1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
//===- TileAllocation.cpp - Allocate SME ZA tiles -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transform allocates SME tiles at the 'func.func' op level for ArmSME
// operations. It roughly implements a linear scan register allocator, similar
// to the one outlined in [1], but with simplifications and assumptions made for
// our use case. Note that this is a greedy allocator (so it may not always find
// the most optimal allocation of tiles).
//
// The allocator operates at the CF dialect level. It is the responsibility of
// users to ensure the IR has been lowered to CF before invoking the tile
// allocator.
//
// The 128-bit tiles overlap with other element tiles as follows (see section
// B2.3.2 of SME spec [2]):
//
// Tile Overlaps
// ---------------------------------------------------------------------------
// ZA0.B ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q,
// ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, ZA15.Q
// ZA0.H ZA0.Q, ZA2.Q, ZA4.Q, ZA6.Q, ZA8.Q, ZA10.Q, ZA12.Q, ZA14.Q
// ZA1.H ZA1.Q, ZA3.Q, ZA5.Q, ZA7.Q, ZA9.Q, ZA11.Q, ZA13.Q, ZA15.Q
// ZA0.S ZA0.Q, ZA4.Q, ZA8.Q, ZA12.Q
// ZA1.S ZA1.Q, ZA5.Q, ZA9.Q, ZA13.Q
// ZA2.S ZA2.Q, ZA6.Q, ZA10.Q, ZA14.Q
// ZA3.S ZA3.Q, ZA7.Q, ZA11.Q, ZA15.Q
// ZA0.D ZA0.Q, ZA8.Q
// ZA1.D ZA1.Q, ZA9.Q
// ZA2.D ZA2.Q, ZA10.Q
// ZA3.D ZA3.Q, ZA11.Q
// ZA4.D ZA4.Q, ZA12.Q
// ZA5.D ZA5.Q, ZA13.Q
// ZA6.D ZA6.Q, ZA14.Q
// ZA7.D ZA7.Q, ZA15.Q
//
// [1] "Linear Scan Register Allocation in the Context of SSA Form and Register
// Constraints" (Hanspeter Mössenböck and Michael Pfeiffer)
// https://link.springer.com/content/pdf/10.1007/3-540-45937-5_17.pdf
// [2] https://developer.arm.com/documentation/ddi0616/aa
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Liveness.h"
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Transforms/Passes.h"
#include "mlir/Dialect/ArmSME/Transforms/Transforms.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/TypeSwitch.h"
#include <algorithm>
namespace mlir::arm_sme {
#define GEN_PASS_DEF_TESTTILEALLOCATION
#include "mlir/Dialect/ArmSME/Transforms/Passes.h.inc"
} // namespace mlir::arm_sme
using namespace mlir;
using namespace mlir::arm_sme;
namespace {
enum class TileMask : unsigned {
// clang-format off
kZA0B = 0xffff, // 1111 1111 1111 1111
kZA0H = 0xaaaa, // 1010 1010 1010 1010
kZA1H = 0x5555, // 0101 0101 0101 0101
kZA0S = 0x8888, // 1000 1000 1000 1000
kZA1S = 0x4444, // 0100 0100 0100 0100
kZA2S = 0x2222, // 0010 0010 0010 0010
kZA3S = 0x1111, // 0001 0001 0001 0001
kZA0D = 0x8080, // 1000 0000 1000 0000
kZA1D = 0x4040, // 0100 0000 0100 0000
kZA2D = 0x2020, // 0010 0000 0010 0000
kZA3D = 0x1010, // 0001 0000 0001 0000
kZA4D = 0x808, // 0000 1000 0000 1000
kZA5D = 0x404, // 0000 0100 0000 0100
kZA6D = 0x202, // 0000 0010 0000 0010
kZA7D = 0x101, // 0000 0001 0000 0001
kZA0Q = 0x8000, // 1000 0000 0000 0000
kZA1Q = 0x4000, // 0100 0000 0000 0000
kZA2Q = 0x2000, // 0010 0000 0000 0000
kZA3Q = 0x1000, // 0001 0000 0000 0000
kZA4Q = 0x800, // 0000 1000 0000 0000
kZA5Q = 0x400, // 0000 0100 0000 0000
kZA6Q = 0x200, // 0000 0010 0000 0000
kZA7Q = 0x100, // 0000 0001 0000 0000
kZA8Q = 0x80, // 0000 0000 1000 0000
kZA9Q = 0x40, // 0000 0000 0100 0000
kZA10Q = 0x20, // 0000 0000 0010 0000
kZA11Q = 0x10, // 0000 0000 0001 0000
kZA12Q = 0x8, // 0000 0000 0000 1000
kZA13Q = 0x4, // 0000 0000 0000 0100
kZA14Q = 0x2, // 0000 0000 0000 0010
kZA15Q = 0x1, // 0000 0000 0000 0001
kNone = 0x0, // 0000 0000 0000 0000
// clang-format on
LLVM_MARK_AS_BITMASK_ENUM(kZA0B)
};
/// Returns the set of masks relevant for the given type.
static ArrayRef<TileMask> getMasks(ArmSMETileType type) {
static constexpr std::array ZA_B_MASKS = {TileMask::kZA0B};
static constexpr std::array ZA_H_MASKS = {TileMask::kZA0H, TileMask::kZA1H};
static constexpr std::array ZA_S_MASKS = {TileMask::kZA0S, TileMask::kZA1S,
TileMask::kZA2S, TileMask::kZA3S};
static constexpr std::array ZA_D_MASKS = {
TileMask::kZA0D, TileMask::kZA1D, TileMask::kZA2D, TileMask::kZA3D,
TileMask::kZA4D, TileMask::kZA5D, TileMask::kZA6D, TileMask::kZA7D};
static constexpr std::array ZA_Q_MASKS = {
TileMask::kZA0Q, TileMask::kZA1Q, TileMask::kZA2Q, TileMask::kZA3Q,
TileMask::kZA4Q, TileMask::kZA5Q, TileMask::kZA6Q, TileMask::kZA7Q,
TileMask::kZA8Q, TileMask::kZA9Q, TileMask::kZA10Q, TileMask::kZA11Q,
TileMask::kZA12Q, TileMask::kZA13Q, TileMask::kZA14Q, TileMask::kZA15Q};
switch (type) {
case ArmSMETileType::ZAB:
return ZA_B_MASKS;
case ArmSMETileType::ZAH:
return ZA_H_MASKS;
case ArmSMETileType::ZAS:
return ZA_S_MASKS;
case ArmSMETileType::ZAD:
return ZA_D_MASKS;
case ArmSMETileType::ZAQ:
return ZA_Q_MASKS;
}
}
class TileAllocator {
public:
/// Allocates and returns a tile ID. Fails if there are no tiles left.
FailureOr<unsigned> allocateTileId(ArmSMETileType tileType) {
auto masks = getMasks(tileType);
for (auto [tileId, tileMask] : llvm::enumerate(masks)) {
if ((tilesInUse & tileMask) == TileMask::kNone) {
tilesInUse |= tileMask;
return tileId;
}
}
return failure();
}
/// Acquires a specific tile ID. Asserts the tile is initially free.
void acquireTileId(ArmSMETileType tileType, unsigned tileId) {
TileMask tileMask = getMasks(tileType)[tileId];
assert((tilesInUse & tileMask) == TileMask::kNone &&
"cannot acquire allocated tile!");
tilesInUse |= tileMask;
}
/// Releases a previously allocated tile ID.
void releaseTileId(ArmSMETileType tileType, unsigned tileId) {
TileMask tileMask = getMasks(tileType)[tileId];
assert((tilesInUse & tileMask) == tileMask &&
"cannot release unallocated tile!");
tilesInUse ^= tileMask;
}
/// Allocates an in-memory tile ID.
unsigned allocateInMemoryTileId() {
// Note: We never release in-memory tile IDs. We could, which may allow
// reusing an allocation, but as we _never_ want to spill an SME tile this
// is not optimized.
return nextInMemoryTileId++;
}
private:
TileMask tilesInUse = TileMask::kNone;
unsigned nextInMemoryTileId = kInMemoryTileIdBase;
};
/// Add new intermediate blocks for the true and false destinations of
/// `cf.cond_br`s that contain tile operands. This prevents spurious liveness
/// overlaps due to copies at branches.
///
/// BEFORE:
/// ```mlir
/// cf.cond_br %cond, ^bb1(%tile: vector<[4]x[4]xf32>), ^bb2
/// ```
///
/// AFTER:
/// ```mlir
/// cf.cond_br %cond, ^bb1_copy, ^bb2_copy
/// ^bb1_copy:
/// cf.br ^bb1(%tile: vector<[4]x[4]xf32>)
/// ^bb2_copy:
/// cf.br ^bb2
/// ```
void splitCondBranches(IRRewriter &rewriter, FunctionOpInterface function) {
SmallVector<cf::CondBranchOp> worklist;
function.walk([&](cf::CondBranchOp condBranch) {
if (llvm::any_of(condBranch->getOperands(), [&](Value value) {
return isValidSMETileVectorType(value.getType());
})) {
worklist.push_back(condBranch);
}
});
auto insertJump = [&](Location loc, Block *source, Block *dest, auto args) {
rewriter.setInsertionPointToEnd(source);
rewriter.create<cf::BranchOp>(loc, dest, args);
};
for (auto condBranch : worklist) {
auto loc = condBranch.getLoc();
Block *block = condBranch->getBlock();
auto newTrueBranch = rewriter.splitBlock(block, block->end());
auto newFalseBranch = rewriter.splitBlock(block, block->end());
insertJump(loc, newTrueBranch, condBranch.getTrueDest(),
condBranch.getTrueDestOperands());
insertJump(loc, newFalseBranch, condBranch.getFalseDest(),
condBranch.getFalseDestOperands());
rewriter.modifyOpInPlace(condBranch, [&] {
condBranch.getFalseDestOperandsMutable().clear();
condBranch.getTrueDestOperandsMutable().clear();
condBranch.setSuccessor(newTrueBranch, 0);
condBranch.setSuccessor(newFalseBranch, 1);
});
}
}
/// Inserts tile copies at `cf.br` operations.
///
/// BEFORE:
/// ```mlir
/// cf.br ^bb1(%tile: vector<[4]x[4]xf32>)
/// ```
///
/// AFTER:
/// ```mlir
/// %copy = arm_sme.copy_tile %tile : vector<[4]x[4]xf32>
/// cf.br ^bb1(%copy: vector<[4]x[4]xf32>)
/// ```
void insertCopiesAtBranches(IRRewriter &rewriter,
FunctionOpInterface function) {
for (Block &block : function.getBlocks()) {
Operation *terminator = block.getTerminator();
if (!isa<cf::BranchOp>(terminator))
continue;
rewriter.setInsertionPoint(terminator);
for (OpOperand &operand : terminator->getOpOperands()) {
if (isValidSMETileVectorType(operand.get().getType())) {
auto copy =
rewriter.create<CopyTileOp>(terminator->getLoc(), operand.get());
rewriter.modifyOpInPlace(terminator, [&] { operand.assign(copy); });
}
}
}
}
/// Prepares the IR for tile allocation. It does this by first 'splitting'
/// conditional branches (see `splitCondBranches`), then inserting tile copies
/// at branch operations. The conditional branches are split to prevent the
/// copies needed for them overlapping between the true and false paths of the
/// branch (see `tile-allocation-copies.mlir` and
/// `tile-allocation-liveness.mlir` for examples). The copies break up live
/// ranges and ensure when moving out of SSA the semantics of the program are
/// preserved.
void preprocessForTileAllocation(IRRewriter &rewriter,
FunctionOpInterface function) {
splitCondBranches(rewriter, function);
insertCopiesAtBranches(rewriter, function);
}
/// A live range for a (collection of) tile values. A live range is built up of
/// non-overlapping intervals [start, end) which represent parts of the program
/// where a value in the range needs to be live (i.e. in an SME virtual tile).
/// Note that as the intervals are non-overlapping all values within a live
/// range can be allocated to the same SME virtual tile.
struct LiveRange {
using RangeSet = llvm::IntervalMap<uint64_t, uint8_t, 16,
llvm::IntervalMapHalfOpenInfo<unsigned>>;
using Allocator = RangeSet::Allocator;
// Dummy value for the IntervalMap. Only the keys matter (the intervals).
static constexpr uint8_t kValidLiveRange = 0xff;
LiveRange(Allocator &allocator)
: ranges(std::make_unique<RangeSet>(allocator)) {}
/// Returns true if this range overlaps with `otherRange`.
bool overlaps(LiveRange const &otherRange) const {
return llvm::IntervalMapOverlaps<RangeSet, RangeSet>(*ranges,
*otherRange.ranges)
.valid();
}
/// Returns true if this range is active at `point` in the program.
bool overlaps(uint64_t point) const {
return ranges->lookup(point) == kValidLiveRange;
}
/// Unions this live range with `otherRange`, aborts if the ranges overlap.
void unionWith(LiveRange const &otherRange) {
for (auto it = otherRange.ranges->begin(); it != otherRange.ranges->end();
++it)
ranges->insert(it.start(), it.stop(), kValidLiveRange);
values.set_union(otherRange.values);
}
/// Inserts an interval [start, end) for `value` into this range.
void insert(Value value, unsigned start, unsigned end) {
values.insert(value);
if (start != end)
ranges->insert(start, end, kValidLiveRange);
}
bool empty() const { return ranges->empty(); }
unsigned start() const { return ranges->start(); }
unsigned end() const { return ranges->stop(); }
bool operator<(LiveRange const &other) const {
return start() < other.start();
}
ArmSMETileType getTileType() const {
return *getSMETileType(cast<VectorType>(values[0].getType()));
}
/// The values contained in this live range.
SetVector<Value> values;
/// A set of (non-overlapping) intervals that mark where any value in `values`
/// is live.
std::unique_ptr<RangeSet> ranges;
/// The tile ID (or none) assigned to this live range.
std::optional<unsigned> tileId;
};
/// Number operations within a function to allow computing live ranges.
/// Operations are numbered consecutively wihin blocks, and the blocks are
/// topologically sorted (using forward edges). This function is only correct if
/// all ArmSME have been converted to CF (which is asserted).
DenseMap<Operation *, unsigned>
generateOperationNumbering(FunctionOpInterface function) {
unsigned index = 0;
SetVector<Block *> blocks =
getBlocksSortedByDominance(function.getFunctionBody());
DenseMap<Operation *, unsigned> operationToIndexMap;
for (Block *block : blocks) {
index++; // We want block args to have their own number.
for (Operation &op : block->getOperations()) {
#ifndef NDEBUG
op.walk([&](ArmSMETileOpInterface nestedOp) {
assert(&op == nestedOp.getOperation() &&
"ArmSME tile allocation does not support nested regions");
});
#endif
operationToIndexMap.try_emplace(&op, index++);
}
}
return operationToIndexMap;
}
/// Gather live ranges for SME tiles from the MLIR liveness analysis.
DenseMap<Value, LiveRange>
gatherTileLiveRanges(DenseMap<Operation *, unsigned> const &operationToIndexMap,
LiveRange::Allocator &liveRangeAllocator,
Liveness &liveness, FunctionOpInterface function) {
assert(!operationToIndexMap.empty() && "expected operation numbering");
DenseMap<Value, LiveRange> liveRanges;
/// Defines or updates a live range for an SME tile value. Live-ins may update
/// an existing live range (rather than define a new one). Note: If
/// `liveAtBlockEntry` is true then `firstUseOrDef` is the first operation in
/// the block.
auto defineOrUpdateValueLiveRange = [&](Value value, Operation *firstUseOrDef,
LivenessBlockInfo const &livenessInfo,
bool liveAtBlockEntry = false) {
if (!isValidSMETileVectorType(value.getType()))
return;
// Find or create a live range for `value`.
auto [it, _] = liveRanges.try_emplace(value, liveRangeAllocator);
LiveRange &valueLiveRange = it->second;
auto lastUseInBlock = livenessInfo.getEndOperation(value, firstUseOrDef);
// Add the interval [firstUseOrDef, lastUseInBlock) to the live range.
unsigned startOpIdx =
operationToIndexMap.at(firstUseOrDef) + (liveAtBlockEntry ? -1 : 0);
unsigned endOpIdx = operationToIndexMap.at(lastUseInBlock);
valueLiveRange.insert(value, startOpIdx, endOpIdx);
};
for (Block &block : function.getBlocks()) {
LivenessBlockInfo const *livenessInfo = liveness.getLiveness(&block);
// Handle block arguments:
for (Value argument : block.getArguments())
defineOrUpdateValueLiveRange(argument, &block.front(), *livenessInfo,
/*liveAtBlockEntry=*/true);
// Handle live-ins:
for (Value liveIn : livenessInfo->in())
defineOrUpdateValueLiveRange(liveIn, &block.front(), *livenessInfo,
/*liveAtBlockEntry=*/true);
// Handle new definitions:
for (Operation &op : block) {
for (Value result : op.getResults())
defineOrUpdateValueLiveRange(result, &op, *livenessInfo);
}
}
return liveRanges;
}
/// Iterate over all predecessor tile values to a (tile) block argument.
static void forEachPredecessorTileValue(BlockArgument blockArg,
function_ref<void(Value)> callback) {
Block *block = blockArg.getOwner();
unsigned argNumber = blockArg.getArgNumber();
for (Block *pred : block->getPredecessors()) {
TypeSwitch<Operation *>(pred->getTerminator())
.Case<cf::BranchOp>([&](auto branch) {
Value predecessorOperand = branch.getDestOperands()[argNumber];
callback(predecessorOperand);
})
.Case<cf::CondBranchOp>([&](auto condBranch) {
if (condBranch.getFalseDest() == block) {
Value predecessorOperand =
condBranch.getFalseDestOperands()[argNumber];
callback(predecessorOperand);
}
if (condBranch.getTrueDest() == block) {
Value predecessorOperand =
condBranch.getTrueDestOperands()[argNumber];
callback(predecessorOperand);
}
});
}
}
/// Coalesce live ranges where it would prevent unnecessary tile moves.
SmallVector<LiveRange *>
coalesceTileLiveRanges(DenseMap<Value, LiveRange> &initialLiveRanges) {
DenseMap<Value, LiveRange *> liveRanges;
for (auto &[value, liveRange] : initialLiveRanges) {
liveRanges.insert({value, &liveRange});
}
// Merge the live ranges of values `a` and `b` into one (if they do not
// overlap). After this, the values `a` and `b` will both point to the same
// live range (which will contain multiple values).
auto mergeValuesIfNonOverlapping = [&](Value a, Value b) {
LiveRange *aLiveRange = liveRanges.at(a);
LiveRange *bLiveRange = liveRanges.at(b);
if (aLiveRange != bLiveRange && !aLiveRange->overlaps(*bLiveRange)) {
aLiveRange->unionWith(*bLiveRange);
for (Value value : bLiveRange->values)
liveRanges[value] = aLiveRange;
}
};
// Merge the live ranges of new definitions with their tile operands.
auto unifyDefinitionsWithOperands = [&](Value value) {
auto armSMEOp = value.getDefiningOp<ArmSMETileOpInterface>();
if (!armSMEOp)
return;
for (auto operand : armSMEOp->getOperands()) {
if (isValidSMETileVectorType(operand.getType()))
mergeValuesIfNonOverlapping(value, operand);
}
};
// Merge the live ranges of block arguments with their predecessors.
auto unifyBlockArgumentsWithPredecessors = [&](Value value) {
auto blockArg = dyn_cast<BlockArgument>(value);
if (!blockArg)
return;
forEachPredecessorTileValue(blockArg, [&](Value predecessorTile) {
mergeValuesIfNonOverlapping(blockArg, predecessorTile);
});
};
auto applyRule = [&](auto rule) {
llvm::for_each(llvm::make_first_range(initialLiveRanges), rule);
};
// Unify as many live ranges as we can. This prevents unnecessary moves.
applyRule(unifyBlockArgumentsWithPredecessors);
applyRule(unifyDefinitionsWithOperands);
// Remove duplicate live range entries.
SetVector<LiveRange *> uniqueLiveRanges;
for (auto [_, liveRange] : liveRanges) {
if (!liveRange->empty())
uniqueLiveRanges.insert(liveRange);
}
// Sort the new live ranges by starting point (ready for tile allocation).
auto coalescedLiveRanges = uniqueLiveRanges.takeVector();
std::sort(coalescedLiveRanges.begin(), coalescedLiveRanges.end(),
[](LiveRange *a, LiveRange *b) { return *a < *b; });
return std::move(coalescedLiveRanges);
}
/// Choose a live range to spill (via some heuristics). This picks either a live
/// range from `overlappingRanges`, or the new live range `newRange`.
template <typename OverlappingRangesIterator>
LiveRange *
chooseSpillUsingHeuristics(OverlappingRangesIterator overlappingRanges,
LiveRange *newRange) {
// Heuristic: Spill trivially copyable operations (usually free).
auto isTrivialSpill = [&](LiveRange &allocatedRange) {
return isTileTypeGreaterOrEqual(allocatedRange.getTileType(),
newRange->getTileType()) &&
allocatedRange.values.size() == 1 &&
isTriviallyCloneableTileOp(
allocatedRange.values[0].getDefiningOp<ArmSMETileOpInterface>());
};
if (isTrivialSpill(*newRange))
return newRange;
auto trivialSpill = llvm::find_if(overlappingRanges, isTrivialSpill);
if (trivialSpill != overlappingRanges.end())
return &*trivialSpill;
// Heuristic: Spill the range that ends last (with a compatible tile type).
auto isSmallerTileTypeOrEndsEarlier = [](LiveRange &a, LiveRange &b) {
return !isTileTypeGreaterOrEqual(a.getTileType(), b.getTileType()) ||
a.end() < b.end();
};
LiveRange &latestEndingLiveRange =
*std::max_element(overlappingRanges.begin(), overlappingRanges.end(),
isSmallerTileTypeOrEndsEarlier);
if (!isSmallerTileTypeOrEndsEarlier(latestEndingLiveRange, *newRange))
return &latestEndingLiveRange;
return newRange;
}
/// Greedily allocate tile IDs to live ranges. Spill using simple heuristics.
void allocateTilesToLiveRanges(
ArrayRef<LiveRange *> liveRangesSortedByStartPoint) {
TileAllocator tileAllocator;
// `activeRanges` = Live ranges that need to be in a tile at the
// `currentPoint` in the program.
SetVector<LiveRange *> activeRanges;
// `inactiveRanges` = Live ranges that _do not_ need to be in a tile
// at the `currentPoint` in the program but could become active again later.
// An inactive section of a live range can be seen as a 'hole' in the live
// range, where it is possible to reuse the live range's tile ID _before_ it
// has ended. By identifying 'holes', the allocator can reuse tiles more
// often, which helps avoid costly tile spills.
SetVector<LiveRange *> inactiveRanges;
for (LiveRange *nextRange : liveRangesSortedByStartPoint) {
auto currentPoint = nextRange->start();
// 1. Update the `activeRanges` at `currentPoint`.
activeRanges.remove_if([&](LiveRange *activeRange) {
// Check for live ranges that have expired.
if (activeRange->end() <= currentPoint) {
tileAllocator.releaseTileId(activeRange->getTileType(),
*activeRange->tileId);
return true;
}
// Check for live ranges that have become inactive.
if (!activeRange->overlaps(currentPoint)) {
tileAllocator.releaseTileId(activeRange->getTileType(),
*activeRange->tileId);
inactiveRanges.insert(activeRange);
return true;
}
return false;
});
// 2. Update the `inactiveRanges` at `currentPoint`.
inactiveRanges.remove_if([&](LiveRange *inactiveRange) {
// Check for live ranges that have expired.
if (inactiveRange->end() <= currentPoint) {
return true;
}
// Check for live ranges that have become active.
if (inactiveRange->overlaps(currentPoint)) {
tileAllocator.acquireTileId(inactiveRange->getTileType(),
*inactiveRange->tileId);
activeRanges.insert(inactiveRange);
return true;
}
return false;
});
// 3. Collect inactive live ranges that overlap with the new live range.
// Note: The overlap checks in steps 1 and 2 only look at the `currentPoint`
// whereas this checks if there is an overlap at any future point too.
SmallVector<LiveRange *> overlappingInactiveRanges;
for (LiveRange *inactiveRange : inactiveRanges) {
if (inactiveRange->overlaps(*nextRange)) {
// We need to reserve the tile IDs of overlapping inactive ranges to
// prevent two (overlapping) live ranges from getting the same tile ID.
tileAllocator.acquireTileId(inactiveRange->getTileType(),
*inactiveRange->tileId);
overlappingInactiveRanges.push_back(inactiveRange);
}
}
// 4. Allocate a tile ID to `nextRange`.
auto rangeTileType = nextRange->getTileType();
auto tileId = tileAllocator.allocateTileId(rangeTileType);
if (succeeded(tileId)) {
nextRange->tileId = *tileId;
} else {
// Create an iterator over all overlapping live ranges.
auto allOverlappingRanges = llvm::concat<LiveRange>(
llvm::make_pointee_range(activeRanges.getArrayRef()),
llvm::make_pointee_range(overlappingInactiveRanges));
// Choose an overlapping live range to spill.
LiveRange *rangeToSpill =
chooseSpillUsingHeuristics(allOverlappingRanges, nextRange);
if (rangeToSpill != nextRange) {
// Spill an (in)active live range (so release its tile ID first).
tileAllocator.releaseTileId(rangeToSpill->getTileType(),
*rangeToSpill->tileId);
// This will always succeed after a spill (of an active live range).
nextRange->tileId = *tileAllocator.allocateTileId(rangeTileType);
// Remove the live range from the active/inactive sets.
if (!activeRanges.remove(rangeToSpill)) {
bool removed = inactiveRanges.remove(rangeToSpill);
assert(removed && "expected a range to be removed!");
(void)removed;
}
}
rangeToSpill->tileId = tileAllocator.allocateInMemoryTileId();
}
// 5. Insert the live range into the active ranges.
if (nextRange->tileId < kInMemoryTileIdBase)
activeRanges.insert(nextRange);
// 6. Release tiles reserved for inactive live ranges (in step 3).
for (LiveRange *range : overlappingInactiveRanges) {
if (*range->tileId < kInMemoryTileIdBase)
tileAllocator.releaseTileId(range->getTileType(), *range->tileId);
}
}
}
/// Assigns a tile ID to an MLIR value.
void assignTileIdToValue(IRRewriter &rewriter, Value value,
IntegerAttr tileIdAttr) {
if (auto tileOp = value.getDefiningOp<ArmSMETileOpInterface>())
rewriter.modifyOpInPlace(tileOp, [&] { tileOp.setTileId(tileIdAttr); });
for (Operation *user : value.getUsers()) {
if (auto tileOp = dyn_cast<ArmSMETileOpInterface>(user)) {
// Ensure ArmSME ops that don't produce a value still get a tile ID.
if (!hasTileResult(tileOp))
rewriter.modifyOpInPlace(tileOp, [&] { tileOp.setTileId(tileIdAttr); });
}
}
}
/// Assign tile IDs back to IR and attempt to resolve trivial tile ID conflicts.
LogicalResult assignTileIdsAndResolveTrivialConflicts(
IRRewriter &rewriter, FunctionOpInterface function,
ArrayRef<LiveRange *> allocatedLiveRanges) {
for (LiveRange const *liveRange : allocatedLiveRanges) {
auto tileIdAttr = rewriter.getI32IntegerAttr(*liveRange->tileId);
auto isAllocatedToSameTile = [&](Value value) {
if (auto tileOp = value.getDefiningOp<ArmSMETileOpInterface>();
tileOp && tileOp.getTileId() == tileIdAttr)
return true;
return liveRange->values.contains(value);
};
/// Eliminates copies where the operand has the same tile ID.
auto foldRedundantCopies = [&](Value value) -> LogicalResult {
auto copyOp = value.getDefiningOp<CopyTileOp>();
if (!copyOp || !isAllocatedToSameTile(copyOp.getTile()))
return failure();
rewriter.replaceAllUsesWith(copyOp, copyOp.getTile());
return success();
};
/// Validates each predecessor to a tile block argument has been assigned
/// the same tile ID.
auto validateBlockArguments = [&](Value value) {
auto blockArg = dyn_cast<BlockArgument>(value);
if (!blockArg) {
// Not a block argument (nothing to validate).
return success();
}
bool tileMismatch = false;
forEachPredecessorTileValue(blockArg, [&](Value predecessorTile) {
if (tileMismatch)
return;
if (!isAllocatedToSameTile(predecessorTile)) {
blockArg.getOwner()->getParentOp()->emitOpError(
"block argument not allocated to the same SME virtial tile as "
"predecessors");
tileMismatch = true;
}
});
return success(/*isSuccess=*/!tileMismatch);
};
/// Attempts to resolve (trivial) tile ID conflicts.
auto resolveTrivialTileConflicts = [&](Value value) -> LogicalResult {
auto tileOp = value.getDefiningOp<ArmSMETileOpInterface>();
OpOperand *tileOperand = getTileOpOperand(tileOp);
if (!tileOperand || isAllocatedToSameTile(tileOperand->get())) {
// Operand already allocated to the correct tile.
// No conflict to resolve.
return success();
}
auto operandTileOp =
tileOperand->get().getDefiningOp<ArmSMETileOpInterface>();
if (!isTriviallyCloneableTileOp(operandTileOp)) {
auto error =
tileOp.emitOpError("tile operand allocated to different SME "
"virtial tile (move required)");
error.attachNote(tileOperand->get().getLoc())
<< "tile operand is: " << tileOperand->get();
return error;
}
// Cloning prevents a move/spill (though may require recomputation).
rewriter.setInsertionPoint(tileOp);
auto clonedOp = operandTileOp.clone();
rewriter.modifyOpInPlace(clonedOp,
[&] { clonedOp.setTileId(tileOp.getTileId()); });
rewriter.insert(clonedOp);
if (isa<CopyTileOp>(tileOp)) {
rewriter.replaceAllUsesWith(tileOp->getResult(0),
clonedOp->getResult(0));
} else {
rewriter.modifyOpInPlace(
tileOp, [&] { tileOperand->assign(clonedOp->getResult(0)); });
}
return success();
};
for (Value value : liveRange->values) {
// 1. Assign the tile ID to the value.
assignTileIdToValue(rewriter, value, tileIdAttr);
// 2. Attempt to eliminate redundant tile copies.
if (succeeded(foldRedundantCopies(value)))
continue;
// 3. Validate tile block arguments.
if (failed(validateBlockArguments(value)))
return failure();
// 4. Attempt to resolve (trivial) tile ID conflicts.
if (failed(resolveTrivialTileConflicts(value)))
return failure();
}
}
return success();
}
/// Prints live ranges alongside operation names for debugging.
void dumpLiveRanges(DenseMap<Operation *, unsigned> const &operationToIndexMap,
ArrayRef<LiveRange const *> liveRanges,
FunctionOpInterface function) {
llvm::errs() << "SME Tile Liveness: @" << function.getName()
<< "\nKey:\nS - Start\nE - End\n| - Live\n";
for (auto [blockIdx, block] : llvm::enumerate(function.getBlocks())) {
llvm::errs() << "^bb" << blockIdx << ":\n";
for (Operation &op : block.getOperations()) {
unsigned operationIndex = operationToIndexMap.at(&op);
for (LiveRange const *range : liveRanges) {
char liveness = ' ';
for (auto it = range->ranges->begin(); it != range->ranges->end();
++it) {
if (it.start() == operationIndex)
liveness = (liveness == 'E' ? '|' : 'S');
else if (it.stop() == operationIndex)
liveness = (liveness == 'S' ? '|' : 'E');
else if (operationIndex >= it.start() && operationIndex < it.stop())
liveness = '|';
}
llvm::errs() << liveness;
}
llvm::errs() << ' ' << op.getName() << '\n';
}
}
llvm::errs() << "==========\n";
}
struct TestTileAllocationPass
: public arm_sme::impl::TestTileAllocationBase<TestTileAllocationPass> {
using TestTileAllocationBase::TestTileAllocationBase;
void runOnOperation() override {
FunctionOpInterface function = getOperation();
if (preprocessOnly) {
IRRewriter rewriter(function);
return preprocessForTileAllocation(rewriter, function);
}
if (failed(arm_sme::allocateSMETiles(function, dumpTileLiveRanges)))
signalPassFailure();
}
};
} // namespace
LogicalResult mlir::arm_sme::allocateSMETiles(FunctionOpInterface function,
bool dumpRanges) {
if (function.empty()) {
// TODO: Also return early if the function contains no ArmSME ops?
return success();
}
LiveRange::Allocator liveRangeAllocator;
IRRewriter rewriter(function.getContext());
// 1. Preprocess the IR for tile allocation.
preprocessForTileAllocation(rewriter, function);
// 2. Gather live ranges for each ArmSME tile within the function.
Liveness liveness(function);
auto operationToIndexMap = generateOperationNumbering(function);
auto initialLiveRanges = gatherTileLiveRanges(
operationToIndexMap, liveRangeAllocator, liveness, function);
if (initialLiveRanges.empty())
return success();
if (dumpRanges) {
// Wrangle initial live ranges into a form suitable for printing.
auto nonEmpty = llvm::make_filter_range(
llvm::make_second_range(initialLiveRanges),
[&](LiveRange const &liveRange) { return !liveRange.empty(); });
auto initialRanges = llvm::to_vector(llvm::map_range(
nonEmpty, [](LiveRange const &liveRange) { return &liveRange; }));
std::sort(initialRanges.begin(), initialRanges.end(),
[](LiveRange const *a, LiveRange const *b) { return *a < *b; });
llvm::errs() << "\n========== Initial Live Ranges:\n";
dumpLiveRanges(operationToIndexMap, initialRanges, function);
}
// 3. Coalesce (non-overlapping) live ranges where it would be beneficial
// for tile allocation. E.g. Unify the result of an operation with its
// operands.
auto coalescedLiveRanges = coalesceTileLiveRanges(initialLiveRanges);
if (dumpRanges) {
llvm::errs() << "\n========== Coalesced Live Ranges:\n";
dumpLiveRanges(operationToIndexMap, coalescedLiveRanges, function);
}
// 4. Allocate tile IDs to live ranges.
allocateTilesToLiveRanges(coalescedLiveRanges);
// 5. Assign the tile IDs back to the ArmSME operations.
if (failed(assignTileIdsAndResolveTrivialConflicts(rewriter, function,
coalescedLiveRanges))) {
return failure();
}
// 6. Erase trivially dead tile operations (e.g. a ZeroOp with no
// users). This prevents the LLVM conversion needlessly inserting spills.
eraseTriviallyDeadTileOps(rewriter, function);
return success();
}
|