1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
//===- RuntimeOpVerification.cpp - Op Verification ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Transforms/RuntimeOpVerification.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Interfaces/RuntimeVerifiableOpInterface.h"
using namespace mlir;
namespace mlir {
namespace memref {
namespace {
struct CastOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<CastOpInterface,
CastOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto castOp = cast<CastOp>(op);
auto srcType = cast<BaseMemRefType>(castOp.getSource().getType());
// Nothing to check if the result is an unranked memref.
auto resultType = dyn_cast<MemRefType>(castOp.getType());
if (!resultType)
return;
if (isa<UnrankedMemRefType>(srcType)) {
// Check rank.
Value srcRank = builder.create<RankOp>(loc, castOp.getSource());
Value resultRank =
builder.create<arith::ConstantIndexOp>(loc, resultType.getRank());
Value isSameRank = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcRank, resultRank);
builder.create<cf::AssertOp>(
loc, isSameRank,
RuntimeVerifiableOpInterface::generateErrorMessage(op,
"rank mismatch"));
}
// Get source offset and strides. We do not have an op to get offsets and
// strides from unranked memrefs, so cast the source to a type with fully
// dynamic layout, from which we can then extract the offset and strides.
// (Rank was already verified.)
int64_t dynamicOffset = ShapedType::kDynamic;
SmallVector<int64_t> dynamicShape(resultType.getRank(),
ShapedType::kDynamic);
auto stridedLayout = StridedLayoutAttr::get(builder.getContext(),
dynamicOffset, dynamicShape);
auto dynStridesType =
MemRefType::get(dynamicShape, resultType.getElementType(),
stridedLayout, resultType.getMemorySpace());
Value helperCast =
builder.create<CastOp>(loc, dynStridesType, castOp.getSource());
auto metadataOp = builder.create<ExtractStridedMetadataOp>(loc, helperCast);
// Check dimension sizes.
for (const auto &it : llvm::enumerate(resultType.getShape())) {
// Static dim size -> static/dynamic dim size does not need verification.
if (auto rankedSrcType = dyn_cast<MemRefType>(srcType))
if (!rankedSrcType.isDynamicDim(it.index()))
continue;
// Static/dynamic dim size -> dynamic dim size does not need verification.
if (resultType.isDynamicDim(it.index()))
continue;
Value srcDimSz =
builder.create<DimOp>(loc, castOp.getSource(), it.index());
Value resultDimSz =
builder.create<arith::ConstantIndexOp>(loc, it.value());
Value isSameSz = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcDimSz, resultDimSz);
builder.create<cf::AssertOp>(
loc, isSameSz,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "size mismatch of dim " + std::to_string(it.index())));
}
// Get result offset and strides.
int64_t resultOffset;
SmallVector<int64_t> resultStrides;
if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
return;
// Check offset.
if (resultOffset != ShapedType::kDynamic) {
// Static/dynamic offset -> dynamic offset does not need verification.
Value srcOffset = metadataOp.getResult(1);
Value resultOffsetVal =
builder.create<arith::ConstantIndexOp>(loc, resultOffset);
Value isSameOffset = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcOffset, resultOffsetVal);
builder.create<cf::AssertOp>(
loc, isSameOffset,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "offset mismatch"));
}
// Check strides.
for (const auto &it : llvm::enumerate(resultStrides)) {
// Static/dynamic stride -> dynamic stride does not need verification.
if (it.value() == ShapedType::kDynamic)
continue;
Value srcStride =
metadataOp.getResult(2 + resultType.getRank() + it.index());
Value resultStrideVal =
builder.create<arith::ConstantIndexOp>(loc, it.value());
Value isSameStride = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcStride, resultStrideVal);
builder.create<cf::AssertOp>(
loc, isSameStride,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "stride mismatch of dim " + std::to_string(it.index())));
}
}
};
/// Verifies that the indices on load/store ops are in-bounds of the memref's
/// index space: 0 <= index#i < dim#i
template <typename LoadStoreOp>
struct LoadStoreOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<
LoadStoreOpInterface<LoadStoreOp>, LoadStoreOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto loadStoreOp = cast<LoadStoreOp>(op);
auto memref = loadStoreOp.getMemref();
auto rank = memref.getType().getRank();
if (rank == 0) {
return;
}
auto indices = loadStoreOp.getIndices();
auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
Value assertCond;
for (auto i : llvm::seq<int64_t>(0, rank)) {
auto index = indices[i];
auto dimOp = builder.createOrFold<memref::DimOp>(loc, memref, i);
auto geLow = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, index, zero);
auto ltHigh = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, index, dimOp);
auto andOp = builder.createOrFold<arith::AndIOp>(loc, geLow, ltHigh);
assertCond =
i > 0 ? builder.createOrFold<arith::AndIOp>(loc, assertCond, andOp)
: andOp;
}
builder.create<cf::AssertOp>(
loc, assertCond,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "out-of-bounds access"));
}
};
/// Compute the linear index for the provided strided layout and indices.
Value computeLinearIndex(OpBuilder &builder, Location loc, OpFoldResult offset,
ArrayRef<OpFoldResult> strides,
ArrayRef<OpFoldResult> indices) {
auto [expr, values] = computeLinearIndex(offset, strides, indices);
auto index =
affine::makeComposedFoldedAffineApply(builder, loc, expr, values);
return getValueOrCreateConstantIndexOp(builder, loc, index);
}
/// Returns two Values representing the bounds of the provided strided layout
/// metadata. The bounds are returned as a half open interval -- [low, high).
std::pair<Value, Value> computeLinearBounds(OpBuilder &builder, Location loc,
OpFoldResult offset,
ArrayRef<OpFoldResult> strides,
ArrayRef<OpFoldResult> sizes) {
auto zeros = SmallVector<int64_t>(sizes.size(), 0);
auto indices = getAsIndexOpFoldResult(builder.getContext(), zeros);
auto lowerBound = computeLinearIndex(builder, loc, offset, strides, indices);
auto upperBound = computeLinearIndex(builder, loc, offset, strides, sizes);
return {lowerBound, upperBound};
}
/// Returns two Values representing the bounds of the memref. The bounds are
/// returned as a half open interval -- [low, high).
std::pair<Value, Value> computeLinearBounds(OpBuilder &builder, Location loc,
TypedValue<BaseMemRefType> memref) {
auto runtimeMetadata = builder.create<ExtractStridedMetadataOp>(loc, memref);
auto offset = runtimeMetadata.getConstifiedMixedOffset();
auto strides = runtimeMetadata.getConstifiedMixedStrides();
auto sizes = runtimeMetadata.getConstifiedMixedSizes();
return computeLinearBounds(builder, loc, offset, strides, sizes);
}
/// Verifies that the linear bounds of a reinterpret_cast op are within the
/// linear bounds of the base memref: low >= baseLow && high <= baseHigh
struct ReinterpretCastOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<
ReinterpretCastOpInterface, ReinterpretCastOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto reinterpretCast = cast<ReinterpretCastOp>(op);
auto baseMemref = reinterpretCast.getSource();
auto resultMemref =
cast<TypedValue<BaseMemRefType>>(reinterpretCast.getResult());
builder.setInsertionPointAfter(op);
// Compute the linear bounds of the base memref
auto [baseLow, baseHigh] = computeLinearBounds(builder, loc, baseMemref);
// Compute the linear bounds of the resulting memref
auto [low, high] = computeLinearBounds(builder, loc, resultMemref);
// Check low >= baseLow
auto geLow = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, low, baseLow);
// Check high <= baseHigh
auto leHigh = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, high, baseHigh);
auto assertCond = builder.createOrFold<arith::AndIOp>(loc, geLow, leHigh);
builder.create<cf::AssertOp>(
loc, assertCond,
RuntimeVerifiableOpInterface::generateErrorMessage(
op,
"result of reinterpret_cast is out-of-bounds of the base memref"));
}
};
/// Verifies that the linear bounds of a subview op are within the linear bounds
/// of the base memref: low >= baseLow && high <= baseHigh
/// TODO: This is not yet a full runtime verification of subview. For example,
/// consider:
/// %m = memref.alloc(%c10, %c10) : memref<10x10xf32>
/// memref.subview %m[%c0, %c0][%c20, %c2][%c1, %c1]
/// : memref<?x?xf32> to memref<?x?xf32>
/// The subview is in-bounds of the entire base memref but the first dimension
/// is out-of-bounds. Future work would verify the bounds on a per-dimension
/// basis.
struct SubViewOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<SubViewOpInterface,
SubViewOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto subView = cast<SubViewOp>(op);
auto baseMemref = cast<TypedValue<BaseMemRefType>>(subView.getSource());
auto resultMemref = cast<TypedValue<BaseMemRefType>>(subView.getResult());
builder.setInsertionPointAfter(op);
// Compute the linear bounds of the base memref
auto [baseLow, baseHigh] = computeLinearBounds(builder, loc, baseMemref);
// Compute the linear bounds of the resulting memref
auto [low, high] = computeLinearBounds(builder, loc, resultMemref);
// Check low >= baseLow
auto geLow = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, low, baseLow);
// Check high <= baseHigh
auto leHigh = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, high, baseHigh);
auto assertCond = builder.createOrFold<arith::AndIOp>(loc, geLow, leHigh);
builder.create<cf::AssertOp>(
loc, assertCond,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "subview is out-of-bounds of the base memref"));
}
};
struct ExpandShapeOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<ExpandShapeOpInterface,
ExpandShapeOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto expandShapeOp = cast<ExpandShapeOp>(op);
// Verify that the expanded dim sizes are a product of the collapsed dim
// size.
for (const auto &it :
llvm::enumerate(expandShapeOp.getReassociationIndices())) {
Value srcDimSz =
builder.create<DimOp>(loc, expandShapeOp.getSrc(), it.index());
int64_t groupSz = 1;
bool foundDynamicDim = false;
for (int64_t resultDim : it.value()) {
if (expandShapeOp.getResultType().isDynamicDim(resultDim)) {
// Keep this assert here in case the op is extended in the future.
assert(!foundDynamicDim &&
"more than one dynamic dim found in reassoc group");
(void)foundDynamicDim;
foundDynamicDim = true;
continue;
}
groupSz *= expandShapeOp.getResultType().getDimSize(resultDim);
}
Value staticResultDimSz =
builder.create<arith::ConstantIndexOp>(loc, groupSz);
// staticResultDimSz must divide srcDimSz evenly.
Value mod =
builder.create<arith::RemSIOp>(loc, srcDimSz, staticResultDimSz);
Value isModZero = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, mod,
builder.create<arith::ConstantIndexOp>(loc, 0));
builder.create<cf::AssertOp>(
loc, isModZero,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "static result dims in reassoc group do not "
"divide src dim evenly"));
}
}
};
} // namespace
} // namespace memref
} // namespace mlir
void mlir::memref::registerRuntimeVerifiableOpInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, memref::MemRefDialect *dialect) {
CastOp::attachInterface<CastOpInterface>(*ctx);
ExpandShapeOp::attachInterface<ExpandShapeOpInterface>(*ctx);
LoadOp::attachInterface<LoadStoreOpInterface<LoadOp>>(*ctx);
ReinterpretCastOp::attachInterface<ReinterpretCastOpInterface>(*ctx);
StoreOp::attachInterface<LoadStoreOpInterface<StoreOp>>(*ctx);
SubViewOp::attachInterface<SubViewOpInterface>(*ctx);
// Load additional dialects of which ops may get created.
ctx->loadDialect<affine::AffineDialect, arith::ArithDialect,
cf::ControlFlowDialect>();
});
}
|