZp()));
auto outputZp = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp()));
Value matmul =
rewriter
.create<linalg::QuantizedMatmulOp>(
loc, TypeRange{op.getType()},
ValueRange{input, transposedWeight, inputZp, outputZp},
broadcastBias)
->getResult(0);
rewriter.replaceOp(op, matmul);
return success();
}
};
class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> {
public:
using OpRewritePattern<tosa::MaxPool2dOp>::OpRewritePattern;
// Compute the dynamic output sizes of the maxpool operation.
static SmallVector<Value>
computeDynamicOutputSizes(tosa::MaxPool2dOp op, PatternRewriter &rewriter) {
TensorType resultTy = op.getType();
Location loc = op.getLoc();
TypedValue<TensorType> input = op.getInput();
ArrayRef<int64_t> kernel = op.getKernel();
ArrayRef<int64_t> pad = op.getPad();
ArrayRef<int64_t> stride = op.getStride();
SmallVector<Value> dynamicDims;
// Batch dimension
if (resultTy.isDynamicDim(0))
dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0));
// Height/width dimensions
for (int64_t dim : {1, 2}) {
if (!resultTy.isDynamicDim(dim))
continue;
// Index into the attribute arrays
int64_t index = dim - 1;
// Input height/width
Value ihw = rewriter.create<tensor::DimOp>(loc, input, dim);
// Kernel height/width
Value khw = rewriter.create<arith::ConstantIndexOp>(loc, kernel[index]);
// Output height/width
Value ohw = getConvOrPoolOutputDim(loc, ihw, pad[index * 2],
pad[index * 2 + 1], khw, stride[index],
/*dilationAttr=*/1, rewriter);
dynamicDims.push_back(ohw);
}
// Channel dimension
if (resultTy.isDynamicDim(3))
dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 3));
return dynamicDims;
}
LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
TypedValue<TensorType> input = op.getInput();
ShapedType inputTy = input.getType();
ShapedType resultTy = op.getType();
Type resultETy = inputTy.getElementType();
SmallVector<Value> dynamicDims = computeDynamicOutputSizes(op, rewriter);
// Determine what the initial value needs to be for the max pool op.
TypedAttr initialAttr;
if (resultETy.isF32() || resultETy.isBF16() || resultETy.isF16())
initialAttr = rewriter.getFloatAttr(
resultETy, APFloat::getLargest(
cast<FloatType>(resultETy).getFloatSemantics(), true));
if (isa<IntegerType>(resultETy))
initialAttr = rewriter.getIntegerAttr(
resultETy,
APInt::getSignedMinValue(resultETy.getIntOrFloatBitWidth()));
if (!initialAttr)
return rewriter.notifyMatchFailure(
op, "Unsupported initial value for tosa.maxpool_2d op");
// Apply padding as necessary.
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
llvm::append_range(pad, op.getPad());
pad.resize(pad.size() + 2, 0);
Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter);
Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
ArrayRef<int64_t> kernel = op.getKernel();
ArrayRef<int64_t> stride = op.getStride();
Attribute strideAttr = rewriter.getI64VectorAttr(stride);
Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
// Create the linalg op that performs pooling.
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultTy.getShape(), resultTy.getElementType(), dynamicDims);
Value filledEmptyTensor =
rewriter.create<linalg::FillOp>(loc, initialValue, emptyTensor)
.result();
Value fakeWindowDims =
rewriter.create<tensor::EmptyOp>(loc, kernel, resultETy);
rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxOp>(
op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims},
filledEmptyTensor, strideAttr, dilationAttr);
return success();
}
};
class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
public:
using OpRewritePattern<tosa::AvgPool2dOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::AvgPool2dOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Value input = op.getInput();
ShapedType inputTy = cast<ShapedType>(input.getType());
Type inElementTy = inputTy.getElementType();
ShapedType resultTy = cast<ShapedType>(op.getType());
Type resultETy = cast<ShapedType>(op.getType()).getElementType();
Type accETy = op.getAccType();
ShapedType accTy = resultTy.clone(accETy);
auto dynamicDimsOr =
checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()});
if (!dynamicDimsOr.has_value())
return failure();
SmallVector<Value> dynamicDims = *dynamicDimsOr;
// Apply padding as necessary.
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
llvm::append_range(pad, op.getPad());
pad.resize(pad.size() + 2, 0);
TypedAttr padAttr = rewriter.getZeroAttr(inElementTy);
// Unsupported element type
if (!padAttr)
return failure();
Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter);
auto initialAttr = rewriter.getZeroAttr(accETy);
Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
ArrayRef<int64_t> kernel = op.getKernel();
ArrayRef<int64_t> stride = op.getStride();
Attribute strideAttr = rewriter.getI64VectorAttr(stride);
Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
// Create the linalg op that performs pooling.
Value poolEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, accTy.getShape(), accETy, dynamicDims);
Value filledEmptyTensor =
rewriter
.create<linalg::FillOp>(loc, ValueRange{initialValue},
ValueRange{poolEmptyTensor})
.result();
Value fakeWindowDims =
rewriter.create<tensor::EmptyOp>(loc, kernel, accETy);
// Sum across the pooled region.
Value poolingOp = rewriter
.create<linalg::PoolingNhwcSumOp>(
loc, ArrayRef<Type>{accTy},
ValueRange{paddedInput, fakeWindowDims},
filledEmptyTensor, strideAttr, dilationAttr)
.getResult(0);
// Normalize the summed value by the number of elements grouped in each
// pool.
Value iH = rewriter.create<tensor::DimOp>(loc, poolingOp, 1);
Value iW = rewriter.create<tensor::DimOp>(loc, poolingOp, 2);
auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
iH = rewriter.create<arith::SubIOp>(loc, iH, one);
iW = rewriter.create<arith::SubIOp>(loc, iW, one);
Value genericEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultTy.getShape(), resultETy, dynamicDims);
auto affineMap = rewriter.getMultiDimIdentityMap(resultTy.getRank());
auto genericOp = rewriter.create<linalg::GenericOp>(
loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp},
ValueRange{genericEmptyTensor},
ArrayRef<AffineMap>({affineMap, affineMap}),
getNParallelLoopsAttrs(resultTy.getRank()),
[&](OpBuilder &b, Location loc, ValueRange args) {
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
// Determines what the portion of valid input is covered by the
// kernel.
auto padFn = [&](Value valid, Value pos, int64_t pad) -> Value {
if (pad == 0)
return valid;
auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad);
Value dpos = rewriter.create<arith::SubIOp>(loc, pos, padVal);
Value offset = rewriter.create<arith::MinSIOp>(loc, dpos, zero);
return rewriter.create<arith::AddIOp>(loc, valid, offset)
->getResult(0);
};
auto coverageFn = [&](int64_t i, Value isize) -> Value {
Value strideVal =
rewriter.create<arith::ConstantIndexOp>(loc, stride[i - 1]);
Value val =
rewriter.create<arith::ConstantIndexOp>(loc, kernel[i - 1]);
// Find the position relative to the input tensor's ends.
Value left = rewriter.create<linalg::IndexOp>(loc, i);
Value right = rewriter.create<arith::SubIOp>(loc, isize, left);
left = rewriter.create<arith::MulIOp>(loc, left, strideVal);
right = rewriter.create<arith::MulIOp>(loc, right, strideVal);
// Determine how much padding was included.
val = padFn(val, left, pad[i * 2]);
val = padFn(val, right, pad[i * 2 + 1]);
return rewriter.create<arith::MaxSIOp>(loc, one, val);
};
// Compute the indices from either end.
Value kH3 = coverageFn(1, iH);
Value kW3 = coverageFn(2, iW);
// Compute the total number of elements and normalize.
auto count = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI32Type(),
rewriter.create<arith::MulIOp>(loc, kH3, kW3));
// Divide by the number of summed values. For floats this is just
// a div however for quantized values input normalization had
// to be applied.
Value poolVal = args[0];
if (isa<FloatType>(accETy)) {
auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, count);
poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF)
->getResult(0);
if (accETy.getIntOrFloatBitWidth() >
resultETy.getIntOrFloatBitWidth())
poolVal =
rewriter.create<arith::TruncFOp>(loc, resultETy, poolVal);
} else {
// If we have quantization information we need to apply an offset
// for the input zp value.
if (op.getQuantizationInfo()) {
auto quantizationInfo = *op.getQuantizationInfo();
auto inputZp = rewriter.create<arith::ConstantOp>(
loc, b.getIntegerAttr(accETy, quantizationInfo.getInputZp()));
Value offset =
rewriter.create<arith::MulIOp>(loc, accETy, count, inputZp);
poolVal =
rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset);
}
// Compute: k = 32 - count_leading_zeros(value - 1)
Value one32 = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32IntegerAttr(1));
Value thirtyTwo32 = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32IntegerAttr(32));
Value countSubOne =
rewriter.create<arith::SubIOp>(loc, count, one32);
Value leadingZeros =
rewriter.create<math::CountLeadingZerosOp>(loc, countSubOne);
Value k =
rewriter.create<arith::SubIOp>(loc, thirtyTwo32, leadingZeros);
// Compute: numerator = ((1 << 30) + 1) << k
Value k64 =
rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), k);
Value thirtyShiftPlusOne = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr((1 << 30) + 1));
Value numerator =
rewriter.create<arith::ShLIOp>(loc, thirtyShiftPlusOne, k64);
// Compute: scale.multiplier = numerator / value;
Value count64 = rewriter.create<arith::ExtUIOp>(
loc, rewriter.getI64Type(), count);
Value multiplier =
rewriter.create<arith::DivUIOp>(loc, numerator, count64);
multiplier = rewriter.create<arith::TruncIOp>(
loc, rewriter.getI32Type(), multiplier);
// Compute: scale.shift = 30 + k
Value k8 =
rewriter.create<arith::TruncIOp>(loc, rewriter.getI8Type(), k);
Value thirty8 = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI8IntegerAttr(30));
Value shift = rewriter.create<arith::AddIOp>(loc, k8, thirty8);
auto scaled =
rewriter
.create<tosa::ApplyScaleOp>(loc, rewriter.getI32Type(),
poolVal, multiplier, shift,
rewriter.getBoolAttr(false))
.getResult();
// If we have quantization information we need to apply output
// zeropoint.
if (op.getQuantizationInfo()) {
auto quantizationInfo = *op.getQuantizationInfo();
auto outputZp = rewriter.create<arith::ConstantOp>(
loc, b.getIntegerAttr(scaled.getType(),
quantizationInfo.getOutputZp()));
scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp)
.getResult();
}
// Apply Clip.
int64_t outBitwidth = resultETy.getIntOrFloatBitWidth();
auto min = rewriter.create<arith::ConstantIntOp>(
loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(),
accETy);
auto max = rewriter.create<arith::ConstantIntOp>(
loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(),
accETy);
auto clamp = clampIntHelper(loc, scaled, min, max, rewriter,
/*isUnsigned=*/false);
poolVal = clamp;
// Convert type.
if (resultETy != clamp.getType()) {
poolVal =
rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal);
}
}
rewriter.create<linalg::YieldOp>(loc, poolVal);
});
rewriter.replaceOp(op, genericOp.getResult(0));
return success();
}
};
class TransposeConverter : public OpRewritePattern<tosa::TransposeOp> {
public:
using OpRewritePattern<tosa::TransposeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::TransposeOp op,
PatternRewriter &rewriter) const final {
SmallVector<int64_t> constantPerms;
if (failed(op.getConstantPerms(constantPerms)))
return failure();
Location loc = op.getLoc();
// The verifier should have made sure we have a valid permutation tensor.
assert(isPermutationVector(constantPerms) && "Expected valid permutation");
SmallVector<OpFoldResult> inputSizes =
tensor::getMixedSizes(rewriter, loc, op.getInput1());
auto permutedSizes =
applyPermutation<OpFoldResult>(inputSizes, constantPerms);
auto permutedInit = rewriter.create<tensor::EmptyOp>(
loc, permutedSizes, op.getInput1().getType().getElementType());
rewriter.replaceOpWithNewOp<linalg::TransposeOp>(
op, op.getInput1(), permutedInit, constantPerms);
return success();
}
};
} // namespace
void mlir::tosa::populateTosaToLinalgNamedConversionPatterns(
RewritePatternSet *patterns, const TosaToLinalgNamedOptions &options) {
if (options.preferConv2DKernelLayoutHWCF) {
patterns->add<ConvConverter<tosa::Conv2DOp, linalg::Conv2DNhwcHwcfOp,
linalg::Conv2DNhwcHwcfQOp>>(
patterns->getContext());
} else {
patterns->add<ConvConverter<tosa::Conv2DOp, linalg::Conv2DNhwcFhwcOp,
linalg::Conv2DNhwcFhwcQOp>>(
patterns->getContext());
}
patterns->add<
// clang-format off
ConvConverter<tosa::Conv3DOp, linalg::Conv3DNdhwcDhwcfOp, linalg::Conv3DNdhwcDhwcfQOp>,
DepthwiseConvConverter,
MatMulConverter,
MaxPool2dConverter,
AvgPool2dConverter,
FullyConnectedConverter,
TransposeConverter
>(patterns->getContext());
// clang-format on
}
|