1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
|
//===- GPUTransformOps.cpp - Implementation of GPU transform ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/Utils.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/Interfaces/TransformInterfaces.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <type_traits>
using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
using namespace mlir::transform::gpu;
#define DEBUG_TYPE "gpu-transforms"
#define DEBUG_TYPE_ALIAS "gpu-transforms-alias"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
#define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ")
//===----------------------------------------------------------------------===//
// Apply...ConversionPatternsOp
//===----------------------------------------------------------------------===//
void transform::ApplyGPUToNVVMConversionPatternsOp::populatePatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns) {
auto &llvmTypeConverter = static_cast<LLVMTypeConverter &>(typeConverter);
// NVVM uses alloca in the default address space to represent private
// memory allocations, so drop private annotations. NVVM uses address
// space 3 for shared memory. NVVM uses the default address space to
// represent global memory.
// Used in populateGpuToNVVMConversionPatternsso attaching here for now.
// TODO: We should have a single to_nvvm_type_converter.
populateGpuMemorySpaceAttributeConversions(
llvmTypeConverter, [](AddressSpace space) -> unsigned {
switch (space) {
case AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
// Used in GPUToNVVM/WmmaOpsToNvvm.cpp so attaching here for now.
// TODO: We should have a single to_nvvm_type_converter.
llvmTypeConverter.addConversion(
[&](MMAMatrixType type) -> Type { return convertMMAToLLVMType(type); });
populateGpuToNVVMConversionPatterns(llvmTypeConverter, patterns);
}
LogicalResult
transform::ApplyGPUToNVVMConversionPatternsOp::verifyTypeConverter(
transform::TypeConverterBuilderOpInterface builder) {
if (builder.getTypeConverterType() != "LLVMTypeConverter")
return emitOpError("expected LLVMTypeConverter");
return success();
}
void transform::ApplyGPUWwmaToNVVMConversionPatternsOp::populatePatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns) {
auto &llvmTypeConverter = static_cast<LLVMTypeConverter &>(typeConverter);
populateGpuWMMAToNVVMConversionPatterns(llvmTypeConverter, patterns);
}
LogicalResult
transform::ApplyGPUWwmaToNVVMConversionPatternsOp::verifyTypeConverter(
transform::TypeConverterBuilderOpInterface builder) {
if (builder.getTypeConverterType() != "LLVMTypeConverter")
return emitOpError("expected LLVMTypeConverter");
return success();
}
void transform::ApplyGPUSubgroupReduceToNVVMConversionPatternsOp::
populatePatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
auto &llvmTypeConverter = static_cast<LLVMTypeConverter &>(typeConverter);
populateGpuSubgroupReduceOpLoweringPattern(llvmTypeConverter, patterns);
}
LogicalResult transform::ApplyGPUSubgroupReduceToNVVMConversionPatternsOp::
verifyTypeConverter(transform::TypeConverterBuilderOpInterface builder) {
if (builder.getTypeConverterType() != "LLVMTypeConverter")
return emitOpError("expected LLVMTypeConverter");
return success();
}
//===----------------------------------------------------------------------===//
// Apply...PatternsOp
//===----------------------------------------------------------------------===//s
void ApplyGPURewritePatternsOp::populatePatterns(RewritePatternSet &patterns) {
populateGpuRewritePatterns(patterns);
}
//===----------------------------------------------------------------------===//
// ApplyUnrollVectorsSubgroupMmaOp
//===----------------------------------------------------------------------===//
/// Pick an unrolling order that will allow tensorcore operation to reuse LHS
/// register.
static std::optional<SmallVector<int64_t>>
gpuMmaUnrollOrder(vector::ContractionOp contract) {
SmallVector<int64_t> order;
// First make reduction the outer dimensions.
for (auto [index, iter] : llvm::enumerate(contract.getIteratorTypes())) {
if (vector::isReductionIterator(iter)) {
order.push_back(index);
}
}
llvm::SmallDenseSet<int64_t> dims;
for (AffineExpr expr : contract.getIndexingMapsArray()[0].getResults()) {
dims.insert(cast<AffineDimExpr>(expr).getPosition());
}
// Then parallel dimensions that are part of Lhs as we want to re-use Lhs.
for (auto [index, iter] : llvm::enumerate(contract.getIteratorTypes())) {
if (vector::isParallelIterator(iter) && dims.count(index)) {
order.push_back(index);
}
}
// Then the remaining parallel loops.
for (auto [index, iter] : llvm::enumerate(contract.getIteratorTypes())) {
if (vector::isParallelIterator(iter) && !dims.count(index)) {
order.push_back(index);
}
}
return order;
}
/// Returns the target vector size for the target operation based on the native
/// vector size specified with `m`, `n`, and `k`.
static std::optional<SmallVector<int64_t>>
getSubgroupMmaNativeVectorSize(Operation *op, int64_t m, int64_t n, int64_t k) {
if (auto contract = dyn_cast<vector::ContractionOp>(op)) {
int64_t contractRank = contract.getIteratorTypes().size();
if (contractRank < 3)
return std::nullopt;
SmallVector<int64_t> nativeSize(contractRank - 3, 1);
nativeSize.append({m, n, k});
return nativeSize;
}
if (auto writeOp = dyn_cast<vector::TransferWriteOp>(op)) {
int64_t writeRank = writeOp.getVectorType().getRank();
if (writeRank < 2)
return std::nullopt;
SmallVector<int64_t> nativeSize(writeRank - 2, 1);
nativeSize.append({m, n});
return nativeSize;
}
if (auto readOp = dyn_cast<vector::TransferReadOp>(op)) {
// Transfer read ops may need different shapes based on how they are being
// used. For simplicity just match the shape used by the extract strided op.
VectorType sliceType;
for (Operation *users : op->getUsers()) {
auto extract = dyn_cast<vector::ExtractStridedSliceOp>(users);
if (!extract)
return std::nullopt;
auto vecType = cast<VectorType>(extract.getResult().getType());
if (sliceType && sliceType != vecType)
return std::nullopt;
sliceType = vecType;
}
return llvm::to_vector(sliceType.getShape());
}
if ((OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1)) {
if (auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0])) {
// TODO: The condition for unrolling elementwise should be restricted
// only to operations that need unrolling (connected to the contract).
if (vecType.getRank() < 2)
return std::nullopt;
// First check whether there is a slice to infer the shape from. This is
// required for cases where the accumulator type differs from the input
// types, in which case we will see an `arith.ext_` between the contract
// and transfer_read which needs to be unrolled.
VectorType sliceType;
for (Operation *users : op->getUsers()) {
auto extract = dyn_cast<vector::ExtractStridedSliceOp>(users);
if (!extract)
return std::nullopt;
auto vecType = cast<VectorType>(extract.getResult().getType());
if (sliceType && sliceType != vecType)
return std::nullopt;
sliceType = vecType;
}
if (sliceType)
return llvm::to_vector(sliceType.getShape());
// Else unroll for trailing elementwise.
SmallVector<int64_t> nativeSize(vecType.getRank() - 2, 1);
// Map elementwise ops to the output shape.
nativeSize.append({m, n});
return nativeSize;
}
}
return std::nullopt;
}
void transform::ApplyUnrollVectorsSubgroupMmaOp::populatePatterns(
RewritePatternSet &patterns) {
auto unrollOrder = [](Operation *op) -> std::optional<SmallVector<int64_t>> {
auto contract = dyn_cast<vector::ContractionOp>(op);
if (!contract)
return std::nullopt;
return gpuMmaUnrollOrder(contract);
};
int64_t m = getM();
int64_t n = getN();
int64_t k = getK();
auto nativeShapeFn =
[m, n, k](Operation *op) -> std::optional<SmallVector<int64_t>> {
return getSubgroupMmaNativeVectorSize(op, m, n, k);
};
vector::populateVectorUnrollPatterns(
patterns, vector::UnrollVectorOptions()
.setNativeShapeFn(nativeShapeFn)
.setUnrollTraversalOrderFn(unrollOrder));
}
//===----------------------------------------------------------------------===//
// EliminateBarriersOp
//===----------------------------------------------------------------------===//
void EliminateBarriersOp::populatePatterns(RewritePatternSet &patterns) {
populateGpuEliminateBarriersPatterns(patterns);
}
//===----------------------------------------------------------------------===//
// Block and thread mapping utilities.
//===----------------------------------------------------------------------===//
namespace {
/// Local types used for mapping verification.
struct MappingKind {};
struct BlockMappingKind : MappingKind {};
struct ThreadMappingKind : MappingKind {};
} // namespace
static DiagnosedSilenceableFailure
definiteFailureHelper(std::optional<TransformOpInterface> transformOp,
Operation *target, const Twine &message) {
if (transformOp.has_value())
return transformOp->emitDefiniteFailure() << message;
return emitDefiniteFailure(target, message);
}
/// Check if given mapping attributes are one of the desired attributes
template <typename MappingKindType>
static DiagnosedSilenceableFailure
checkMappingAttributeTypes(std::optional<TransformOpInterface> transformOp,
scf::ForallOp forallOp) {
if (!forallOp.getMapping().has_value()) {
return definiteFailureHelper(transformOp, forallOp,
"scf.forall op requires a mapping attribute");
}
bool hasBlockMapping = llvm::any_of(forallOp.getMapping().value(),
llvm::IsaPred<GPUBlockMappingAttr>);
bool hasWarpgroupMapping = llvm::any_of(
forallOp.getMapping().value(), llvm::IsaPred<GPUWarpgroupMappingAttr>);
bool hasWarpMapping = llvm::any_of(forallOp.getMapping().value(),
llvm::IsaPred<GPUWarpMappingAttr>);
bool hasThreadMapping = llvm::any_of(forallOp.getMapping().value(),
llvm::IsaPred<GPUThreadMappingAttr>);
int64_t countMappingTypes = 0;
countMappingTypes += hasBlockMapping ? 1 : 0;
countMappingTypes += hasWarpgroupMapping ? 1 : 0;
countMappingTypes += hasWarpMapping ? 1 : 0;
countMappingTypes += hasThreadMapping ? 1 : 0;
if (countMappingTypes > 1) {
return definiteFailureHelper(
transformOp, forallOp,
"cannot mix different mapping types, use nesting");
}
if (std::is_same<MappingKindType, BlockMappingKind>::value &&
!hasBlockMapping) {
return definiteFailureHelper(
transformOp, forallOp,
"scf.forall op requires a mapping attribute of kind 'block'");
}
if (std::is_same<MappingKindType, ThreadMappingKind>::value &&
!hasThreadMapping && !hasWarpMapping && !hasWarpgroupMapping) {
return definiteFailureHelper(transformOp, forallOp,
"scf.forall op requires a mapping attribute "
"of kind 'thread' or 'warp'");
}
DenseSet<Attribute> seen;
for (Attribute map : forallOp.getMapping()->getValue()) {
if (seen.contains(map)) {
return definiteFailureHelper(
transformOp, forallOp,
"duplicate attribute, cannot map different loops "
"to the same mapping id");
}
seen.insert(map);
}
auto isLinear = [](Attribute a) {
return cast<DeviceMappingAttrInterface>(a).isLinearMapping();
};
if (llvm::any_of(forallOp.getMapping()->getValue(), isLinear) &&
!llvm::all_of(forallOp.getMapping()->getValue(), isLinear)) {
return definiteFailureHelper(
transformOp, forallOp,
"cannot mix linear and non-linear mapping modes");
}
return DiagnosedSilenceableFailure::success();
}
template <typename MappingKindType>
static DiagnosedSilenceableFailure
verifyGpuMapping(std::optional<TransformOpInterface> transformOp,
scf::ForallOp forallOp) {
// Check the types of the mapping attributes match.
DiagnosedSilenceableFailure typeRes =
checkMappingAttributeTypes<MappingKindType>(transformOp, forallOp);
if (!typeRes.succeeded())
return typeRes;
// Perform other non-types verifications.
if (!forallOp.isNormalized())
return definiteFailureHelper(transformOp, forallOp,
"unsupported non-normalized loops");
if (forallOp.getNumResults() > 0)
return definiteFailureHelper(transformOp, forallOp,
"only bufferized scf.forall can be mapped");
bool useLinearMapping = cast<DeviceMappingAttrInterface>(
forallOp.getMapping()->getValue().front())
.isLinearMapping();
// TODO: This would be more natural with support for Optional<EnumParameter>
// in GPUDeviceMappingAttr.
int64_t maxNumMappingsSupported =
useLinearMapping ? (getMaxEnumValForMappingId() -
static_cast<uint64_t>(MappingId::DimZ))
: 3;
if (forallOp.getRank() > maxNumMappingsSupported) {
return definiteFailureHelper(transformOp, forallOp,
"scf.forall with rank > ")
<< maxNumMappingsSupported
<< " does not lower for the specified mapping attribute type";
}
auto numParallelIterations =
getConstantIntValues(forallOp.getMixedUpperBound());
if (!forallOp.isNormalized() || !numParallelIterations.has_value()) {
return definiteFailureHelper(
transformOp, forallOp,
"requires statically sized, normalized forall op");
}
return DiagnosedSilenceableFailure::success();
}
/// Struct to return the result of the rewrite of a forall operation.
struct ForallRewriteResult {
SmallVector<int64_t> mappingSizes;
SmallVector<Value> mappingIds;
};
/// Helper to replace ids of dimensions known to be 1 by 0 to simplify the IR.
template <typename OpTy, typename OperationOrBlock>
static void
replaceUnitMappingIdsHelper(RewriterBase &rewriter, Location loc,
OperationOrBlock *parent, Value replacement,
ArrayRef<int64_t> availableMappingSizes) {
parent->walk([&](OpTy idOp) {
if (availableMappingSizes[static_cast<int64_t>(idOp.getDimension())] == 1)
rewriter.replaceAllUsesWith(idOp.getResult(), replacement);
});
}
static DiagnosedSilenceableFailure rewriteOneForallCommonImpl(
RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
scf::ForallOp forallOp, ArrayRef<int64_t> availableMappingSizes,
ForallRewriteResult &result, const GpuIdBuilder &gpuIdBuilder) {
LDBG("--start rewriteOneForallCommonImpl");
// Step 1. Complete the mapping to a full mapping (with 1s) if necessary.
auto numParallelIterations =
getConstantIntValues(forallOp.getMixedUpperBound());
assert(forallOp.isNormalized() && numParallelIterations.has_value() &&
"requires statically sized, normalized forall op");
SmallVector<int64_t> tmpMappingSizes = numParallelIterations.value();
SetVector<Attribute> forallMappingAttrs;
forallMappingAttrs.insert(forallOp.getMapping()->getValue().begin(),
forallOp.getMapping()->getValue().end());
auto comparator = [](Attribute a, Attribute b) -> bool {
return cast<DeviceMappingAttrInterface>(a).getMappingId() <
cast<DeviceMappingAttrInterface>(b).getMappingId();
};
// Step 1.b. In the linear case, compute the max mapping to avoid needlessly
// mapping all dimensions. In the 3-D mapping case we need to map all
// dimensions.
DeviceMappingAttrInterface maxMapping = cast<DeviceMappingAttrInterface>(
*llvm::max_element(forallMappingAttrs, comparator));
DeviceMappingAttrInterface maxLinearMapping;
if (maxMapping.isLinearMapping())
maxLinearMapping = maxMapping;
for (auto attr : gpuIdBuilder.mappingAttributes) {
// If attr overflows, just skip.
if (maxLinearMapping && comparator(maxLinearMapping, attr))
continue;
// Try to insert. If element was already present, just continue.
if (!forallMappingAttrs.insert(attr))
continue;
// Otherwise, we have a new insertion without a size -> use size 1.
tmpMappingSizes.push_back(1);
}
LLVM_DEBUG(
llvm::interleaveComma(
tmpMappingSizes,
DBGS() << "----tmpMappingSizes extracted from scf.forall op: ");
llvm::dbgs() << "\n");
// Step 2. sort the values by the corresponding DeviceMappingAttrInterface.
SmallVector<int64_t> forallMappingSizes = getValuesSortedByKey(
forallMappingAttrs.getArrayRef(), tmpMappingSizes, comparator);
LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes,
DBGS() << "----forallMappingSizes: ");
llvm::dbgs() << "\n"; llvm::interleaveComma(
forallMappingAttrs, DBGS() << "----forallMappingAttrs: ");
llvm::dbgs() << "\n");
// Step 3. Generate the mappingIdOps using the provided generator.
Location loc = forallOp.getLoc();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(forallOp);
SmallVector<int64_t> originalBasis(availableMappingSizes);
bool originalBasisWasProvided = !originalBasis.empty();
if (!originalBasisWasProvided) {
originalBasis = forallMappingSizes;
while (originalBasis.size() < 3)
originalBasis.push_back(1);
}
IdBuilderResult builderResult =
gpuIdBuilder.idBuilder(rewriter, loc, forallMappingSizes, originalBasis);
// Step 4. Map the induction variables to the mappingIdOps, this may involve
// a permutation.
SmallVector<Value> mappingIdOps = builderResult.mappingIdOps;
IRMapping bvm;
for (auto [iv, dim] : llvm::zip_equal(
forallOp.getInductionVars(),
forallMappingAttrs.getArrayRef().take_front(forallOp.getRank()))) {
auto mappingAttr = cast<DeviceMappingAttrInterface>(dim);
Value peIdOp = mappingIdOps[mappingAttr.getRelativeIndex()];
bvm.map(iv, peIdOp);
}
// Step 5. If the originalBasis is already known, create conditionals to
// predicate the region. Otherwise, the current forall determines the
// originalBasis and no predication occurs.
Value predicate;
if (originalBasisWasProvided) {
SmallVector<int64_t> activeMappingSizes = builderResult.activeMappingSizes;
SmallVector<int64_t> availableMappingSizes =
builderResult.availableMappingSizes;
SmallVector<Value> activeIdOps = builderResult.activeIdOps;
// clang-format off
LLVM_DEBUG(
llvm::interleaveComma(
activeMappingSizes, DBGS() << "----activeMappingSizes: ");
llvm::dbgs() << "\n";
llvm::interleaveComma(
availableMappingSizes, DBGS() << "----availableMappingSizes: ");
llvm::dbgs() << "\n";
llvm::interleaveComma(activeIdOps, DBGS() << "----activeIdOps: ");
llvm::dbgs() << "\n");
// clang-format on
for (auto [activeId, activeMappingSize, availableMappingSize] :
llvm::zip_equal(activeIdOps, activeMappingSizes,
availableMappingSizes)) {
if (activeMappingSize > availableMappingSize) {
return definiteFailureHelper(
transformOp, forallOp,
"Trying to map to fewer GPU threads than loop iterations but "
"overprovisioning is not yet supported. "
"Try additional tiling of the before mapping or map to more "
"threads.");
}
if (activeMappingSize == availableMappingSize)
continue;
Value idx =
rewriter.create<arith::ConstantIndexOp>(loc, activeMappingSize);
Value tmpPredicate = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, activeId, idx);
LDBG("----predicate: " << tmpPredicate);
predicate = predicate ? rewriter.create<arith::AndIOp>(loc, predicate,
tmpPredicate)
: tmpPredicate;
}
}
// Step 6. Move the body of forallOp.
// Erase the terminator first, it will not be used.
rewriter.eraseOp(forallOp.getTerminator());
Block *targetBlock;
Block::iterator insertionPoint;
if (predicate) {
// Step 6.a. If predicated, move at the beginning.
auto ifOp = rewriter.create<scf::IfOp>(loc, predicate,
/*withElseRegion=*/false);
targetBlock = ifOp.thenBlock();
insertionPoint = ifOp.thenBlock()->begin();
} else {
// Step 6.b. Otherwise, move inline just at the rewriter insertion
// point.
targetBlock = forallOp->getBlock();
insertionPoint = rewriter.getInsertionPoint();
}
Block &sourceBlock = forallOp.getRegion().front();
targetBlock->getOperations().splice(insertionPoint,
sourceBlock.getOperations());
// Step 7. RAUW indices.
for (Value loopIndex : forallOp.getInductionVars()) {
Value threadIdx = bvm.lookup(loopIndex);
rewriter.replaceAllUsesWith(loopIndex, threadIdx);
}
// Step 8. Erase old op.
rewriter.eraseOp(forallOp);
LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes,
DBGS() << "----result forallMappingSizes: ");
llvm::dbgs() << "\n"; llvm::interleaveComma(
mappingIdOps, DBGS() << "----result mappingIdOps: ");
llvm::dbgs() << "\n");
result = ForallRewriteResult{forallMappingSizes, mappingIdOps};
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// MapForallToBlocks
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure mlir::transform::gpu::mapForallToBlocksImpl(
RewriterBase &rewriter, TransformOpInterface transformOp,
scf::ForallOp forallOp, SmallVectorImpl<int64_t> &gridDims,
const GpuIdBuilder &gpuIdBuilder) {
LDBG("Start mapForallToBlocksImpl");
{
// GPU-specific verifications. There is no better place to anchor
// those right now: the ForallOp is target-independent and the transform
// op does not apply to individual ForallOp.
DiagnosedSilenceableFailure diag =
verifyGpuMapping<BlockMappingKind>(transformOp, forallOp);
if (!diag.succeeded())
return diag;
}
Location loc = forallOp.getLoc();
Block *parentBlock = forallOp->getBlock();
Value zero;
{
// Create an early zero index value for replacements and immediately reset
// the insertion point.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(parentBlock);
zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
}
ForallRewriteResult rewriteResult;
DiagnosedSilenceableFailure diag = rewriteOneForallCommonImpl(
rewriter, transformOp, forallOp,
/*availableMappingSizes=*/gridDims, rewriteResult, gpuIdBuilder);
// Return if anything goes wrong, use silenceable failure as a match
// failure.
if (!diag.succeeded())
return diag;
// If gridDims was not provided already, set it from the return.
if (gridDims.empty()) {
gridDims = rewriteResult.mappingSizes;
while (gridDims.size() < 3)
gridDims.push_back(1);
}
assert(gridDims.size() == 3 && "Need 3-D gridDims");
// Replace ids of dimensions known to be 1 by 0 to simplify the IR.
// Here, the result of mapping determines the available mapping sizes.
replaceUnitMappingIdsHelper<BlockDimOp>(rewriter, loc, parentBlock, zero,
rewriteResult.mappingSizes);
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure
mlir::transform::gpu::findTopLevelForallOp(Operation *target,
scf::ForallOp &topLevelForallOp,
TransformOpInterface transformOp) {
auto walkResult = target->walk([&](scf::ForallOp forallOp) {
if (forallOp->getParentOfType<scf::ForallOp>())
return WalkResult::advance();
if (topLevelForallOp)
// TODO: Handle multiple forall if they are independent.
return WalkResult::interrupt();
topLevelForallOp = forallOp;
return WalkResult::advance();
});
if (walkResult.wasInterrupted() || !topLevelForallOp)
return transformOp.emitSilenceableError()
<< "could not find a unique topLevel scf.forall";
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure transform::MapForallToBlocks::applyToOne(
transform::TransformRewriter &rewriter, Operation *target,
ApplyToEachResultList &results, transform::TransformState &state) {
LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
auto transformOp = cast<TransformOpInterface>(getOperation());
if (!getGenerateGpuLaunch() && !gpuLaunch) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "Given target is not gpu.launch, set `generate_gpu_launch` "
"attribute";
diag.attachNote(target->getLoc()) << "when applied to this payload op";
return diag;
}
scf::ForallOp topLevelForallOp;
DiagnosedSilenceableFailure diag = mlir::transform::gpu::findTopLevelForallOp(
target, topLevelForallOp, transformOp);
if (!diag.succeeded()) {
diag.attachNote(target->getLoc()) << "when applied to this payload op";
return diag;
}
assert(topLevelForallOp && "expect an scf.forall");
SmallVector<int64_t> gridDims{getGridDims()};
if (!getGenerateGpuLaunch() && gridDims.size() != 3)
return transformOp.emitDefiniteFailure("transform require size-3 mapping");
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(topLevelForallOp);
// Generate gpu launch here and move the forall inside
if (getGenerateGpuLaunch()) {
DiagnosedSilenceableFailure diag =
createGpuLaunch(rewriter, target->getLoc(), transformOp, gpuLaunch);
if (!diag.succeeded())
return diag;
rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
Operation *newForallOp = rewriter.clone(*topLevelForallOp);
rewriter.eraseOp(topLevelForallOp);
topLevelForallOp = cast<scf::ForallOp>(newForallOp);
}
// The BlockIdBuilder adapts to whatever is thrown at it.
bool useLinearMapping = false;
if (topLevelForallOp.getMapping()) {
auto mappingAttr = cast<DeviceMappingAttrInterface>(
topLevelForallOp.getMapping()->getValue().front());
useLinearMapping = mappingAttr.isLinearMapping();
}
GpuBlockIdBuilder gpuBlockIdBuilder(getContext(), useLinearMapping);
diag = mlir::transform::gpu::mapForallToBlocksImpl(
rewriter, transformOp, topLevelForallOp, gridDims, gpuBlockIdBuilder);
if (!diag.succeeded())
return diag;
// Set the GPU launch configuration for the grid dims late, this is
// subject to IR inspection.
diag = alterGpuLaunch(rewriter, gpuLaunch,
cast<TransformOpInterface>(getOperation()), gridDims[0],
gridDims[1], gridDims[2]);
results.push_back(gpuLaunch);
return diag;
}
LogicalResult transform::MapForallToBlocks::verify() {
if (!getGridDims().empty() && getGridDims().size() != 3) {
return emitOpError() << "transform requires empty or size-3 grid_dims";
}
return success();
}
//===----------------------------------------------------------------------===//
// MapNestedForallToThreads
//===----------------------------------------------------------------------===//
static DiagnosedSilenceableFailure checkMappingSpec(
std::optional<TransformOpInterface> transformOp, scf::ForallOp forallOp,
ArrayRef<int64_t> numParallelIterations, ArrayRef<int64_t> blockOrGridSizes,
int factor, bool useLinearMapping = false) {
if (!useLinearMapping && blockOrGridSizes.front() % factor != 0) {
auto diag = definiteFailureHelper(
transformOp, forallOp,
Twine("3-D mapping: size of threadIdx.x must be a multiple of ") +
std::to_string(factor));
return diag;
}
if (computeProduct(numParallelIterations) * factor >
computeProduct(blockOrGridSizes)) {
auto diag = definiteFailureHelper(
transformOp, forallOp,
Twine("the number of required parallel resources (blocks or "
"threads) ") +
std::to_string(computeProduct(numParallelIterations) * factor) +
std::string(" overflows the number of available resources ") +
std::to_string(computeProduct(blockOrGridSizes)));
return diag;
}
return DiagnosedSilenceableFailure::success();
}
static DiagnosedSilenceableFailure
getThreadIdBuilder(std::optional<TransformOpInterface> transformOp,
scf::ForallOp forallOp, ArrayRef<int64_t> blockSizes,
int64_t warpSize, GpuIdBuilder &gpuIdBuilder) {
auto mappingAttr = cast<DeviceMappingAttrInterface>(
forallOp.getMapping()->getValue().front());
bool useLinearMapping = mappingAttr.isLinearMapping();
// Sanity checks that may result in runtime verification errors.
auto numParallelIterations =
getConstantIntValues((forallOp.getMixedUpperBound()));
if (!forallOp.isNormalized() || !numParallelIterations.has_value()) {
return definiteFailureHelper(
transformOp, forallOp,
"requires statically sized, normalized forall op");
}
int64_t factor = 1;
if (isa<GPUWarpgroupMappingAttr>(mappingAttr)) {
factor = GpuWarpgroupIdBuilder::kNumWarpsPerGroup * warpSize;
} else if (isa<GPUWarpMappingAttr>(mappingAttr)) {
factor = warpSize;
}
DiagnosedSilenceableFailure diag =
checkMappingSpec(transformOp, forallOp, numParallelIterations.value(),
blockSizes, factor, useLinearMapping);
if (!diag.succeeded())
return diag;
// Start mapping.
MLIRContext *ctx = forallOp.getContext();
gpuIdBuilder =
TypeSwitch<DeviceMappingAttrInterface, GpuIdBuilder>(mappingAttr)
.Case([&](GPUWarpgroupMappingAttr) {
return GpuWarpgroupIdBuilder(ctx, warpSize, useLinearMapping);
})
.Case([&](GPUWarpMappingAttr) {
return GpuWarpIdBuilder(ctx, warpSize, useLinearMapping);
})
.Case([&](GPUThreadMappingAttr) {
return GpuThreadIdBuilder(ctx, useLinearMapping);
})
.Default([&](DeviceMappingAttrInterface) -> GpuIdBuilder {
llvm_unreachable("unknown mapping attribute");
});
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure mlir::transform::gpu::mapOneForallToThreadsImpl(
RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
scf::ForallOp forallOp, ArrayRef<int64_t> blockSizes, int64_t warpSize,
bool syncAfterDistribute) {
{
// GPU-specific verifications. There is no better place to anchor
// those right now: the ForallOp is target-independent and the transform
// op does not apply to individual ForallOp.
DiagnosedSilenceableFailure diag =
verifyGpuMapping<ThreadMappingKind>(transformOp, forallOp);
if (!diag.succeeded())
return diag;
}
GpuIdBuilder gpuIdBuilder;
{
// Try to construct the id builder, if it fails, return.
DiagnosedSilenceableFailure diag = getThreadIdBuilder(
transformOp, forallOp, blockSizes, warpSize, gpuIdBuilder);
if (!diag.succeeded())
return diag;
}
Location loc = forallOp.getLoc();
OpBuilder::InsertionGuard g(rewriter);
// Insert after to allow for syncthreads after `forall` is erased.
rewriter.setInsertionPointAfter(forallOp);
ForallRewriteResult rewriteResult;
DiagnosedSilenceableFailure diag = rewriteOneForallCommonImpl(
rewriter, transformOp, forallOp, blockSizes, rewriteResult, gpuIdBuilder);
if (!diag.succeeded())
return diag;
// Add a syncthreads if needed. TODO: warpsync
if (syncAfterDistribute)
rewriter.create<BarrierOp>(loc);
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure mlir::transform::gpu::mapNestedForallToThreadsImpl(
RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
Operation *target, ArrayRef<int64_t> blockDims, int64_t warpSize,
bool syncAfterDistribute) {
LDBG("Start mapNestedForallToThreadsImpl");
if (blockDims.size() != 3) {
return definiteFailureHelper(transformOp, target,
"requires size-3 thread mapping");
}
// Create an early zero index value for replacements.
Location loc = target->getLoc();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
DiagnosedSilenceableFailure diag = DiagnosedSilenceableFailure::success();
WalkResult walkResult = target->walk([&](scf::ForallOp forallOp) {
diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
rewriter, transformOp, forallOp, blockDims, warpSize,
syncAfterDistribute);
if (diag.isDefiniteFailure())
return WalkResult::interrupt();
if (diag.succeeded())
return WalkResult::skip();
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return diag;
// Replace ids of dimensions known to be 1 by 0 to simplify the IR.
// Here, the result of mapping determines the available mapping sizes.
replaceUnitMappingIdsHelper<ThreadIdOp>(rewriter, loc, target, zero,
blockDims);
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure transform::MapNestedForallToThreads::applyToOne(
transform::TransformRewriter &rewriter, Operation *target,
ApplyToEachResultList &results, TransformState &state) {
LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
auto transformOp = cast<TransformOpInterface>(getOperation());
// Basic high-level verifications.
if (!gpuLaunch)
return emitSilenceableError() << "Given target is not a gpu.launch";
// Mapping to block ids.
SmallVector<int64_t> blockDims{getBlockDims()};
DiagnosedSilenceableFailure diag =
checkGpuLimits(transformOp, std::nullopt, std::nullopt, std::nullopt,
blockDims[0], blockDims[1], blockDims[2]);
if (diag.isSilenceableFailure()) {
diag.attachNote(getLoc()) << getBlockDimsAttrName() << " is too large";
return diag;
}
// Set the GPU launch configuration for the block dims early, this is not
// subject to IR inspection.
diag = alterGpuLaunch(rewriter, gpuLaunch, transformOp, std::nullopt,
std::nullopt, std::nullopt, blockDims[0], blockDims[1],
blockDims[2]);
rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
diag =
mapNestedForallToThreadsImpl(rewriter, transformOp, gpuLaunch, blockDims,
getWarpSize(), getSyncAfterDistribute());
results.push_back(gpuLaunch.getOperation());
return diag;
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
/// Registers new ops and declares PDL as dependent dialect since the
/// additional ops are using PDL types for operands and results.
class GPUTransformDialectExtension
: public transform::TransformDialectExtension<
GPUTransformDialectExtension> {
public:
GPUTransformDialectExtension() {
declareGeneratedDialect<scf::SCFDialect>();
declareGeneratedDialect<arith::ArithDialect>();
declareGeneratedDialect<GPUDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"
>();
}
};
} // namespace
#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"
void mlir::gpu::registerTransformDialectExtension(DialectRegistry ®istry) {
registry.addExtensions<GPUTransformDialectExtension>();
}
|