1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
//===- Utils.cpp - Utilities to support the Linalg dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Linalg dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "llvm/ADT/SmallBitVector.h"
#include <numeric>
using namespace mlir;
std::optional<SmallVector<OpFoldResult>>
mlir::inferExpandShapeOutputShape(OpBuilder &b, Location loc,
ShapedType expandedType,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<OpFoldResult> inputShape) {
SmallVector<Value> outputShapeValues;
SmallVector<int64_t> outputShapeInts;
// For zero-rank inputs, all dims in result shape are unit extent.
if (inputShape.empty()) {
outputShapeInts.resize(expandedType.getRank(), 1);
return getMixedValues(outputShapeInts, outputShapeValues, b);
}
// Check for all static shapes.
if (expandedType.hasStaticShape()) {
ArrayRef<int64_t> staticShape = expandedType.getShape();
outputShapeInts.assign(staticShape.begin(), staticShape.end());
return getMixedValues(outputShapeInts, outputShapeValues, b);
}
outputShapeInts.resize(expandedType.getRank(), ShapedType::kDynamic);
for (const auto &it : llvm::enumerate(reassociation)) {
ReassociationIndices indexGroup = it.value();
int64_t indexGroupStaticSizesProductInt = 1;
bool foundDynamicShape = false;
for (int64_t index : indexGroup) {
int64_t outputDimSize = expandedType.getDimSize(index);
// Cannot infer expanded shape with multiple dynamic dims in the
// same reassociation group!
if (ShapedType::isDynamic(outputDimSize)) {
if (foundDynamicShape)
return std::nullopt;
foundDynamicShape = true;
} else {
outputShapeInts[index] = outputDimSize;
indexGroupStaticSizesProductInt *= outputDimSize;
}
}
if (!foundDynamicShape)
continue;
int64_t inputIndex = it.index();
// Call get<Value>() under the assumption that we're not casting
// dynamism.
Value indexGroupSize = inputShape[inputIndex].get<Value>();
Value indexGroupStaticSizesProduct =
b.create<arith::ConstantIndexOp>(loc, indexGroupStaticSizesProductInt);
Value dynamicDimSize = b.createOrFold<arith::DivUIOp>(
loc, indexGroupSize, indexGroupStaticSizesProduct);
outputShapeValues.push_back(dynamicDimSize);
}
if ((int64_t)outputShapeValues.size() !=
llvm::count(outputShapeInts, ShapedType::kDynamic))
return std::nullopt;
return getMixedValues(outputShapeInts, outputShapeValues, b);
}
/// Matches a ConstantIndexOp.
/// TODO: This should probably just be a general matcher that uses matchConstant
/// and checks the operation for an index type.
detail::op_matcher<arith::ConstantIndexOp> mlir::matchConstantIndex() {
return detail::op_matcher<arith::ConstantIndexOp>();
}
llvm::SmallBitVector mlir::getPositionsOfShapeOne(unsigned rank,
ArrayRef<int64_t> shape) {
llvm::SmallBitVector dimsToProject(shape.size());
for (unsigned pos = 0, e = shape.size(); pos < e && rank > 0; ++pos) {
if (shape[pos] == 1) {
dimsToProject.set(pos);
--rank;
}
}
return dimsToProject;
}
Value mlir::getValueOrCreateConstantIntOp(OpBuilder &b, Location loc,
OpFoldResult ofr) {
if (auto value = dyn_cast_if_present<Value>(ofr))
return value;
auto attr = cast<IntegerAttr>(cast<Attribute>(ofr));
return b.create<arith::ConstantOp>(
loc, b.getIntegerAttr(attr.getType(), attr.getValue().getSExtValue()));
}
Value mlir::getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc,
OpFoldResult ofr) {
if (auto value = dyn_cast_if_present<Value>(ofr))
return value;
auto attr = cast<IntegerAttr>(cast<Attribute>(ofr));
return b.create<arith::ConstantIndexOp>(loc, attr.getValue().getSExtValue());
}
Value mlir::getValueOrCreateCastToIndexLike(OpBuilder &b, Location loc,
Type targetType, Value value) {
if (targetType == value.getType())
return value;
bool targetIsIndex = targetType.isIndex();
bool valueIsIndex = value.getType().isIndex();
if (targetIsIndex ^ valueIsIndex)
return b.create<arith::IndexCastOp>(loc, targetType, value);
auto targetIntegerType = dyn_cast<IntegerType>(targetType);
auto valueIntegerType = dyn_cast<IntegerType>(value.getType());
assert(targetIntegerType && valueIntegerType &&
"unexpected cast between types other than integers and index");
assert(targetIntegerType.getSignedness() == valueIntegerType.getSignedness());
if (targetIntegerType.getWidth() > valueIntegerType.getWidth())
return b.create<arith::ExtSIOp>(loc, targetIntegerType, value);
return b.create<arith::TruncIOp>(loc, targetIntegerType, value);
}
static Value convertScalarToIntDtype(ImplicitLocOpBuilder &b, Value operand,
IntegerType toType, bool isUnsigned) {
// If operand is floating point, cast directly to the int type.
if (isa<FloatType>(operand.getType())) {
if (isUnsigned)
return b.create<arith::FPToUIOp>(toType, operand);
return b.create<arith::FPToSIOp>(toType, operand);
}
// Cast index operands directly to the int type.
if (operand.getType().isIndex())
return b.create<arith::IndexCastOp>(toType, operand);
if (auto fromIntType = dyn_cast<IntegerType>(operand.getType())) {
// Either extend or truncate.
if (toType.getWidth() > fromIntType.getWidth()) {
if (isUnsigned)
return b.create<arith::ExtUIOp>(toType, operand);
return b.create<arith::ExtSIOp>(toType, operand);
}
if (toType.getWidth() < fromIntType.getWidth())
return b.create<arith::TruncIOp>(toType, operand);
return operand;
}
return {};
}
static Value convertScalarToFpDtype(ImplicitLocOpBuilder &b, Value operand,
FloatType toType, bool isUnsigned) {
// If operand is integer, cast directly to the float type.
// Note that it is unclear how to cast from BF16<->FP16.
if (isa<IntegerType>(operand.getType())) {
if (isUnsigned)
return b.create<arith::UIToFPOp>(toType, operand);
return b.create<arith::SIToFPOp>(toType, operand);
}
if (auto fromFpTy = dyn_cast<FloatType>(operand.getType())) {
if (toType.getWidth() > fromFpTy.getWidth())
return b.create<arith::ExtFOp>(toType, operand);
if (toType.getWidth() < fromFpTy.getWidth())
return b.create<arith::TruncFOp>(toType, operand);
return operand;
}
return {};
}
static Value convertScalarToComplexDtype(ImplicitLocOpBuilder &b, Value operand,
ComplexType targetType,
bool isUnsigned) {
if (auto fromComplexType = dyn_cast<ComplexType>(operand.getType())) {
if (isa<FloatType>(targetType.getElementType()) &&
isa<FloatType>(fromComplexType.getElementType())) {
Value real = b.create<complex::ReOp>(operand);
Value imag = b.create<complex::ImOp>(operand);
Type targetETy = targetType.getElementType();
if (targetType.getElementType().getIntOrFloatBitWidth() <
fromComplexType.getElementType().getIntOrFloatBitWidth()) {
real = b.create<arith::TruncFOp>(targetETy, real);
imag = b.create<arith::TruncFOp>(targetETy, imag);
} else {
real = b.create<arith::ExtFOp>(targetETy, real);
imag = b.create<arith::ExtFOp>(targetETy, imag);
}
return b.create<complex::CreateOp>(targetType, real, imag);
}
}
if (dyn_cast<FloatType>(operand.getType())) {
FloatType toFpTy = cast<FloatType>(targetType.getElementType());
auto toBitwidth = toFpTy.getIntOrFloatBitWidth();
Value from = operand;
if (from.getType().getIntOrFloatBitWidth() < toBitwidth) {
from = b.create<arith::ExtFOp>(toFpTy, from);
}
if (from.getType().getIntOrFloatBitWidth() > toBitwidth) {
from = b.create<arith::TruncFOp>(toFpTy, from);
}
Value zero = b.create<mlir::arith::ConstantFloatOp>(
mlir::APFloat(toFpTy.getFloatSemantics(), 0), toFpTy);
return b.create<complex::CreateOp>(targetType, from, zero);
}
if (dyn_cast<IntegerType>(operand.getType())) {
FloatType toFpTy = cast<FloatType>(targetType.getElementType());
Value from = operand;
if (isUnsigned) {
from = b.create<arith::UIToFPOp>(toFpTy, from);
} else {
from = b.create<arith::SIToFPOp>(toFpTy, from);
}
Value zero = b.create<mlir::arith::ConstantFloatOp>(
mlir::APFloat(toFpTy.getFloatSemantics(), 0), toFpTy);
return b.create<complex::CreateOp>(targetType, from, zero);
}
return {};
}
Value mlir::convertScalarToDtype(OpBuilder &b, Location loc, Value operand,
Type toType, bool isUnsignedCast) {
if (operand.getType() == toType)
return operand;
ImplicitLocOpBuilder ib(loc, b);
Value result;
if (auto intTy = dyn_cast<IntegerType>(toType)) {
result = convertScalarToIntDtype(ib, operand, intTy, isUnsignedCast);
} else if (auto floatTy = dyn_cast<FloatType>(toType)) {
result = convertScalarToFpDtype(ib, operand, floatTy, isUnsignedCast);
} else if (auto complexTy = dyn_cast<ComplexType>(toType)) {
result =
convertScalarToComplexDtype(ib, operand, complexTy, isUnsignedCast);
}
if (result)
return result;
emitWarning(loc) << "could not cast operand of type " << operand.getType()
<< " to " << toType;
return operand;
}
SmallVector<Value>
mlir::getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc,
ArrayRef<OpFoldResult> valueOrAttrVec) {
return llvm::to_vector<4>(
llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
return getValueOrCreateConstantIndexOp(b, loc, value);
}));
}
Value mlir::createScalarOrSplatConstant(OpBuilder &builder, Location loc,
Type type, const APInt &value) {
TypedAttr attr;
if (isa<IntegerType>(type)) {
attr = builder.getIntegerAttr(type, value);
} else {
auto vecTy = cast<ShapedType>(type);
attr = SplatElementsAttr::get(vecTy, value);
}
return builder.create<arith::ConstantOp>(loc, attr);
}
Value mlir::createScalarOrSplatConstant(OpBuilder &builder, Location loc,
Type type, int64_t value) {
unsigned elementBitWidth = 0;
if (auto intTy = dyn_cast<IntegerType>(type))
elementBitWidth = intTy.getWidth();
else
elementBitWidth = cast<ShapedType>(type).getElementTypeBitWidth();
return createScalarOrSplatConstant(builder, loc, type,
APInt(elementBitWidth, value));
}
Value mlir::createScalarOrSplatConstant(OpBuilder &builder, Location loc,
Type type, const APFloat &value) {
if (isa<FloatType>(type))
return builder.createOrFold<arith::ConstantOp>(
loc, type, builder.getFloatAttr(type, value));
TypedAttr splat = SplatElementsAttr::get(cast<ShapedType>(type), value);
return builder.createOrFold<arith::ConstantOp>(loc, type, splat);
}
Type mlir::getType(OpFoldResult ofr) {
if (auto value = dyn_cast_if_present<Value>(ofr))
return value.getType();
auto attr = cast<IntegerAttr>(cast<Attribute>(ofr));
return attr.getType();
}
Value ArithBuilder::_and(Value lhs, Value rhs) {
return b.create<arith::AndIOp>(loc, lhs, rhs);
}
Value ArithBuilder::add(Value lhs, Value rhs) {
if (isa<FloatType>(lhs.getType()))
return b.create<arith::AddFOp>(loc, lhs, rhs);
return b.create<arith::AddIOp>(loc, lhs, rhs);
}
Value ArithBuilder::sub(Value lhs, Value rhs) {
if (isa<FloatType>(lhs.getType()))
return b.create<arith::SubFOp>(loc, lhs, rhs);
return b.create<arith::SubIOp>(loc, lhs, rhs);
}
Value ArithBuilder::mul(Value lhs, Value rhs) {
if (isa<FloatType>(lhs.getType()))
return b.create<arith::MulFOp>(loc, lhs, rhs);
return b.create<arith::MulIOp>(loc, lhs, rhs);
}
Value ArithBuilder::sgt(Value lhs, Value rhs) {
if (isa<FloatType>(lhs.getType()))
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGT, lhs, rhs);
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, lhs, rhs);
}
Value ArithBuilder::slt(Value lhs, Value rhs) {
if (isa<FloatType>(lhs.getType()))
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OLT, lhs, rhs);
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, lhs, rhs);
}
Value ArithBuilder::select(Value cmp, Value lhs, Value rhs) {
return b.create<arith::SelectOp>(loc, cmp, lhs, rhs);
}
namespace mlir::arith {
Value createProduct(OpBuilder &builder, Location loc, ArrayRef<Value> values) {
return createProduct(builder, loc, values, values.front().getType());
}
Value createProduct(OpBuilder &builder, Location loc, ArrayRef<Value> values,
Type resultType) {
Value one = builder.create<ConstantOp>(loc, resultType,
builder.getOneAttr(resultType));
ArithBuilder arithBuilder(builder, loc);
return std::accumulate(
values.begin(), values.end(), one,
[&arithBuilder](Value acc, Value v) { return arithBuilder.mul(acc, v); });
}
} // namespace mlir::arith
|