1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to tile loop nests.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>
namespace mlir {
namespace affine {
#define GEN_PASS_DEF_AFFINELOOPTILING
#include "mlir/Dialect/Affine/Passes.h.inc"
} // namespace affine
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
#define DEBUG_TYPE "affine-loop-tile"
namespace {
/// A pass to perform loop tiling on all suitable loop nests of a Function.
struct LoopTiling : public affine::impl::AffineLoopTilingBase<LoopTiling> {
LoopTiling() = default;
explicit LoopTiling(uint64_t cacheSizeBytes, bool avoidMaxMinBounds = true)
: avoidMaxMinBounds(avoidMaxMinBounds) {
this->cacheSizeInKiB = cacheSizeBytes / 1024;
}
void runOnOperation() override;
void getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes);
// Default tile size if nothing is provided.
constexpr static unsigned kDefaultTileSize = 4;
// If true, tile sizes are set to avoid max/min in bounds if possible.
bool avoidMaxMinBounds = true;
};
} // namespace
/// Creates a pass to perform loop tiling on all suitable loop nests of a
/// Function.
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::affine::createLoopTilingPass(uint64_t cacheSizeBytes) {
return std::make_unique<LoopTiling>(cacheSizeBytes);
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::affine::createLoopTilingPass() {
return std::make_unique<LoopTiling>();
}
/// Reduces each tile size to the largest divisor of the corresponding trip
/// count (if the trip count is known).
static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
assert(band.size() == tileSizes->size() && "invalid tile size count");
for (unsigned i = 0, e = band.size(); i < e; i++) {
unsigned &tSizeAdjusted = (*tileSizes)[i];
std::optional<uint64_t> mayConst = getConstantTripCount(band[i]);
if (!mayConst)
continue;
// Adjust the tile size to largest factor of the trip count less than
// tSize.
uint64_t constTripCount = *mayConst;
if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
tSizeAdjusted = constTripCount / 2;
while (constTripCount % tSizeAdjusted != 0)
tSizeAdjusted--;
}
}
// Returns tile sizes to use. Checks CL options; if none are specified, sets it
// based on a simple model that looks at the memory footprint and determines
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
// along each of the dimensions being tiled.
// TODO: evolve this model. Tile size determination is a large area
// to play with in general.
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
if (band.empty())
return;
// Use command-line tileSize for all loops if specified.
if (tileSize) {
tileSizes->assign(band.size(), tileSize);
return;
}
// Use tileSizes and fill them with default tile size if it's short.
if (!this->tileSizes.empty()) {
tileSizes->assign(this->tileSizes.begin(), this->tileSizes.end());
tileSizes->resize(band.size(), kDefaultTileSize);
return;
}
tileSizes->resize(band.size());
// The first loop in the band.
AffineForOp rootForOp = band[0];
(void)rootForOp;
// Obtain memory footprint and set tile sizes so that a tile fits in
// the cache size. This is an approximation with the assumption that the
// footprint increases with the tile size linearly in that dimension (i.e.,
// assumes one-to-one access function).
std::optional<int64_t> fp = getMemoryFootprintBytes(band[0], 0);
if (!fp) {
// Fill with default tile sizes if footprint is unknown.
std::fill(tileSizes->begin(), tileSizes->end(),
LoopTiling::kDefaultTileSize);
if (avoidMaxMinBounds)
adjustToDivisorsOfTripCounts(band, tileSizes);
LLVM_DEBUG(
rootForOp.emitWarning("memory footprint unknown: using default tile "
"sizes adjusted to trip count divisors"));
return;
}
// Check how many times larger the cache size is when compared to footprint.
uint64_t cacheSizeBytes = cacheSizeInKiB * 1024;
uint64_t excessFactor = llvm::divideCeil(*fp, cacheSizeBytes);
if (excessFactor <= 1) {
// No need of any tiling - set tile size to 1.
std::fill(tileSizes->begin(), tileSizes->end(), 1);
return;
}
// Divide all loops equally in an attempt to reduce footprint.
// TODO: this is approximate. Ideally, obtain reuse factor /
// profitability along each dimension and weight tile sizes based on that as
// one possible approach. Or compute a polynomial in tile sizes and solve for
// it.
// For an n-d tileable band, compute the n^th root of the excess.
unsigned tSize =
static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
// We'll keep a running product to determine the last tile size better.
unsigned cumulProductOfTileSizes = 1;
for (unsigned i = 0, e = band.size(); i < e; i++) {
if (i < e - 1)
(*tileSizes)[i] = tSize;
else
// Set last tile size to cover the balance.
(*tileSizes)[i] = std::max(
1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
cumulProductOfTileSizes *= (*tileSizes)[i];
}
if (avoidMaxMinBounds)
adjustToDivisorsOfTripCounts(band, tileSizes);
}
void LoopTiling::runOnOperation() {
// Bands of loops to tile.
std::vector<SmallVector<AffineForOp, 6>> bands;
getTileableBands(getOperation(), &bands);
// Tile each band.
for (auto &band : bands) {
if (!isTilingValid(band)) {
band.front().emitRemark("tiling nest is invalid due to dependences");
continue;
}
// Set up tile sizes; fill missing tile sizes at the end with default tile
// size or tileSize if one was provided.
SmallVector<unsigned, 6> tileSizes;
getTileSizes(band, &tileSizes);
if (llvm::DebugFlag) {
auto diag = band[0].emitRemark("using tile sizes [");
for (unsigned tSize : tileSizes)
diag << tSize << ' ';
diag << "]\n";
}
SmallVector<AffineForOp, 6> tiledNest;
if (failed(tilePerfectlyNested(band, tileSizes, &tiledNest))) {
// An empty band always succeeds.
assert(!band.empty() && "guaranteed to succeed on empty bands");
LLVM_DEBUG(band.front()->emitRemark("loop tiling failed!\n"));
continue;
}
// Separate full and partial tiles.
if (separate) {
auto intraTileLoops =
MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size());
if (failed(separateFullTiles(intraTileLoops))) {
assert(!intraTileLoops.empty() &&
"guaranteed to succeed on empty bands");
LLVM_DEBUG(intraTileLoops.front()->emitRemark(
"separation post tiling failed!\n"));
}
}
}
}
constexpr unsigned LoopTiling::kDefaultTileSize;
|