File: RuntimeOpVerification.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (348 lines) | stat: -rw-r--r-- 14,964 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
//===- RuntimeOpVerification.cpp - Op Verification ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/MemRef/Transforms/RuntimeOpVerification.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Interfaces/RuntimeVerifiableOpInterface.h"

using namespace mlir;

namespace mlir {
namespace memref {
namespace {
struct CastOpInterface
    : public RuntimeVerifiableOpInterface::ExternalModel<CastOpInterface,
                                                         CastOp> {
  void generateRuntimeVerification(Operation *op, OpBuilder &builder,
                                   Location loc) const {
    auto castOp = cast<CastOp>(op);
    auto srcType = cast<BaseMemRefType>(castOp.getSource().getType());

    // Nothing to check if the result is an unranked memref.
    auto resultType = dyn_cast<MemRefType>(castOp.getType());
    if (!resultType)
      return;

    if (isa<UnrankedMemRefType>(srcType)) {
      // Check rank.
      Value srcRank = builder.create<RankOp>(loc, castOp.getSource());
      Value resultRank =
          builder.create<arith::ConstantIndexOp>(loc, resultType.getRank());
      Value isSameRank = builder.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, srcRank, resultRank);
      builder.create<cf::AssertOp>(
          loc, isSameRank,
          RuntimeVerifiableOpInterface::generateErrorMessage(op,
                                                             "rank mismatch"));
    }

    // Get source offset and strides. We do not have an op to get offsets and
    // strides from unranked memrefs, so cast the source to a type with fully
    // dynamic layout, from which we can then extract the offset and strides.
    // (Rank was already verified.)
    int64_t dynamicOffset = ShapedType::kDynamic;
    SmallVector<int64_t> dynamicShape(resultType.getRank(),
                                      ShapedType::kDynamic);
    auto stridedLayout = StridedLayoutAttr::get(builder.getContext(),
                                                dynamicOffset, dynamicShape);
    auto dynStridesType =
        MemRefType::get(dynamicShape, resultType.getElementType(),
                        stridedLayout, resultType.getMemorySpace());
    Value helperCast =
        builder.create<CastOp>(loc, dynStridesType, castOp.getSource());
    auto metadataOp = builder.create<ExtractStridedMetadataOp>(loc, helperCast);

    // Check dimension sizes.
    for (const auto &it : llvm::enumerate(resultType.getShape())) {
      // Static dim size -> static/dynamic dim size does not need verification.
      if (auto rankedSrcType = dyn_cast<MemRefType>(srcType))
        if (!rankedSrcType.isDynamicDim(it.index()))
          continue;

      // Static/dynamic dim size -> dynamic dim size does not need verification.
      if (resultType.isDynamicDim(it.index()))
        continue;

      Value srcDimSz =
          builder.create<DimOp>(loc, castOp.getSource(), it.index());
      Value resultDimSz =
          builder.create<arith::ConstantIndexOp>(loc, it.value());
      Value isSameSz = builder.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, srcDimSz, resultDimSz);
      builder.create<cf::AssertOp>(
          loc, isSameSz,
          RuntimeVerifiableOpInterface::generateErrorMessage(
              op, "size mismatch of dim " + std::to_string(it.index())));
    }

    // Get result offset and strides.
    int64_t resultOffset;
    SmallVector<int64_t> resultStrides;
    if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
      return;

    // Check offset.
    if (resultOffset != ShapedType::kDynamic) {
      // Static/dynamic offset -> dynamic offset does not need verification.
      Value srcOffset = metadataOp.getResult(1);
      Value resultOffsetVal =
          builder.create<arith::ConstantIndexOp>(loc, resultOffset);
      Value isSameOffset = builder.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, srcOffset, resultOffsetVal);
      builder.create<cf::AssertOp>(
          loc, isSameOffset,
          RuntimeVerifiableOpInterface::generateErrorMessage(
              op, "offset mismatch"));
    }

    // Check strides.
    for (const auto &it : llvm::enumerate(resultStrides)) {
      // Static/dynamic stride -> dynamic stride does not need verification.
      if (it.value() == ShapedType::kDynamic)
        continue;

      Value srcStride =
          metadataOp.getResult(2 + resultType.getRank() + it.index());
      Value resultStrideVal =
          builder.create<arith::ConstantIndexOp>(loc, it.value());
      Value isSameStride = builder.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, srcStride, resultStrideVal);
      builder.create<cf::AssertOp>(
          loc, isSameStride,
          RuntimeVerifiableOpInterface::generateErrorMessage(
              op, "stride mismatch of dim " + std::to_string(it.index())));
    }
  }
};

/// Verifies that the indices on load/store ops are in-bounds of the memref's
/// index space: 0 <= index#i < dim#i
template <typename LoadStoreOp>
struct LoadStoreOpInterface
    : public RuntimeVerifiableOpInterface::ExternalModel<
          LoadStoreOpInterface<LoadStoreOp>, LoadStoreOp> {
  void generateRuntimeVerification(Operation *op, OpBuilder &builder,
                                   Location loc) const {
    auto loadStoreOp = cast<LoadStoreOp>(op);

    auto memref = loadStoreOp.getMemref();
    auto rank = memref.getType().getRank();
    if (rank == 0) {
      return;
    }
    auto indices = loadStoreOp.getIndices();

    auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
    Value assertCond;
    for (auto i : llvm::seq<int64_t>(0, rank)) {
      auto index = indices[i];

      auto dimOp = builder.createOrFold<memref::DimOp>(loc, memref, i);

      auto geLow = builder.createOrFold<arith::CmpIOp>(
          loc, arith::CmpIPredicate::sge, index, zero);
      auto ltHigh = builder.createOrFold<arith::CmpIOp>(
          loc, arith::CmpIPredicate::slt, index, dimOp);
      auto andOp = builder.createOrFold<arith::AndIOp>(loc, geLow, ltHigh);

      assertCond =
          i > 0 ? builder.createOrFold<arith::AndIOp>(loc, assertCond, andOp)
                : andOp;
    }
    builder.create<cf::AssertOp>(
        loc, assertCond,
        RuntimeVerifiableOpInterface::generateErrorMessage(
            op, "out-of-bounds access"));
  }
};

/// Compute the linear index for the provided strided layout and indices.
Value computeLinearIndex(OpBuilder &builder, Location loc, OpFoldResult offset,
                         ArrayRef<OpFoldResult> strides,
                         ArrayRef<OpFoldResult> indices) {
  auto [expr, values] = computeLinearIndex(offset, strides, indices);
  auto index =
      affine::makeComposedFoldedAffineApply(builder, loc, expr, values);
  return getValueOrCreateConstantIndexOp(builder, loc, index);
}

/// Returns two Values representing the bounds of the provided strided layout
/// metadata. The bounds are returned as a half open interval -- [low, high).
std::pair<Value, Value> computeLinearBounds(OpBuilder &builder, Location loc,
                                            OpFoldResult offset,
                                            ArrayRef<OpFoldResult> strides,
                                            ArrayRef<OpFoldResult> sizes) {
  auto zeros = SmallVector<int64_t>(sizes.size(), 0);
  auto indices = getAsIndexOpFoldResult(builder.getContext(), zeros);
  auto lowerBound = computeLinearIndex(builder, loc, offset, strides, indices);
  auto upperBound = computeLinearIndex(builder, loc, offset, strides, sizes);
  return {lowerBound, upperBound};
}

/// Returns two Values representing the bounds of the memref. The bounds are
/// returned as a half open interval -- [low, high).
std::pair<Value, Value> computeLinearBounds(OpBuilder &builder, Location loc,
                                            TypedValue<BaseMemRefType> memref) {
  auto runtimeMetadata = builder.create<ExtractStridedMetadataOp>(loc, memref);
  auto offset = runtimeMetadata.getConstifiedMixedOffset();
  auto strides = runtimeMetadata.getConstifiedMixedStrides();
  auto sizes = runtimeMetadata.getConstifiedMixedSizes();
  return computeLinearBounds(builder, loc, offset, strides, sizes);
}

/// Verifies that the linear bounds of a reinterpret_cast op are within the
/// linear bounds of the base memref: low >= baseLow && high <= baseHigh
struct ReinterpretCastOpInterface
    : public RuntimeVerifiableOpInterface::ExternalModel<
          ReinterpretCastOpInterface, ReinterpretCastOp> {
  void generateRuntimeVerification(Operation *op, OpBuilder &builder,
                                   Location loc) const {
    auto reinterpretCast = cast<ReinterpretCastOp>(op);
    auto baseMemref = reinterpretCast.getSource();
    auto resultMemref =
        cast<TypedValue<BaseMemRefType>>(reinterpretCast.getResult());

    builder.setInsertionPointAfter(op);

    // Compute the linear bounds of the base memref
    auto [baseLow, baseHigh] = computeLinearBounds(builder, loc, baseMemref);

    // Compute the linear bounds of the resulting memref
    auto [low, high] = computeLinearBounds(builder, loc, resultMemref);

    // Check low >= baseLow
    auto geLow = builder.createOrFold<arith::CmpIOp>(
        loc, arith::CmpIPredicate::sge, low, baseLow);

    // Check high <= baseHigh
    auto leHigh = builder.createOrFold<arith::CmpIOp>(
        loc, arith::CmpIPredicate::sle, high, baseHigh);

    auto assertCond = builder.createOrFold<arith::AndIOp>(loc, geLow, leHigh);

    builder.create<cf::AssertOp>(
        loc, assertCond,
        RuntimeVerifiableOpInterface::generateErrorMessage(
            op,
            "result of reinterpret_cast is out-of-bounds of the base memref"));
  }
};

/// Verifies that the linear bounds of a subview op are within the linear bounds
/// of the base memref: low >= baseLow && high <= baseHigh
/// TODO: This is not yet a full runtime verification of subview. For example,
/// consider:
///   %m = memref.alloc(%c10, %c10) : memref<10x10xf32>
///   memref.subview %m[%c0, %c0][%c20, %c2][%c1, %c1]
///      : memref<?x?xf32> to memref<?x?xf32>
/// The subview is in-bounds of the entire base memref but the first dimension
/// is out-of-bounds. Future work would verify the bounds on a per-dimension
/// basis.
struct SubViewOpInterface
    : public RuntimeVerifiableOpInterface::ExternalModel<SubViewOpInterface,
                                                         SubViewOp> {
  void generateRuntimeVerification(Operation *op, OpBuilder &builder,
                                   Location loc) const {
    auto subView = cast<SubViewOp>(op);
    auto baseMemref = cast<TypedValue<BaseMemRefType>>(subView.getSource());
    auto resultMemref = cast<TypedValue<BaseMemRefType>>(subView.getResult());

    builder.setInsertionPointAfter(op);

    // Compute the linear bounds of the base memref
    auto [baseLow, baseHigh] = computeLinearBounds(builder, loc, baseMemref);

    // Compute the linear bounds of the resulting memref
    auto [low, high] = computeLinearBounds(builder, loc, resultMemref);

    // Check low >= baseLow
    auto geLow = builder.createOrFold<arith::CmpIOp>(
        loc, arith::CmpIPredicate::sge, low, baseLow);

    // Check high <= baseHigh
    auto leHigh = builder.createOrFold<arith::CmpIOp>(
        loc, arith::CmpIPredicate::sle, high, baseHigh);

    auto assertCond = builder.createOrFold<arith::AndIOp>(loc, geLow, leHigh);

    builder.create<cf::AssertOp>(
        loc, assertCond,
        RuntimeVerifiableOpInterface::generateErrorMessage(
            op, "subview is out-of-bounds of the base memref"));
  }
};

struct ExpandShapeOpInterface
    : public RuntimeVerifiableOpInterface::ExternalModel<ExpandShapeOpInterface,
                                                         ExpandShapeOp> {
  void generateRuntimeVerification(Operation *op, OpBuilder &builder,
                                   Location loc) const {
    auto expandShapeOp = cast<ExpandShapeOp>(op);

    // Verify that the expanded dim sizes are a product of the collapsed dim
    // size.
    for (const auto &it :
         llvm::enumerate(expandShapeOp.getReassociationIndices())) {
      Value srcDimSz =
          builder.create<DimOp>(loc, expandShapeOp.getSrc(), it.index());
      int64_t groupSz = 1;
      bool foundDynamicDim = false;
      for (int64_t resultDim : it.value()) {
        if (expandShapeOp.getResultType().isDynamicDim(resultDim)) {
          // Keep this assert here in case the op is extended in the future.
          assert(!foundDynamicDim &&
                 "more than one dynamic dim found in reassoc group");
          (void)foundDynamicDim;
          foundDynamicDim = true;
          continue;
        }
        groupSz *= expandShapeOp.getResultType().getDimSize(resultDim);
      }
      Value staticResultDimSz =
          builder.create<arith::ConstantIndexOp>(loc, groupSz);
      // staticResultDimSz must divide srcDimSz evenly.
      Value mod =
          builder.create<arith::RemSIOp>(loc, srcDimSz, staticResultDimSz);
      Value isModZero = builder.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, mod,
          builder.create<arith::ConstantIndexOp>(loc, 0));
      builder.create<cf::AssertOp>(
          loc, isModZero,
          RuntimeVerifiableOpInterface::generateErrorMessage(
              op, "static result dims in reassoc group do not "
                  "divide src dim evenly"));
    }
  }
};
} // namespace
} // namespace memref
} // namespace mlir

void mlir::memref::registerRuntimeVerifiableOpInterfaceExternalModels(
    DialectRegistry &registry) {
  registry.addExtension(+[](MLIRContext *ctx, memref::MemRefDialect *dialect) {
    CastOp::attachInterface<CastOpInterface>(*ctx);
    ExpandShapeOp::attachInterface<ExpandShapeOpInterface>(*ctx);
    LoadOp::attachInterface<LoadStoreOpInterface<LoadOp>>(*ctx);
    ReinterpretCastOp::attachInterface<ReinterpretCastOpInterface>(*ctx);
    StoreOp::attachInterface<LoadStoreOpInterface<StoreOp>>(*ctx);
    SubViewOp::attachInterface<SubViewOpInterface>(*ctx);

    // Load additional dialects of which ops may get created.
    ctx->loadDialect<affine::AffineDialect, arith::ArithDialect,
                     cf::ControlFlowDialect>();
  });
}