1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
|
//===- EmitC.cpp - EmitC Dialect ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/EmitC/IR/EmitC.h"
#include "mlir/Dialect/EmitC/IR/EmitCTraits.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Types.h"
#include "mlir/Interfaces/FunctionImplementation.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Casting.h"
using namespace mlir;
using namespace mlir::emitc;
#include "mlir/Dialect/EmitC/IR/EmitCDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// EmitCDialect
//===----------------------------------------------------------------------===//
void EmitCDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/EmitC/IR/EmitC.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/EmitC/IR/EmitCTypes.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/EmitC/IR/EmitCAttributes.cpp.inc"
>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *EmitCDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<emitc::ConstantOp>(loc, type, value);
}
/// Default callback for builders of ops carrying a region. Inserts a yield
/// without arguments.
void mlir::emitc::buildTerminatedBody(OpBuilder &builder, Location loc) {
builder.create<emitc::YieldOp>(loc);
}
bool mlir::emitc::isSupportedEmitCType(Type type) {
if (llvm::isa<emitc::OpaqueType>(type))
return true;
if (auto ptrType = llvm::dyn_cast<emitc::PointerType>(type))
return isSupportedEmitCType(ptrType.getPointee());
if (auto arrayType = llvm::dyn_cast<emitc::ArrayType>(type)) {
auto elemType = arrayType.getElementType();
return !llvm::isa<emitc::ArrayType>(elemType) &&
isSupportedEmitCType(elemType);
}
if (type.isIndex() || emitc::isPointerWideType(type))
return true;
if (llvm::isa<IntegerType>(type))
return isSupportedIntegerType(type);
if (llvm::isa<FloatType>(type))
return isSupportedFloatType(type);
if (auto tensorType = llvm::dyn_cast<TensorType>(type)) {
if (!tensorType.hasStaticShape()) {
return false;
}
auto elemType = tensorType.getElementType();
if (llvm::isa<emitc::ArrayType>(elemType)) {
return false;
}
return isSupportedEmitCType(elemType);
}
if (auto tupleType = llvm::dyn_cast<TupleType>(type)) {
return llvm::all_of(tupleType.getTypes(), [](Type type) {
return !llvm::isa<emitc::ArrayType>(type) && isSupportedEmitCType(type);
});
}
return false;
}
bool mlir::emitc::isSupportedIntegerType(Type type) {
if (auto intType = llvm::dyn_cast<IntegerType>(type)) {
switch (intType.getWidth()) {
case 1:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
return false;
}
bool mlir::emitc::isIntegerIndexOrOpaqueType(Type type) {
return llvm::isa<IndexType, emitc::OpaqueType>(type) ||
isSupportedIntegerType(type) || isPointerWideType(type);
}
bool mlir::emitc::isSupportedFloatType(Type type) {
if (auto floatType = llvm::dyn_cast<FloatType>(type)) {
switch (floatType.getWidth()) {
case 32:
case 64:
return true;
default:
return false;
}
}
return false;
}
bool mlir::emitc::isPointerWideType(Type type) {
return isa<emitc::SignedSizeTType, emitc::SizeTType, emitc::PtrDiffTType>(
type);
}
/// Check that the type of the initial value is compatible with the operations
/// result type.
static LogicalResult verifyInitializationAttribute(Operation *op,
Attribute value) {
assert(op->getNumResults() == 1 && "operation must have 1 result");
if (llvm::isa<emitc::OpaqueAttr>(value))
return success();
if (llvm::isa<StringAttr>(value))
return op->emitOpError()
<< "string attributes are not supported, use #emitc.opaque instead";
Type resultType = op->getResult(0).getType();
Type attrType = cast<TypedAttr>(value).getType();
if (isPointerWideType(resultType) && attrType.isIndex())
return success();
if (resultType != attrType)
return op->emitOpError()
<< "requires attribute to either be an #emitc.opaque attribute or "
"it's type ("
<< attrType << ") to match the op's result type (" << resultType
<< ")";
return success();
}
//===----------------------------------------------------------------------===//
// AddOp
//===----------------------------------------------------------------------===//
LogicalResult AddOp::verify() {
Type lhsType = getLhs().getType();
Type rhsType = getRhs().getType();
if (isa<emitc::PointerType>(lhsType) && isa<emitc::PointerType>(rhsType))
return emitOpError("requires that at most one operand is a pointer");
if ((isa<emitc::PointerType>(lhsType) &&
!isa<IntegerType, emitc::OpaqueType>(rhsType)) ||
(isa<emitc::PointerType>(rhsType) &&
!isa<IntegerType, emitc::OpaqueType>(lhsType)))
return emitOpError("requires that one operand is an integer or of opaque "
"type if the other is a pointer");
return success();
}
//===----------------------------------------------------------------------===//
// ApplyOp
//===----------------------------------------------------------------------===//
LogicalResult ApplyOp::verify() {
StringRef applicableOperatorStr = getApplicableOperator();
// Applicable operator must not be empty.
if (applicableOperatorStr.empty())
return emitOpError("applicable operator must not be empty");
// Only `*` and `&` are supported.
if (applicableOperatorStr != "&" && applicableOperatorStr != "*")
return emitOpError("applicable operator is illegal");
Operation *op = getOperand().getDefiningOp();
if (op && dyn_cast<ConstantOp>(op))
return emitOpError("cannot apply to constant");
return success();
}
//===----------------------------------------------------------------------===//
// AssignOp
//===----------------------------------------------------------------------===//
/// The assign op requires that the assigned value's type matches the
/// assigned-to variable type.
LogicalResult emitc::AssignOp::verify() {
Value variable = getVar();
Operation *variableDef = variable.getDefiningOp();
if (!variableDef ||
!llvm::isa<emitc::GetGlobalOp, emitc::MemberOp, emitc::MemberOfPtrOp,
emitc::SubscriptOp, emitc::VariableOp>(variableDef))
return emitOpError() << "requires first operand (" << variable
<< ") to be a get_global, member, member of pointer, "
"subscript or variable";
Value value = getValue();
if (variable.getType() != value.getType())
return emitOpError() << "requires value's type (" << value.getType()
<< ") to match variable's type (" << variable.getType()
<< ")";
if (isa<ArrayType>(variable.getType()))
return emitOpError() << "cannot assign to array type";
return success();
}
//===----------------------------------------------------------------------===//
// CastOp
//===----------------------------------------------------------------------===//
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
Type input = inputs.front(), output = outputs.front();
return (
(emitc::isIntegerIndexOrOpaqueType(input) ||
emitc::isSupportedFloatType(input) || isa<emitc::PointerType>(input)) &&
(emitc::isIntegerIndexOrOpaqueType(output) ||
emitc::isSupportedFloatType(output) || isa<emitc::PointerType>(output)));
}
//===----------------------------------------------------------------------===//
// CallOpaqueOp
//===----------------------------------------------------------------------===//
LogicalResult emitc::CallOpaqueOp::verify() {
// Callee must not be empty.
if (getCallee().empty())
return emitOpError("callee must not be empty");
if (std::optional<ArrayAttr> argsAttr = getArgs()) {
for (Attribute arg : *argsAttr) {
auto intAttr = llvm::dyn_cast<IntegerAttr>(arg);
if (intAttr && llvm::isa<IndexType>(intAttr.getType())) {
int64_t index = intAttr.getInt();
// Args with elements of type index must be in range
// [0..operands.size).
if ((index < 0) || (index >= static_cast<int64_t>(getNumOperands())))
return emitOpError("index argument is out of range");
// Args with elements of type ArrayAttr must have a type.
} else if (llvm::isa<ArrayAttr>(
arg) /*&& llvm::isa<NoneType>(arg.getType())*/) {
// FIXME: Array attributes never have types
return emitOpError("array argument has no type");
}
}
}
if (std::optional<ArrayAttr> templateArgsAttr = getTemplateArgs()) {
for (Attribute tArg : *templateArgsAttr) {
if (!llvm::isa<TypeAttr, IntegerAttr, FloatAttr, emitc::OpaqueAttr>(tArg))
return emitOpError("template argument has invalid type");
}
}
if (llvm::any_of(getResultTypes(), llvm::IsaPred<ArrayType>)) {
return emitOpError() << "cannot return array type";
}
return success();
}
//===----------------------------------------------------------------------===//
// ConstantOp
//===----------------------------------------------------------------------===//
LogicalResult emitc::ConstantOp::verify() {
Attribute value = getValueAttr();
if (failed(verifyInitializationAttribute(getOperation(), value)))
return failure();
if (auto opaqueValue = llvm::dyn_cast<emitc::OpaqueAttr>(value)) {
if (opaqueValue.getValue().empty())
return emitOpError() << "value must not be empty";
}
return success();
}
OpFoldResult emitc::ConstantOp::fold(FoldAdaptor adaptor) { return getValue(); }
//===----------------------------------------------------------------------===//
// ExpressionOp
//===----------------------------------------------------------------------===//
Operation *ExpressionOp::getRootOp() {
auto yieldOp = cast<YieldOp>(getBody()->getTerminator());
Value yieldedValue = yieldOp.getResult();
Operation *rootOp = yieldedValue.getDefiningOp();
assert(rootOp && "Yielded value not defined within expression");
return rootOp;
}
LogicalResult ExpressionOp::verify() {
Type resultType = getResult().getType();
Region ®ion = getRegion();
Block &body = region.front();
if (!body.mightHaveTerminator())
return emitOpError("must yield a value at termination");
auto yield = cast<YieldOp>(body.getTerminator());
Value yieldResult = yield.getResult();
if (!yieldResult)
return emitOpError("must yield a value at termination");
Type yieldType = yieldResult.getType();
if (resultType != yieldType)
return emitOpError("requires yielded type to match return type");
for (Operation &op : region.front().without_terminator()) {
if (!op.hasTrait<OpTrait::emitc::CExpression>())
return emitOpError("contains an unsupported operation");
if (op.getNumResults() != 1)
return emitOpError("requires exactly one result for each operation");
if (!op.getResult(0).hasOneUse())
return emitOpError("requires exactly one use for each operation");
}
return success();
}
//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//
void ForOp::build(OpBuilder &builder, OperationState &result, Value lb,
Value ub, Value step, BodyBuilderFn bodyBuilder) {
OpBuilder::InsertionGuard g(builder);
result.addOperands({lb, ub, step});
Type t = lb.getType();
Region *bodyRegion = result.addRegion();
Block *bodyBlock = builder.createBlock(bodyRegion);
bodyBlock->addArgument(t, result.location);
// Create the default terminator if the builder is not provided.
if (!bodyBuilder) {
ForOp::ensureTerminator(*bodyRegion, builder, result.location);
} else {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(bodyBlock);
bodyBuilder(builder, result.location, bodyBlock->getArgument(0));
}
}
void ForOp::getCanonicalizationPatterns(RewritePatternSet &, MLIRContext *) {}
ParseResult ForOp::parse(OpAsmParser &parser, OperationState &result) {
Builder &builder = parser.getBuilder();
Type type;
OpAsmParser::Argument inductionVariable;
OpAsmParser::UnresolvedOperand lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseOperand(inductionVariable.ssaName) || parser.parseEqual() ||
// Parse loop bounds.
parser.parseOperand(lb) || parser.parseKeyword("to") ||
parser.parseOperand(ub) || parser.parseKeyword("step") ||
parser.parseOperand(step))
return failure();
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::Argument, 4> regionArgs;
SmallVector<OpAsmParser::UnresolvedOperand, 4> operands;
regionArgs.push_back(inductionVariable);
// Parse optional type, else assume Index.
if (parser.parseOptionalColon())
type = builder.getIndexType();
else if (parser.parseType(type))
return failure();
// Resolve input operands.
regionArgs.front().type = type;
if (parser.resolveOperand(lb, type, result.operands) ||
parser.resolveOperand(ub, type, result.operands) ||
parser.resolveOperand(step, type, result.operands))
return failure();
// Parse the body region.
Region *body = result.addRegion();
if (parser.parseRegion(*body, regionArgs))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void ForOp::print(OpAsmPrinter &p) {
p << " " << getInductionVar() << " = " << getLowerBound() << " to "
<< getUpperBound() << " step " << getStep();
p << ' ';
if (Type t = getInductionVar().getType(); !t.isIndex())
p << " : " << t << ' ';
p.printRegion(getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
p.printOptionalAttrDict((*this)->getAttrs());
}
LogicalResult ForOp::verifyRegions() {
// Check that the body defines as single block argument for the induction
// variable.
if (getInductionVar().getType() != getLowerBound().getType())
return emitOpError(
"expected induction variable to be same type as bounds and step");
return success();
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
LogicalResult CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
// Check that the callee attribute was specified.
auto fnAttr = (*this)->getAttrOfType<FlatSymbolRefAttr>("callee");
if (!fnAttr)
return emitOpError("requires a 'callee' symbol reference attribute");
FuncOp fn = symbolTable.lookupNearestSymbolFrom<FuncOp>(*this, fnAttr);
if (!fn)
return emitOpError() << "'" << fnAttr.getValue()
<< "' does not reference a valid function";
// Verify that the operand and result types match the callee.
auto fnType = fn.getFunctionType();
if (fnType.getNumInputs() != getNumOperands())
return emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
if (getOperand(i).getType() != fnType.getInput(i))
return emitOpError("operand type mismatch: expected operand type ")
<< fnType.getInput(i) << ", but provided "
<< getOperand(i).getType() << " for operand number " << i;
if (fnType.getNumResults() != getNumResults())
return emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
if (getResult(i).getType() != fnType.getResult(i)) {
auto diag = emitOpError("result type mismatch at index ") << i;
diag.attachNote() << " op result types: " << getResultTypes();
diag.attachNote() << "function result types: " << fnType.getResults();
return diag;
}
return success();
}
FunctionType CallOp::getCalleeType() {
return FunctionType::get(getContext(), getOperandTypes(), getResultTypes());
}
//===----------------------------------------------------------------------===//
// DeclareFuncOp
//===----------------------------------------------------------------------===//
LogicalResult
DeclareFuncOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
// Check that the sym_name attribute was specified.
auto fnAttr = getSymNameAttr();
if (!fnAttr)
return emitOpError("requires a 'sym_name' symbol reference attribute");
FuncOp fn = symbolTable.lookupNearestSymbolFrom<FuncOp>(*this, fnAttr);
if (!fn)
return emitOpError() << "'" << fnAttr.getValue()
<< "' does not reference a valid function";
return success();
}
//===----------------------------------------------------------------------===//
// FuncOp
//===----------------------------------------------------------------------===//
void FuncOp::build(OpBuilder &builder, OperationState &state, StringRef name,
FunctionType type, ArrayRef<NamedAttribute> attrs,
ArrayRef<DictionaryAttr> argAttrs) {
state.addAttribute(SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
state.addAttribute(getFunctionTypeAttrName(state.name), TypeAttr::get(type));
state.attributes.append(attrs.begin(), attrs.end());
state.addRegion();
if (argAttrs.empty())
return;
assert(type.getNumInputs() == argAttrs.size());
function_interface_impl::addArgAndResultAttrs(
builder, state, argAttrs, /*resultAttrs=*/std::nullopt,
getArgAttrsAttrName(state.name), getResAttrsAttrName(state.name));
}
ParseResult FuncOp::parse(OpAsmParser &parser, OperationState &result) {
auto buildFuncType =
[](Builder &builder, ArrayRef<Type> argTypes, ArrayRef<Type> results,
function_interface_impl::VariadicFlag,
std::string &) { return builder.getFunctionType(argTypes, results); };
return function_interface_impl::parseFunctionOp(
parser, result, /*allowVariadic=*/false,
getFunctionTypeAttrName(result.name), buildFuncType,
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
}
void FuncOp::print(OpAsmPrinter &p) {
function_interface_impl::printFunctionOp(
p, *this, /*isVariadic=*/false, getFunctionTypeAttrName(),
getArgAttrsAttrName(), getResAttrsAttrName());
}
LogicalResult FuncOp::verify() {
if (getNumResults() > 1)
return emitOpError("requires zero or exactly one result, but has ")
<< getNumResults();
if (getNumResults() == 1 && isa<ArrayType>(getResultTypes()[0]))
return emitOpError("cannot return array type");
return success();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
LogicalResult ReturnOp::verify() {
auto function = cast<FuncOp>((*this)->getParentOp());
// The operand number and types must match the function signature.
if (getNumOperands() != function.getNumResults())
return emitOpError("has ")
<< getNumOperands() << " operands, but enclosing function (@"
<< function.getName() << ") returns " << function.getNumResults();
if (function.getNumResults() == 1)
if (getOperand().getType() != function.getResultTypes()[0])
return emitError() << "type of the return operand ("
<< getOperand().getType()
<< ") doesn't match function result type ("
<< function.getResultTypes()[0] << ")"
<< " in function @" << function.getName();
return success();
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
bool addThenBlock, bool addElseBlock) {
assert((!addElseBlock || addThenBlock) &&
"must not create else block w/o then block");
result.addOperands(cond);
// Add regions and blocks.
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
if (addThenBlock)
builder.createBlock(thenRegion);
Region *elseRegion = result.addRegion();
if (addElseBlock)
builder.createBlock(elseRegion);
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
bool withElseRegion) {
result.addOperands(cond);
// Build then region.
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
// Build else region.
Region *elseRegion = result.addRegion();
if (withElseRegion) {
builder.createBlock(elseRegion);
}
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
assert(thenBuilder && "the builder callback for 'then' must be present");
result.addOperands(cond);
// Build then region.
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
thenBuilder(builder, result.location);
// Build else region.
Region *elseRegion = result.addRegion();
if (elseBuilder) {
builder.createBlock(elseRegion);
elseBuilder(builder, result.location);
}
}
ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) {
// Create the regions for 'then'.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
Builder &builder = parser.getBuilder();
OpAsmParser::UnresolvedOperand cond;
Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void IfOp::print(OpAsmPrinter &p) {
bool printBlockTerminators = false;
p << " " << getCondition();
p << ' ';
p.printRegion(getThenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
Region &elseRegion = getElseRegion();
if (!elseRegion.empty()) {
p << " else ";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
}
p.printOptionalAttrDict((*this)->getAttrs());
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void IfOp::getSuccessorRegions(RegionBranchPoint point,
SmallVectorImpl<RegionSuccessor> ®ions) {
// The `then` and the `else` region branch back to the parent operation.
if (!point.isParent()) {
regions.push_back(RegionSuccessor());
return;
}
regions.push_back(RegionSuccessor(&getThenRegion()));
// Don't consider the else region if it is empty.
Region *elseRegion = &this->getElseRegion();
if (elseRegion->empty())
regions.push_back(RegionSuccessor());
else
regions.push_back(RegionSuccessor(elseRegion));
}
void IfOp::getEntrySuccessorRegions(ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
FoldAdaptor adaptor(operands, *this);
auto boolAttr = dyn_cast_or_null<BoolAttr>(adaptor.getCondition());
if (!boolAttr || boolAttr.getValue())
regions.emplace_back(&getThenRegion());
// If the else region is empty, execution continues after the parent op.
if (!boolAttr || !boolAttr.getValue()) {
if (!getElseRegion().empty())
regions.emplace_back(&getElseRegion());
else
regions.emplace_back();
}
}
void IfOp::getRegionInvocationBounds(
ArrayRef<Attribute> operands,
SmallVectorImpl<InvocationBounds> &invocationBounds) {
if (auto cond = llvm::dyn_cast_or_null<BoolAttr>(operands[0])) {
// If the condition is known, then one region is known to be executed once
// and the other zero times.
invocationBounds.emplace_back(0, cond.getValue() ? 1 : 0);
invocationBounds.emplace_back(0, cond.getValue() ? 0 : 1);
} else {
// Non-constant condition. Each region may be executed 0 or 1 times.
invocationBounds.assign(2, {0, 1});
}
}
//===----------------------------------------------------------------------===//
// IncludeOp
//===----------------------------------------------------------------------===//
void IncludeOp::print(OpAsmPrinter &p) {
bool standardInclude = getIsStandardInclude();
p << " ";
if (standardInclude)
p << "<";
p << "\"" << getInclude() << "\"";
if (standardInclude)
p << ">";
}
ParseResult IncludeOp::parse(OpAsmParser &parser, OperationState &result) {
bool standardInclude = !parser.parseOptionalLess();
StringAttr include;
OptionalParseResult includeParseResult =
parser.parseOptionalAttribute(include, "include", result.attributes);
if (!includeParseResult.has_value())
return parser.emitError(parser.getNameLoc()) << "expected string attribute";
if (standardInclude && parser.parseOptionalGreater())
return parser.emitError(parser.getNameLoc())
<< "expected trailing '>' for standard include";
if (standardInclude)
result.addAttribute("is_standard_include",
UnitAttr::get(parser.getContext()));
return success();
}
//===----------------------------------------------------------------------===//
// LiteralOp
//===----------------------------------------------------------------------===//
/// The literal op requires a non-empty value.
LogicalResult emitc::LiteralOp::verify() {
if (getValue().empty())
return emitOpError() << "value must not be empty";
return success();
}
//===----------------------------------------------------------------------===//
// SubOp
//===----------------------------------------------------------------------===//
LogicalResult SubOp::verify() {
Type lhsType = getLhs().getType();
Type rhsType = getRhs().getType();
Type resultType = getResult().getType();
if (isa<emitc::PointerType>(rhsType) && !isa<emitc::PointerType>(lhsType))
return emitOpError("rhs can only be a pointer if lhs is a pointer");
if (isa<emitc::PointerType>(lhsType) &&
!isa<IntegerType, emitc::OpaqueType, emitc::PointerType>(rhsType))
return emitOpError("requires that rhs is an integer, pointer or of opaque "
"type if lhs is a pointer");
if (isa<emitc::PointerType>(lhsType) && isa<emitc::PointerType>(rhsType) &&
!isa<IntegerType, emitc::OpaqueType>(resultType))
return emitOpError("requires that the result is an integer or of opaque "
"type if lhs and rhs are pointers");
return success();
}
//===----------------------------------------------------------------------===//
// VariableOp
//===----------------------------------------------------------------------===//
LogicalResult emitc::VariableOp::verify() {
return verifyInitializationAttribute(getOperation(), getValueAttr());
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
LogicalResult emitc::YieldOp::verify() {
Value result = getResult();
Operation *containingOp = getOperation()->getParentOp();
if (result && containingOp->getNumResults() != 1)
return emitOpError() << "yields a value not returned by parent";
if (!result && containingOp->getNumResults() != 0)
return emitOpError() << "does not yield a value to be returned by parent";
return success();
}
//===----------------------------------------------------------------------===//
// SubscriptOp
//===----------------------------------------------------------------------===//
LogicalResult emitc::SubscriptOp::verify() {
// Checks for array operand.
if (auto arrayType = llvm::dyn_cast<emitc::ArrayType>(getValue().getType())) {
// Check number of indices.
if (getIndices().size() != (size_t)arrayType.getRank()) {
return emitOpError() << "on array operand requires number of indices ("
<< getIndices().size()
<< ") to match the rank of the array type ("
<< arrayType.getRank() << ")";
}
// Check types of index operands.
for (unsigned i = 0, e = getIndices().size(); i != e; ++i) {
Type type = getIndices()[i].getType();
if (!isIntegerIndexOrOpaqueType(type)) {
return emitOpError() << "on array operand requires index operand " << i
<< " to be integer-like, but got " << type;
}
}
// Check element type.
Type elementType = arrayType.getElementType();
if (elementType != getType()) {
return emitOpError() << "on array operand requires element type ("
<< elementType << ") and result type (" << getType()
<< ") to match";
}
return success();
}
// Checks for pointer operand.
if (auto pointerType =
llvm::dyn_cast<emitc::PointerType>(getValue().getType())) {
// Check number of indices.
if (getIndices().size() != 1) {
return emitOpError()
<< "on pointer operand requires one index operand, but got "
<< getIndices().size();
}
// Check types of index operand.
Type type = getIndices()[0].getType();
if (!isIntegerIndexOrOpaqueType(type)) {
return emitOpError() << "on pointer operand requires index operand to be "
"integer-like, but got "
<< type;
}
// Check pointee type.
Type pointeeType = pointerType.getPointee();
if (pointeeType != getType()) {
return emitOpError() << "on pointer operand requires pointee type ("
<< pointeeType << ") and result type (" << getType()
<< ") to match";
}
return success();
}
// The operand has opaque type, so we can't assume anything about the number
// or types of index operands.
return success();
}
//===----------------------------------------------------------------------===//
// EmitC Enums
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/EmitC/IR/EmitCEnums.cpp.inc"
//===----------------------------------------------------------------------===//
// EmitC Attributes
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/EmitC/IR/EmitCAttributes.cpp.inc"
//===----------------------------------------------------------------------===//
// EmitC Types
//===----------------------------------------------------------------------===//
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/EmitC/IR/EmitCTypes.cpp.inc"
//===----------------------------------------------------------------------===//
// ArrayType
//===----------------------------------------------------------------------===//
Type emitc::ArrayType::parse(AsmParser &parser) {
if (parser.parseLess())
return Type();
SmallVector<int64_t, 4> dimensions;
if (parser.parseDimensionList(dimensions, /*allowDynamic=*/false,
/*withTrailingX=*/true))
return Type();
// Parse the element type.
auto typeLoc = parser.getCurrentLocation();
Type elementType;
if (parser.parseType(elementType))
return Type();
// Check that array is formed from allowed types.
if (!isValidElementType(elementType))
return parser.emitError(typeLoc, "invalid array element type"), Type();
if (parser.parseGreater())
return Type();
return parser.getChecked<ArrayType>(dimensions, elementType);
}
void emitc::ArrayType::print(AsmPrinter &printer) const {
printer << "<";
for (int64_t dim : getShape()) {
printer << dim << 'x';
}
printer.printType(getElementType());
printer << ">";
}
LogicalResult emitc::ArrayType::verify(
::llvm::function_ref<::mlir::InFlightDiagnostic()> emitError,
::llvm::ArrayRef<int64_t> shape, Type elementType) {
if (shape.empty())
return emitError() << "shape must not be empty";
for (int64_t dim : shape) {
if (dim <= 0)
return emitError() << "dimensions must have positive size";
}
if (!elementType)
return emitError() << "element type must not be none";
if (!isValidElementType(elementType))
return emitError() << "invalid array element type";
return success();
}
emitc::ArrayType
emitc::ArrayType::cloneWith(std::optional<ArrayRef<int64_t>> shape,
Type elementType) const {
if (!shape)
return emitc::ArrayType::get(getShape(), elementType);
return emitc::ArrayType::get(*shape, elementType);
}
//===----------------------------------------------------------------------===//
// OpaqueType
//===----------------------------------------------------------------------===//
LogicalResult mlir::emitc::OpaqueType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
llvm::StringRef value) {
if (value.empty()) {
return emitError() << "expected non empty string in !emitc.opaque type";
}
if (value.back() == '*') {
return emitError() << "pointer not allowed as outer type with "
"!emitc.opaque, use !emitc.ptr instead";
}
return success();
}
//===----------------------------------------------------------------------===//
// GlobalOp
//===----------------------------------------------------------------------===//
static void printEmitCGlobalOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op,
TypeAttr type,
Attribute initialValue) {
p << type;
if (initialValue) {
p << " = ";
p.printAttributeWithoutType(initialValue);
}
}
static Type getInitializerTypeForGlobal(Type type) {
if (auto array = llvm::dyn_cast<ArrayType>(type))
return RankedTensorType::get(array.getShape(), array.getElementType());
return type;
}
static ParseResult
parseEmitCGlobalOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr,
Attribute &initialValue) {
Type type;
if (parser.parseType(type))
return failure();
typeAttr = TypeAttr::get(type);
if (parser.parseOptionalEqual())
return success();
if (parser.parseAttribute(initialValue, getInitializerTypeForGlobal(type)))
return failure();
if (!llvm::isa<ElementsAttr, IntegerAttr, FloatAttr, emitc::OpaqueAttr>(
initialValue))
return parser.emitError(parser.getNameLoc())
<< "initial value should be a integer, float, elements or opaque "
"attribute";
return success();
}
LogicalResult GlobalOp::verify() {
if (!isSupportedEmitCType(getType())) {
return emitOpError("expected valid emitc type");
}
if (getInitialValue().has_value()) {
Attribute initValue = getInitialValue().value();
// Check that the type of the initial value is compatible with the type of
// the global variable.
if (auto elementsAttr = llvm::dyn_cast<ElementsAttr>(initValue)) {
auto arrayType = llvm::dyn_cast<ArrayType>(getType());
if (!arrayType)
return emitOpError("expected array type, but got ") << getType();
Type initType = elementsAttr.getType();
Type tensorType = getInitializerTypeForGlobal(getType());
if (initType != tensorType) {
return emitOpError("initial value expected to be of type ")
<< getType() << ", but was of type " << initType;
}
} else if (auto intAttr = dyn_cast<IntegerAttr>(initValue)) {
if (intAttr.getType() != getType()) {
return emitOpError("initial value expected to be of type ")
<< getType() << ", but was of type " << intAttr.getType();
}
} else if (auto floatAttr = dyn_cast<FloatAttr>(initValue)) {
if (floatAttr.getType() != getType()) {
return emitOpError("initial value expected to be of type ")
<< getType() << ", but was of type " << floatAttr.getType();
}
} else if (!isa<emitc::OpaqueAttr>(initValue)) {
return emitOpError("initial value should be a integer, float, elements "
"or opaque attribute, but got ")
<< initValue;
}
}
if (getStaticSpecifier() && getExternSpecifier()) {
return emitOpError("cannot have both static and extern specifiers");
}
return success();
}
//===----------------------------------------------------------------------===//
// GetGlobalOp
//===----------------------------------------------------------------------===//
LogicalResult
GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
// Verify that the type matches the type of the global variable.
auto global =
symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, getNameAttr());
if (!global)
return emitOpError("'")
<< getName() << "' does not reference a valid emitc.global";
Type resultType = getResult().getType();
if (global.getType() != resultType)
return emitOpError("result type ")
<< resultType << " does not match type " << global.getType()
<< " of the global @" << getName();
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/EmitC/IR/EmitC.cpp.inc"
|