File: ExpandPatterns.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (701 lines) | stat: -rw-r--r-- 29,136 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
//===- ExpandPatterns.cpp - Code to expand various math operations. -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of various math operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"

using namespace mlir;

/// Create a float constant.
static Value createFloatConst(Location loc, Type type, APFloat value,
                              OpBuilder &b) {
  bool losesInfo = false;
  auto eltType = getElementTypeOrSelf(type);
  // Convert double to the given `FloatType` with round-to-nearest-ties-to-even.
  value.convert(cast<FloatType>(eltType).getFloatSemantics(),
                APFloat::rmNearestTiesToEven, &losesInfo);
  auto attr = b.getFloatAttr(eltType, value);
  if (auto shapedTy = dyn_cast<ShapedType>(type)) {
    return b.create<arith::ConstantOp>(loc,
                                       DenseElementsAttr::get(shapedTy, attr));
  }

  return b.create<arith::ConstantOp>(loc, attr);
}

static Value createFloatConst(Location loc, Type type, double value,
                              OpBuilder &b) {
  return createFloatConst(loc, type, APFloat(value), b);
}

/// Create an integer constant.
static Value createIntConst(Location loc, Type type, int64_t value,
                            OpBuilder &b) {
  auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value);
  if (auto shapedTy = dyn_cast<ShapedType>(type)) {
    return b.create<arith::ConstantOp>(loc,
                                       DenseElementsAttr::get(shapedTy, attr));
  }

  return b.create<arith::ConstantOp>(loc, attr);
}

static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) {
  Type opType = operand.getType();
  Type i64Ty = b.getI64Type();
  if (auto shapedTy = dyn_cast<ShapedType>(opType))
    i64Ty = shapedTy.clone(i64Ty);
  Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand);
  Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert);
  // The truncation does not preserve the sign when the truncated
  // value is -0. So here the sign is copied again.
  return b.create<math::CopySignOp>(fpFixedConvert, operand);
}

// sinhf(float x) -> (exp(x) - exp(-x)) / 2
static LogicalResult convertSinhOp(math::SinhOp op, PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();

  Value exp = b.create<math::ExpOp>(operand);
  Value neg = b.create<arith::NegFOp>(operand);
  Value nexp = b.create<math::ExpOp>(neg);
  Value sub = b.create<arith::SubFOp>(exp, nexp);
  Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter);
  Value res = b.create<arith::MulFOp>(sub, half);
  rewriter.replaceOp(op, res);
  return success();
}

// coshf(float x) -> (exp(x) + exp(-x)) / 2
static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();

  Value exp = b.create<math::ExpOp>(operand);
  Value neg = b.create<arith::NegFOp>(operand);
  Value nexp = b.create<math::ExpOp>(neg);
  Value add = b.create<arith::AddFOp>(exp, nexp);
  Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter);
  Value res = b.create<arith::MulFOp>(add, half);
  rewriter.replaceOp(op, res);
  return success();
}

/// Expands tanh op into
/// 1-exp^{-2x} / 1+exp^{-2x}
/// To avoid overflow we exploit the reflection symmetry `tanh(-x) = -tanh(x)`.
/// We compute a "signs" value which is -1 if input is negative and +1 if input
/// is positive.  Then multiply the input by this value, guaranteeing that the
/// result is positive, which also guarantees `exp^{-2x * sign(x)}` is in (0,
/// 1]. Expand the computation on the input `x * sign(x)`, then multiply the
/// result by `sign(x)` to retain sign of the real result.
static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) {
  auto floatType = op.getOperand().getType();
  Location loc = op.getLoc();
  Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
  Value one = createFloatConst(loc, floatType, 1.0, rewriter);
  Value negTwo = createFloatConst(loc, floatType, -2.0, rewriter);

  // Compute sign(x) = cast<float_type>(x < 0) * (-2) + 1
  Value isNegative = rewriter.create<arith::CmpFOp>(
      loc, arith::CmpFPredicate::OLT, op.getOperand(), zero);
  Value isNegativeFloat =
      rewriter.create<arith::UIToFPOp>(loc, floatType, isNegative);
  Value isNegativeTimesNegTwo =
      rewriter.create<arith::MulFOp>(loc, isNegativeFloat, negTwo);
  Value sign = rewriter.create<arith::AddFOp>(loc, isNegativeTimesNegTwo, one);

  // Normalize input to positive value: y = sign(x) * x
  Value positiveX = rewriter.create<arith::MulFOp>(loc, sign, op.getOperand());

  // Decompose on normalized input
  Value negDoubledX = rewriter.create<arith::MulFOp>(loc, negTwo, positiveX);
  Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX);
  Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x);
  Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x);
  Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);

  // Multiply result by sign(x) to retain signs from negative inputs
  rewriter.replaceOpWithNewOp<arith::MulFOp>(op, sign, positiveRes);

  return success();
}

// Converts math.tan to math.sin, math.cos, and arith.divf.
static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type type = operand.getType();
  Value sin = b.create<math::SinOp>(type, operand);
  Value cos = b.create<math::CosOp>(type, operand);
  Value div = b.create<arith::DivFOp>(type, sin, cos);
  rewriter.replaceOp(op, div);
  return success();
}

// asinh(float x) -> log(x + sqrt(x**2 + 1))
static LogicalResult convertAsinhOp(math::AsinhOp op,
                                    PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();

  Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter);
  Value fma = b.create<math::FmaOp>(operand, operand, one);
  Value sqrt = b.create<math::SqrtOp>(fma);
  Value add = b.create<arith::AddFOp>(operand, sqrt);
  Value res = b.create<math::LogOp>(add);
  rewriter.replaceOp(op, res);
  return success();
}

// acosh(float x) -> log(x + sqrt(x**2 - 1))
static LogicalResult convertAcoshOp(math::AcoshOp op,
                                    PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();

  Value negOne = createFloatConst(op->getLoc(), opType, -1.0, rewriter);
  Value fma = b.create<math::FmaOp>(operand, operand, negOne);
  Value sqrt = b.create<math::SqrtOp>(fma);
  Value add = b.create<arith::AddFOp>(operand, sqrt);
  Value res = b.create<math::LogOp>(add);
  rewriter.replaceOp(op, res);
  return success();
}

// atanh(float x) -> log((1 + x) / (1 - x)) / 2
static LogicalResult convertAtanhOp(math::AtanhOp op,
                                    PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();

  Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter);
  Value add = b.create<arith::AddFOp>(operand, one);
  Value neg = b.create<arith::NegFOp>(operand);
  Value sub = b.create<arith::AddFOp>(neg, one);
  Value div = b.create<arith::DivFOp>(add, sub);
  Value log = b.create<math::LogOp>(div);
  Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter);
  Value res = b.create<arith::MulFOp>(log, half);
  rewriter.replaceOp(op, res);
  return success();
}

static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operandA = op.getOperand(0);
  Value operandB = op.getOperand(1);
  Value operandC = op.getOperand(2);
  Type type = op.getType();
  Value mult = b.create<arith::MulFOp>(type, operandA, operandB);
  Value add = b.create<arith::AddFOp>(type, mult, operandC);
  rewriter.replaceOp(op, add);
  return success();
}

// Converts a floorf() function to the following:
// floorf(float x) ->
//     y = (float)(int) x
//     if (x < 0) then incr = -1 else incr = 0
//     y = y + incr    <= replace this op with the floorf op.
static LogicalResult convertFloorOp(math::FloorOp op,
                                    PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();
  Value fpFixedConvert = createTruncatedFPValue(operand, b);

  // Creating constants for later use.
  Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
  Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);

  Value negCheck =
      b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
  Value incrValue =
      b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero);
  Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
  rewriter.replaceOp(op, ret);
  return success();
}

// Converts a ceilf() function to the following:
// ceilf(float x) ->
//      y = (float)(int) x
//      if (x > y) then incr = 1 else incr = 0
//      y = y + incr   <= replace this op with the ceilf op.
static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();
  Value fpFixedConvert = createTruncatedFPValue(operand, b);

  // Creating constants for later use.
  Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
  Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);

  Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand,
                                          fpFixedConvert);
  Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero);

  Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
  rewriter.replaceOp(op, ret);
  return success();
}

// Convert `math.fpowi` to a series of `arith.mulf` operations.
// If the power is negative, we divide one by the result.
// If both the base and power are zero, the result is 1.
// In the case of non constant power, we convert the operation to `math.powf`.
static LogicalResult convertFPowIOp(math::FPowIOp op,
                                    PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value base = op.getOperand(0);
  Value power = op.getOperand(1);
  Type baseType = base.getType();

  auto convertFPowItoPowf = [&]() -> LogicalResult {
    Value castPowerToFp =
        rewriter.create<arith::SIToFPOp>(op.getLoc(), baseType, power);
    Value res = rewriter.create<math::PowFOp>(op.getLoc(), baseType, base,
                                              castPowerToFp);
    rewriter.replaceOp(op, res);
    return success();
  };

  Attribute cstAttr;
  if (!matchPattern(power, m_Constant(&cstAttr)))
    return convertFPowItoPowf();

  APInt value;
  if (!matchPattern(cstAttr, m_ConstantInt(&value)))
    return convertFPowItoPowf();

  int64_t powerInt = value.getSExtValue();
  bool isNegative = powerInt < 0;
  int64_t absPower = std::abs(powerInt);
  Value one = createFloatConst(op->getLoc(), baseType, 1.00, rewriter);
  Value res = createFloatConst(op->getLoc(), baseType, 1.00, rewriter);

  while (absPower > 0) {
    if (absPower & 1)
      res = b.create<arith::MulFOp>(baseType, base, res);
    absPower >>= 1;
    base = b.create<arith::MulFOp>(baseType, base, base);
  }

  // Make sure not to introduce UB in case of negative power.
  if (isNegative) {
    auto &sem = dyn_cast<mlir::FloatType>(getElementTypeOrSelf(baseType))
                    .getFloatSemantics();
    Value zero =
        createFloatConst(op->getLoc(), baseType,
                         APFloat::getZero(sem, /*Negative=*/false), rewriter);
    Value negZero =
        createFloatConst(op->getLoc(), baseType,
                         APFloat::getZero(sem, /*Negative=*/true), rewriter);
    Value posInfinity =
        createFloatConst(op->getLoc(), baseType,
                         APFloat::getInf(sem, /*Negative=*/false), rewriter);
    Value negInfinity =
        createFloatConst(op->getLoc(), baseType,
                         APFloat::getInf(sem, /*Negative=*/true), rewriter);
    Value zeroEqCheck =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, zero);
    Value negZeroEqCheck =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, negZero);
    res = b.create<arith::DivFOp>(baseType, one, res);
    res =
        b.create<arith::SelectOp>(op->getLoc(), zeroEqCheck, posInfinity, res);
    res = b.create<arith::SelectOp>(op->getLoc(), negZeroEqCheck, negInfinity,
                                    res);
  }

  rewriter.replaceOp(op, res);
  return success();
}

// Converts  Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operandA = op.getOperand(0);
  Value operandB = op.getOperand(1);
  Type opType = operandA.getType();
  Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
  Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter);
  Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
  Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA);
  Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two);

  Value logA = b.create<math::LogOp>(opType, opASquared);
  Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA);
  Value expResult = b.create<math::ExpOp>(opType, mult);
  Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne);
  Value remainder = b.create<arith::RemFOp>(opType, operandB, two);
  Value negCheck =
      b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero);
  Value oddPower =
      b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero);
  Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck);

  Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult,
                                        expResult);
  rewriter.replaceOp(op, res);
  return success();
}

// exp2f(float x) -> exp(x * ln(2))
//   Proof: Let's say 2^x = y
//   ln(2^x) = ln(y)
//   x * ln(2) = ln(y) => e ^(x*ln(2)) = y
static LogicalResult convertExp2fOp(math::Exp2Op op,
                                    PatternRewriter &rewriter) {
  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();
  Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b);
  Value mult = b.create<arith::MulFOp>(opType, operand, ln2);
  Value exp = b.create<math::ExpOp>(op->getLoc(), mult);
  rewriter.replaceOp(op, exp);
  return success();
}

static LogicalResult convertRoundOp(math::RoundOp op,
                                    PatternRewriter &rewriter) {
  Location loc = op.getLoc();
  ImplicitLocOpBuilder b(loc, rewriter);
  Value operand = op.getOperand();
  Type opType = operand.getType();
  Type opEType = getElementTypeOrSelf(opType);

  if (!opEType.isF32()) {
    return rewriter.notifyMatchFailure(op, "not a round of f32.");
  }

  Type i32Ty = b.getI32Type();
  if (auto shapedTy = dyn_cast<ShapedType>(opType))
    i32Ty = shapedTy.clone(i32Ty);

  Value half = createFloatConst(loc, opType, 0.5, b);
  Value c23 = createIntConst(loc, i32Ty, 23, b);
  Value c127 = createIntConst(loc, i32Ty, 127, b);
  Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b);

  Value incrValue = b.create<math::CopySignOp>(half, operand);
  Value add = b.create<arith::AddFOp>(opType, operand, incrValue);
  Value fpFixedConvert = createTruncatedFPValue(add, b);

  // There are three cases where adding 0.5 to the value and truncating by
  // converting to an i64 does not result in the correct behavior:
  //
  // 1. Special values: +-inf and +-nan
  //     Casting these special values to i64 has undefined behavior. To identify
  //     these values, we use the fact that these values are the only float
  //     values with the maximum possible biased exponent.
  //
  // 2. Large values: 2^23 <= |x| <= INT_64_MAX
  //     Adding 0.5 to a float larger than or equal to 2^23 results in precision
  //     errors that sometimes round the value up and sometimes round the value
  //     down. For example:
  //         8388608.0 + 0.5 = 8388608.0
  //         8388609.0 + 0.5 = 8388610.0
  //
  // 3. Very large values: |x| > INT_64_MAX
  //     Casting to i64 a value greater than the max i64 value will overflow the
  //     i64 leading to wrong outputs.
  //
  // All three cases satisfy the property `biasedExp >= 23`.
  Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand);
  Value operandExp = b.create<arith::AndIOp>(
      b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
  Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
  Value isSpecialValOrLargeVal =
      b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23);

  Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand,
                                           fpFixedConvert);
  rewriter.replaceOp(op, result);
  return success();
}

// Converts math.ctlz to scf and arith operations. This is done
// by performing a binary search on the bits.
static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op,
                                   PatternRewriter &rewriter) {
  auto operand = op.getOperand();
  auto operandTy = operand.getType();
  auto eTy = getElementTypeOrSelf(operandTy);
  Location loc = op.getLoc();

  int32_t bitwidth = eTy.getIntOrFloatBitWidth();
  if (bitwidth > 64)
    return failure();

  uint64_t allbits = -1;
  if (bitwidth < 64) {
    allbits = allbits >> (64 - bitwidth);
  }

  Value x = operand;
  Value count = createIntConst(loc, operandTy, 0, rewriter);
  for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) {
    auto half = bw / 2;
    auto bits = createIntConst(loc, operandTy, half, rewriter);
    auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter);

    Value pred =
        rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask);
    Value add = rewriter.create<arith::AddIOp>(loc, count, bits);
    Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits);

    x = rewriter.create<arith::SelectOp>(loc, pred, shift, x);
    count = rewriter.create<arith::SelectOp>(loc, pred, add, count);
  }

  Value zero = createIntConst(loc, operandTy, 0, rewriter);
  Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                              operand, zero);

  Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter);
  Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count);
  rewriter.replaceOp(op, sel);
  return success();
}

// Convert `math.roundeven` into `math.round` + arith ops
static LogicalResult convertRoundEvenOp(math::RoundEvenOp op,
                                        PatternRewriter &rewriter) {
  Location loc = op.getLoc();
  ImplicitLocOpBuilder b(loc, rewriter);
  auto operand = op.getOperand();
  Type operandTy = operand.getType();
  Type resultTy = op.getType();
  Type operandETy = getElementTypeOrSelf(operandTy);
  Type resultETy = getElementTypeOrSelf(resultTy);

  if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) {
    return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32.");
  }

  Type fTy = operandTy;
  Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth());
  if (auto shapedTy = dyn_cast<ShapedType>(fTy)) {
    iTy = shapedTy.clone(iTy);
  }

  unsigned bitWidth = operandETy.getIntOrFloatBitWidth();
  // The width returned by getFPMantissaWidth includes the integer bit.
  unsigned mantissaWidth =
      llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1;
  unsigned exponentWidth = bitWidth - mantissaWidth - 1;

  // The names of the variables correspond to f32.
  // f64: 1 bit sign | 11 bits exponent | 52 bits mantissa.
  // f32: 1 bit sign | 8 bits exponent  | 23 bits mantissa.
  // f16: 1 bit sign | 5 bits exponent  | 10 bits mantissa.
  Value c1Float = createFloatConst(loc, fTy, 1.0, b);
  Value c0 = createIntConst(loc, iTy, 0, b);
  Value c1 = createIntConst(loc, iTy, 1, b);
  Value cNeg1 = createIntConst(loc, iTy, -1, b);
  Value c23 = createIntConst(loc, iTy, mantissaWidth, b);
  Value c31 = createIntConst(loc, iTy, bitWidth - 1, b);
  Value c127 = createIntConst(loc, iTy, (1ull << (exponentWidth - 1)) - 1, b);
  Value c2To22 = createIntConst(loc, iTy, 1ull << (mantissaWidth - 1), b);
  Value c23Mask = createIntConst(loc, iTy, (1ull << mantissaWidth) - 1, b);
  Value expMask = createIntConst(loc, iTy, (1ull << exponentWidth) - 1, b);

  Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand);
  Value round = b.create<math::RoundOp>(operand);
  Value roundBitcast = b.create<arith::BitcastOp>(iTy, round);

  // Get biased exponents for operand and round(operand)
  Value operandExp = b.create<arith::AndIOp>(
      b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
  Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
  Value roundExp = b.create<arith::AndIOp>(
      b.create<arith::ShRUIOp>(roundBitcast, c23), expMask);
  Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127);

  auto safeShiftRight = [&](Value x, Value shift) -> Value {
    // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior
    Value clampedShift = b.create<arith::MaxSIOp>(shift, c0);
    clampedShift = b.create<arith::MinSIOp>(clampedShift, c31);
    return b.create<arith::ShRUIOp>(x, clampedShift);
  };

  auto maskMantissa = [&](Value mantissa,
                          Value mantissaMaskRightShift) -> Value {
    Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift);
    return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask);
  };

  // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring
  // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers
  // with `biasedExp > 23` (numbers where there is not enough precision to store
  // decimals) are always even, and they satisfy the even condition trivially
  // since the mantissa without all its bits is zero. The even condition
  // is also true for +-0, since they have `biasedExp = -127` and the entire
  // mantissa is zero. The case of +-1 has to be handled separately. Here
  // we identify these values by noting that +-1 are the only whole numbers with
  // `biasedExp == 0`.
  //
  // The special values +-inf and +-nan also satisfy the same property that
  // whole non-unit even numbers satisfy. In particular, the special values have
  // `biasedExp > 23`, so they get treated as large numbers with no room for
  // decimals, which are always even.
  Value roundBiasedExpEq0 =
      b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0);
  Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1);
  Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1);
  Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>(
      arith::CmpIPredicate::ne, roundMaskedMantissa, c0);
  roundIsNotEvenOrSpecialVal =
      b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0);

  // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive
  // integers if the bit at index `biasedExp` starting from the left in the
  // mantissa is 1 and all the bits to the right are zero. Values with
  // `biasedExp >= 23` don't have decimals, so they are never halfway. The
  // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`,
  // so these are handled separately. In particular, if `biasedExp == -1`, the
  // value is halfway if the entire mantissa is zero.
  Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>(
      arith::CmpIPredicate::eq, operandBiasedExp, cNeg1);
  Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>(
      operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp));
  Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp);
  Value operandIsHalfway =
      b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa,
                              expectedOperandMaskedMantissa);
  // Ensure `biasedExp` is in the valid range for half values.
  Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>(
      arith::CmpIPredicate::sge, operandBiasedExp, cNeg1);
  Value operandBiasedExpLt23 =
      b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23);
  operandIsHalfway =
      b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23);
  operandIsHalfway =
      b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1);

  // Adjust rounded operand with `round(operand) - sign(operand)` to correct the
  // case where `round` rounded in the opposite direction of `roundeven`.
  Value sign = b.create<math::CopySignOp>(c1Float, operand);
  Value roundShifted = b.create<arith::SubFOp>(round, sign);
  // If the rounded value is even or a special value, we default to the behavior
  // of `math.round`.
  Value needsShift =
      b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway);
  Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round);
  // The `x - sign` adjustment does not preserve the sign when we are adjusting
  // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is
  // rounded to -0.0.
  result = b.create<math::CopySignOp>(result, operand);
  rewriter.replaceOp(op, result);
  return success();
}

// Convert `math.rsqrt` into `arith.divf` + `math.sqrt`
static LogicalResult convertRsqrtOp(math::RsqrtOp op,
                                    PatternRewriter &rewriter) {

  auto operand = op.getOperand();
  auto operandTy = operand.getType();
  auto eTy = getElementTypeOrSelf(operandTy);
  if (!isa<FloatType>(eTy))
    return failure();

  Location loc = op->getLoc();
  auto constOneFloat = createFloatConst(loc, operandTy, 1.0, rewriter);
  auto sqrtOp = rewriter.create<math::SqrtOp>(loc, operand);
  rewriter.replaceOpWithNewOp<arith::DivFOp>(op, constOneFloat, sqrtOp);
  return success();
}

void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) {
  patterns.add(convertCtlzOp);
}

void mlir::populateExpandSinhPattern(RewritePatternSet &patterns) {
  patterns.add(convertSinhOp);
}

void mlir::populateExpandCoshPattern(RewritePatternSet &patterns) {
  patterns.add(convertCoshOp);
}

void mlir::populateExpandTanPattern(RewritePatternSet &patterns) {
  patterns.add(convertTanOp);
}

void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) {
  patterns.add(convertTanhOp);
}

void mlir::populateExpandAsinhPattern(RewritePatternSet &patterns) {
  patterns.add(convertAsinhOp);
}

void mlir::populateExpandAcoshPattern(RewritePatternSet &patterns) {
  patterns.add(convertAcoshOp);
}

void mlir::populateExpandAtanhPattern(RewritePatternSet &patterns) {
  patterns.add(convertAtanhOp);
}

void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) {
  patterns.add(convertFmaFOp);
}

void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) {
  patterns.add(convertCeilOp);
}

void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) {
  patterns.add(convertExp2fOp);
}

void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) {
  patterns.add(convertPowfOp);
}

void mlir::populateExpandFPowIPattern(RewritePatternSet &patterns) {
  patterns.add(convertFPowIOp);
}

void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) {
  patterns.add(convertRoundOp);
}

void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) {
  patterns.add(convertFloorOp);
}

void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) {
  patterns.add(convertRoundEvenOp);
}

void mlir::populateExpandRsqrtPattern(RewritePatternSet &patterns) {
  patterns.add(convertRsqrtOp);
}