1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop analysis routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/Analysis/NestedMatcher.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
#include <numeric>
#include <optional>
#include <type_traits>
using namespace mlir;
using namespace mlir::affine;
#define DEBUG_TYPE "affine-loop-analysis"
/// Returns the trip count of the loop as an affine expression if the latter is
/// expressible as an affine expression, and nullptr otherwise. The trip count
/// expression is simplified before returning. This method only utilizes map
/// composition to construct lower and upper bounds before computing the trip
/// count expressions.
void mlir::affine::getTripCountMapAndOperands(
AffineForOp forOp, AffineMap *tripCountMap,
SmallVectorImpl<Value> *tripCountOperands) {
MLIRContext *context = forOp.getContext();
int64_t step = forOp.getStepAsInt();
int64_t loopSpan;
if (forOp.hasConstantBounds()) {
int64_t lb = forOp.getConstantLowerBound();
int64_t ub = forOp.getConstantUpperBound();
loopSpan = ub - lb;
if (loopSpan < 0)
loopSpan = 0;
*tripCountMap = AffineMap::getConstantMap(
llvm::divideCeilSigned(loopSpan, step), context);
tripCountOperands->clear();
return;
}
auto lbMap = forOp.getLowerBoundMap();
auto ubMap = forOp.getUpperBoundMap();
if (lbMap.getNumResults() != 1) {
*tripCountMap = AffineMap();
return;
}
// Difference of each upper bound expression from the single lower bound
// expression (divided by the step) provides the expressions for the trip
// count map.
AffineValueMap ubValueMap(ubMap, forOp.getUpperBoundOperands());
SmallVector<AffineExpr, 4> lbSplatExpr(ubValueMap.getNumResults(),
lbMap.getResult(0));
auto lbMapSplat = AffineMap::get(lbMap.getNumDims(), lbMap.getNumSymbols(),
lbSplatExpr, context);
AffineValueMap lbSplatValueMap(lbMapSplat, forOp.getLowerBoundOperands());
AffineValueMap tripCountValueMap;
AffineValueMap::difference(ubValueMap, lbSplatValueMap, &tripCountValueMap);
for (unsigned i = 0, e = tripCountValueMap.getNumResults(); i < e; ++i)
tripCountValueMap.setResult(i,
tripCountValueMap.getResult(i).ceilDiv(step));
*tripCountMap = tripCountValueMap.getAffineMap();
tripCountOperands->assign(tripCountValueMap.getOperands().begin(),
tripCountValueMap.getOperands().end());
}
/// Returns the trip count of the loop if it's a constant, std::nullopt
/// otherwise. This method uses affine expression analysis (in turn using
/// getTripCount) and is able to determine constant trip count in non-trivial
/// cases.
std::optional<uint64_t> mlir::affine::getConstantTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
getTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return std::nullopt;
// Take the min if all trip counts are constant.
std::optional<uint64_t> tripCount;
for (auto resultExpr : map.getResults()) {
if (auto constExpr = dyn_cast<AffineConstantExpr>(resultExpr)) {
if (tripCount.has_value())
tripCount =
std::min(*tripCount, static_cast<uint64_t>(constExpr.getValue()));
else
tripCount = constExpr.getValue();
} else
return std::nullopt;
}
return tripCount;
}
/// Returns the greatest known integral divisor of the trip count. Affine
/// expression analysis is used (indirectly through getTripCount), and
/// this method is thus able to determine non-trivial divisors.
uint64_t mlir::affine::getLargestDivisorOfTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
getTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return 1;
// The largest divisor of the trip count is the GCD of the individual largest
// divisors.
assert(map.getNumResults() >= 1 && "expected one or more results");
std::optional<uint64_t> gcd;
for (auto resultExpr : map.getResults()) {
uint64_t thisGcd;
if (auto constExpr = dyn_cast<AffineConstantExpr>(resultExpr)) {
uint64_t tripCount = constExpr.getValue();
// 0 iteration loops (greatest divisor is 2^64 - 1).
if (tripCount == 0)
thisGcd = std::numeric_limits<uint64_t>::max();
else
// The greatest divisor is the trip count.
thisGcd = tripCount;
} else {
// Trip count is not a known constant; return its largest known divisor.
thisGcd = resultExpr.getLargestKnownDivisor();
}
if (gcd.has_value())
gcd = std::gcd(*gcd, thisGcd);
else
gcd = thisGcd;
}
assert(gcd.has_value() && "value expected per above logic");
return *gcd;
}
/// Given an affine.for `iv` and an access `index` of type index, returns `true`
/// if `index` is independent of `iv` and false otherwise.
///
/// Prerequisites: `iv` and `index` of the proper type;
static bool isAccessIndexInvariant(Value iv, Value index) {
assert(isAffineForInductionVar(iv) && "iv must be an affine.for iv");
assert(isa<IndexType>(index.getType()) && "index must be of 'index' type");
auto map = AffineMap::getMultiDimIdentityMap(/*numDims=*/1, iv.getContext());
SmallVector<Value> operands = {index};
AffineValueMap avm(map, operands);
avm.composeSimplifyAndCanonicalize();
return !avm.isFunctionOf(0, iv);
}
// Pre-requisite: Loop bounds should be in canonical form.
template <typename LoadOrStoreOp>
bool mlir::affine::isInvariantAccess(LoadOrStoreOp memOp, AffineForOp forOp) {
AffineValueMap avm(memOp.getAffineMap(), memOp.getMapOperands());
avm.composeSimplifyAndCanonicalize();
return !llvm::is_contained(avm.getOperands(), forOp.getInductionVar());
}
// Explicitly instantiate the template so that the compiler knows we need them.
template bool mlir::affine::isInvariantAccess(AffineReadOpInterface,
AffineForOp);
template bool mlir::affine::isInvariantAccess(AffineWriteOpInterface,
AffineForOp);
template bool mlir::affine::isInvariantAccess(AffineLoadOp, AffineForOp);
template bool mlir::affine::isInvariantAccess(AffineStoreOp, AffineForOp);
DenseSet<Value> mlir::affine::getInvariantAccesses(Value iv,
ArrayRef<Value> indices) {
DenseSet<Value> res;
for (auto val : indices) {
if (isAccessIndexInvariant(iv, val)) {
res.insert(val);
}
}
return res;
}
// TODO: check access stride.
template <typename LoadOrStoreOp>
bool mlir::affine::isContiguousAccess(Value iv, LoadOrStoreOp memoryOp,
int *memRefDim) {
static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
AffineWriteOpInterface>::value,
"Must be called on either an affine read or write op");
assert(memRefDim && "memRefDim == nullptr");
auto memRefType = memoryOp.getMemRefType();
if (!memRefType.getLayout().isIdentity())
return memoryOp.emitError("NYI: non-trivial layout map"), false;
int uniqueVaryingIndexAlongIv = -1;
auto accessMap = memoryOp.getAffineMap();
SmallVector<Value, 4> mapOperands(memoryOp.getMapOperands());
unsigned numDims = accessMap.getNumDims();
for (unsigned i = 0, e = memRefType.getRank(); i < e; ++i) {
// Gather map operands used in result expr 'i' in 'exprOperands'.
SmallVector<Value, 4> exprOperands;
auto resultExpr = accessMap.getResult(i);
resultExpr.walk([&](AffineExpr expr) {
if (auto dimExpr = dyn_cast<AffineDimExpr>(expr))
exprOperands.push_back(mapOperands[dimExpr.getPosition()]);
else if (auto symExpr = dyn_cast<AffineSymbolExpr>(expr))
exprOperands.push_back(mapOperands[numDims + symExpr.getPosition()]);
});
// Check access invariance of each operand in 'exprOperands'.
for (Value exprOperand : exprOperands) {
if (!isAccessIndexInvariant(iv, exprOperand)) {
if (uniqueVaryingIndexAlongIv != -1) {
// 2+ varying indices -> do not vectorize along iv.
return false;
}
uniqueVaryingIndexAlongIv = i;
}
}
}
if (uniqueVaryingIndexAlongIv == -1)
*memRefDim = -1;
else
*memRefDim = memRefType.getRank() - (uniqueVaryingIndexAlongIv + 1);
return true;
}
template bool mlir::affine::isContiguousAccess(Value iv,
AffineReadOpInterface loadOp,
int *memRefDim);
template bool mlir::affine::isContiguousAccess(Value iv,
AffineWriteOpInterface loadOp,
int *memRefDim);
template <typename LoadOrStoreOp>
static bool isVectorElement(LoadOrStoreOp memoryOp) {
auto memRefType = memoryOp.getMemRefType();
return isa<VectorType>(memRefType.getElementType());
}
using VectorizableOpFun = std::function<bool(AffineForOp, Operation &)>;
static bool
isVectorizableLoopBodyWithOpCond(AffineForOp loop,
const VectorizableOpFun &isVectorizableOp,
NestedPattern &vectorTransferMatcher) {
auto *forOp = loop.getOperation();
// No vectorization across conditionals for now.
auto conditionals = matcher::If();
SmallVector<NestedMatch, 8> conditionalsMatched;
conditionals.match(forOp, &conditionalsMatched);
if (!conditionalsMatched.empty()) {
return false;
}
// No vectorization for ops with operand or result types that are not
// vectorizable.
auto types = matcher::Op([](Operation &op) -> bool {
if (llvm::any_of(op.getOperandTypes(), [](Type type) {
if (MemRefType t = dyn_cast<MemRefType>(type))
return !VectorType::isValidElementType(t.getElementType());
return !VectorType::isValidElementType(type);
}))
return true;
return llvm::any_of(op.getResultTypes(), [](Type type) {
return !VectorType::isValidElementType(type);
});
});
SmallVector<NestedMatch, 8> opsMatched;
types.match(forOp, &opsMatched);
if (!opsMatched.empty()) {
return false;
}
// No vectorization across unknown regions.
auto regions = matcher::Op([](Operation &op) -> bool {
return op.getNumRegions() != 0 && !isa<AffineIfOp, AffineForOp>(op);
});
SmallVector<NestedMatch, 8> regionsMatched;
regions.match(forOp, ®ionsMatched);
if (!regionsMatched.empty()) {
return false;
}
SmallVector<NestedMatch, 8> vectorTransfersMatched;
vectorTransferMatcher.match(forOp, &vectorTransfersMatched);
if (!vectorTransfersMatched.empty()) {
return false;
}
auto loadAndStores = matcher::Op(matcher::isLoadOrStore);
SmallVector<NestedMatch, 8> loadAndStoresMatched;
loadAndStores.match(forOp, &loadAndStoresMatched);
for (auto ls : loadAndStoresMatched) {
auto *op = ls.getMatchedOperation();
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
// Only scalar types are considered vectorizable, all load/store must be
// vectorizable for a loop to qualify as vectorizable.
// TODO: ponder whether we want to be more general here.
bool vector = load ? isVectorElement(load) : isVectorElement(store);
if (vector) {
return false;
}
if (isVectorizableOp && !isVectorizableOp(loop, *op)) {
return false;
}
}
return true;
}
bool mlir::affine::isVectorizableLoopBody(
AffineForOp loop, int *memRefDim, NestedPattern &vectorTransferMatcher) {
*memRefDim = -1;
VectorizableOpFun fun([memRefDim](AffineForOp loop, Operation &op) {
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
int thisOpMemRefDim = -1;
bool isContiguous =
load ? isContiguousAccess(loop.getInductionVar(),
cast<AffineReadOpInterface>(*load),
&thisOpMemRefDim)
: isContiguousAccess(loop.getInductionVar(),
cast<AffineWriteOpInterface>(*store),
&thisOpMemRefDim);
if (thisOpMemRefDim != -1) {
// If memory accesses vary across different dimensions then the loop is
// not vectorizable.
if (*memRefDim != -1 && *memRefDim != thisOpMemRefDim)
return false;
*memRefDim = thisOpMemRefDim;
}
return isContiguous;
});
return isVectorizableLoopBodyWithOpCond(loop, fun, vectorTransferMatcher);
}
bool mlir::affine::isVectorizableLoopBody(
AffineForOp loop, NestedPattern &vectorTransferMatcher) {
return isVectorizableLoopBodyWithOpCond(loop, nullptr, vectorTransferMatcher);
}
/// Checks whether SSA dominance would be violated if a for op's body
/// operations are shifted by the specified shifts. This method checks if a
/// 'def' and all its uses have the same shift factor.
// TODO: extend this to check for memory-based dependence violation when we have
// the support.
bool mlir::affine::isOpwiseShiftValid(AffineForOp forOp,
ArrayRef<uint64_t> shifts) {
auto *forBody = forOp.getBody();
assert(shifts.size() == forBody->getOperations().size());
// Work backwards over the body of the block so that the shift of a use's
// ancestor operation in the block gets recorded before it's looked up.
DenseMap<Operation *, uint64_t> forBodyShift;
for (const auto &it :
llvm::enumerate(llvm::reverse(forBody->getOperations()))) {
auto &op = it.value();
// Get the index of the current operation, note that we are iterating in
// reverse so we need to fix it up.
size_t index = shifts.size() - it.index() - 1;
// Remember the shift of this operation.
uint64_t shift = shifts[index];
forBodyShift.try_emplace(&op, shift);
// Validate the results of this operation if it were to be shifted.
for (unsigned i = 0, e = op.getNumResults(); i < e; ++i) {
Value result = op.getResult(i);
for (auto *user : result.getUsers()) {
// If an ancestor operation doesn't lie in the block of forOp,
// there is no shift to check.
if (auto *ancOp = forBody->findAncestorOpInBlock(*user)) {
assert(forBodyShift.count(ancOp) > 0 && "ancestor expected in map");
if (shift != forBodyShift[ancOp])
return false;
}
}
}
}
return true;
}
bool mlir::affine::isTilingValid(ArrayRef<AffineForOp> loops) {
assert(!loops.empty() && "no original loops provided");
// We first find out all dependences we intend to check.
SmallVector<Operation *, 8> loadAndStoreOps;
loops[0]->walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
});
unsigned numOps = loadAndStoreOps.size();
unsigned numLoops = loops.size();
for (unsigned d = 1; d <= numLoops + 1; ++d) {
for (unsigned i = 0; i < numOps; ++i) {
Operation *srcOp = loadAndStoreOps[i];
MemRefAccess srcAccess(srcOp);
for (unsigned j = 0; j < numOps; ++j) {
Operation *dstOp = loadAndStoreOps[j];
MemRefAccess dstAccess(dstOp);
SmallVector<DependenceComponent, 2> depComps;
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, /*dependenceConstraints=*/nullptr,
&depComps);
// Skip if there is no dependence in this case.
if (!hasDependence(result))
continue;
// Check whether there is any negative direction vector in the
// dependence components found above, which means that dependence is
// violated by the default hyper-rect tiling method.
LLVM_DEBUG(llvm::dbgs() << "Checking whether tiling legality violated "
"for dependence at depth: "
<< Twine(d) << " between:\n";);
LLVM_DEBUG(srcAccess.opInst->dump());
LLVM_DEBUG(dstAccess.opInst->dump());
for (const DependenceComponent &depComp : depComps) {
if (depComp.lb.has_value() && depComp.ub.has_value() &&
*depComp.lb < *depComp.ub && *depComp.ub < 0) {
LLVM_DEBUG(llvm::dbgs()
<< "Dependence component lb = " << Twine(*depComp.lb)
<< " ub = " << Twine(*depComp.ub)
<< " is negative at depth: " << Twine(d)
<< " and thus violates the legality rule.\n");
return false;
}
}
}
}
}
return true;
}
|