1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
//===- MemRefUtils.cpp - Utilities to support the MemRef dialect ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the MemRef dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "llvm/ADT/STLExtras.h"
namespace mlir {
namespace memref {
bool isStaticShapeAndContiguousRowMajor(MemRefType type) {
if (!type.hasStaticShape())
return false;
SmallVector<int64_t> strides;
int64_t offset;
if (failed(getStridesAndOffset(type, strides, offset)))
return false;
// MemRef is contiguous if outer dimensions are size-1 and inner
// dimensions have unit strides.
int64_t runningStride = 1;
int64_t curDim = strides.size() - 1;
// Finds all inner dimensions with unit strides.
while (curDim >= 0 && strides[curDim] == runningStride) {
runningStride *= type.getDimSize(curDim);
--curDim;
}
// Check if other dimensions are size-1.
while (curDim >= 0 && type.getDimSize(curDim) == 1) {
--curDim;
}
// All dims are unit-strided or size-1.
return curDim < 0;
}
std::pair<LinearizedMemRefInfo, OpFoldResult> getLinearizedMemRefOffsetAndSize(
OpBuilder &builder, Location loc, int srcBits, int dstBits,
OpFoldResult offset, ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides, ArrayRef<OpFoldResult> indices) {
unsigned sourceRank = sizes.size();
assert(sizes.size() == strides.size() &&
"expected as many sizes as strides for a memref");
SmallVector<OpFoldResult> indicesVec = llvm::to_vector(indices);
if (indices.empty())
indicesVec.resize(sourceRank, builder.getIndexAttr(0));
assert(indicesVec.size() == strides.size() &&
"expected as many indices as rank of memref");
// Create the affine symbols and values for linearization.
SmallVector<AffineExpr> symbols(2 * sourceRank);
bindSymbolsList(builder.getContext(), MutableArrayRef{symbols});
AffineExpr addMulMap = builder.getAffineConstantExpr(0);
AffineExpr mulMap = builder.getAffineConstantExpr(1);
SmallVector<OpFoldResult> offsetValues(2 * sourceRank);
for (unsigned i = 0; i < sourceRank; ++i) {
unsigned offsetIdx = 2 * i;
addMulMap = addMulMap + symbols[offsetIdx] * symbols[offsetIdx + 1];
offsetValues[offsetIdx] = indicesVec[i];
offsetValues[offsetIdx + 1] = strides[i];
mulMap = mulMap * symbols[i];
}
// Adjust linearizedIndices and size by the scale factor (dstBits / srcBits).
int64_t scaler = dstBits / srcBits;
addMulMap = addMulMap.floorDiv(scaler);
mulMap = mulMap.floorDiv(scaler);
OpFoldResult linearizedIndices = affine::makeComposedFoldedAffineApply(
builder, loc, addMulMap, offsetValues);
OpFoldResult linearizedSize =
affine::makeComposedFoldedAffineApply(builder, loc, mulMap, sizes);
// Adjust baseOffset by the scale factor (dstBits / srcBits).
AffineExpr s0;
bindSymbols(builder.getContext(), s0);
OpFoldResult adjustBaseOffset = affine::makeComposedFoldedAffineApply(
builder, loc, s0.floorDiv(scaler), {offset});
return {{adjustBaseOffset, linearizedSize}, linearizedIndices};
}
LinearizedMemRefInfo
getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits,
int dstBits, OpFoldResult offset,
ArrayRef<OpFoldResult> sizes) {
SmallVector<OpFoldResult> strides(sizes.size());
if (!sizes.empty()) {
strides.back() = builder.getIndexAttr(1);
AffineExpr s0, s1;
bindSymbols(builder.getContext(), s0, s1);
for (int index = sizes.size() - 1; index > 0; --index) {
strides[index - 1] = affine::makeComposedFoldedAffineApply(
builder, loc, s0 * s1,
ArrayRef<OpFoldResult>{strides[index], sizes[index]});
}
}
LinearizedMemRefInfo linearizedMemRefInfo;
std::tie(linearizedMemRefInfo, std::ignore) =
getLinearizedMemRefOffsetAndSize(builder, loc, srcBits, dstBits, offset,
sizes, strides);
return linearizedMemRefInfo;
}
/// Returns true if all the uses of op are not read/load.
/// There can be SubviewOp users as long as all its users are also
/// StoreOp/transfer_write. If return true it also fills out the uses, if it
/// returns false uses is unchanged.
static bool resultIsNotRead(Operation *op, std::vector<Operation *> &uses) {
std::vector<Operation *> opUses;
for (OpOperand &use : op->getUses()) {
Operation *useOp = use.getOwner();
if (isa<memref::DeallocOp>(useOp) ||
(useOp->getNumResults() == 0 && useOp->getNumRegions() == 0 &&
!mlir::hasEffect<MemoryEffects::Read>(useOp)) ||
(isa<memref::SubViewOp>(useOp) && resultIsNotRead(useOp, opUses))) {
opUses.push_back(useOp);
continue;
}
return false;
}
uses.insert(uses.end(), opUses.begin(), opUses.end());
return true;
}
void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) {
std::vector<Operation *> opToErase;
parentOp->walk([&](memref::AllocOp op) {
std::vector<Operation *> candidates;
if (resultIsNotRead(op, candidates)) {
opToErase.insert(opToErase.end(), candidates.begin(), candidates.end());
opToErase.push_back(op.getOperation());
}
});
for (Operation *op : opToErase)
rewriter.eraseOp(op);
}
static SmallVector<OpFoldResult>
computeSuffixProductIRBlockImpl(Location loc, OpBuilder &builder,
ArrayRef<OpFoldResult> sizes,
OpFoldResult unit) {
SmallVector<OpFoldResult> strides(sizes.size(), unit);
AffineExpr s0, s1;
bindSymbols(builder.getContext(), s0, s1);
for (int64_t r = strides.size() - 1; r > 0; --r) {
strides[r - 1] = affine::makeComposedFoldedAffineApply(
builder, loc, s0 * s1, {strides[r], sizes[r]});
}
return strides;
}
SmallVector<OpFoldResult>
computeSuffixProductIRBlock(Location loc, OpBuilder &builder,
ArrayRef<OpFoldResult> sizes) {
OpFoldResult unit = builder.getIndexAttr(1);
return computeSuffixProductIRBlockImpl(loc, builder, sizes, unit);
}
MemrefValue skipFullyAliasingOperations(MemrefValue source) {
while (auto op = source.getDefiningOp()) {
if (auto subViewOp = dyn_cast<memref::SubViewOp>(op);
subViewOp && subViewOp.hasZeroOffset() && subViewOp.hasUnitStride()) {
// A `memref.subview` with an all zero offset, and all unit strides, still
// points to the same memory.
source = cast<MemrefValue>(subViewOp.getSource());
} else if (auto castOp = dyn_cast<memref::CastOp>(op)) {
// A `memref.cast` still points to the same memory.
source = castOp.getSource();
} else {
return source;
}
}
return source;
}
MemrefValue skipSubViewsAndCasts(MemrefValue source) {
while (auto op = source.getDefiningOp()) {
if (auto subView = dyn_cast<memref::SubViewOp>(op)) {
source = cast<MemrefValue>(subView.getSource());
} else if (auto cast = dyn_cast<memref::CastOp>(op)) {
source = cast.getSource();
} else {
return source;
}
}
return source;
}
} // namespace memref
} // namespace mlir
|