1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
//===- ShardingInterface.cpp -------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h"
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterfaceImpl.h"
#include "mlir/Dialect/Mesh/IR/MeshOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Debug.h"
#include <utility>
#define DEBUG_TYPE "sharding-interface"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
using namespace mlir;
using namespace mlir::mesh;
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.cpp.inc"
//===----------------------------------------------------------------------===//
// common util functions
//===----------------------------------------------------------------------===//
static LogicalResult
checkOperandAffineExprRecursively(AffineExpr expr,
SmallVectorImpl<bool> &seenIds) {
switch (expr.getKind()) {
case AffineExprKind::Add: {
auto binOpExpr = cast<AffineBinaryOpExpr>(expr);
AffineExpr lhs = binOpExpr.getLHS();
AffineExpr rhs = binOpExpr.getRHS();
if (failed(checkOperandAffineExprRecursively(lhs, seenIds)))
return failure();
if (failed(checkOperandAffineExprRecursively(rhs, seenIds)))
return failure();
return success();
}
case AffineExprKind::Mul: {
auto binOpExpr = cast<AffineBinaryOpExpr>(expr);
AffineExpr lhs = binOpExpr.getLHS();
AffineExpr rhs = binOpExpr.getRHS();
AffineExpr dimExpr;
if (lhs.getKind() == AffineExprKind::DimId &&
rhs.getKind() == AffineExprKind::Constant) {
dimExpr = lhs;
} else if (rhs.getKind() == AffineExprKind::DimId &&
lhs.getKind() == AffineExprKind::Constant) {
dimExpr = rhs;
} else
return failure();
unsigned position = cast<AffineDimExpr>(dimExpr).getPosition();
if ((size_t)position >= seenIds.size() || seenIds[position])
return failure();
seenIds[position] = true;
return success();
}
case AffineExprKind::DimId: {
unsigned position = cast<AffineDimExpr>(expr).getPosition();
if ((size_t)position >= seenIds.size() || seenIds[position])
return failure();
seenIds[position] = true;
return success();
}
default:
return failure();
}
}
static FailureOr<llvm::SmallSet<unsigned, 2>>
checkOperandAffineExpr(AffineExpr expr, unsigned numDims) {
SmallVector<bool> seenIds(numDims, false);
if (failed(checkOperandAffineExprRecursively(expr, seenIds)))
return failure();
llvm::SmallSet<unsigned, 2> positions;
for (auto it : llvm::enumerate(seenIds)) {
if (it.value())
positions.insert((unsigned)it.index());
}
return positions;
}
//===----------------------------------------------------------------------===//
// mesh::getMeshShardingAttr
//===----------------------------------------------------------------------===//
FailureOr<std::pair<bool, MeshShardingAttr>>
mesh::getMeshShardingAttr(OpResult result) {
Value val = cast<Value>(result);
bool anyShardedForDef = llvm::any_of(val.getUsers(), [](Operation *user) {
auto shardOp = llvm::dyn_cast<mesh::ShardOp>(user);
if (!shardOp)
return false;
return !shardOp.getAnnotateForUsers();
});
if (anyShardedForDef) {
// expected to have exact one use if it has a use of `mesh.shard` without
// unit attr annotate_for_users
if (!val.hasOneUse())
return failure();
auto shardOp = llvm::cast<mesh::ShardOp>(*val.getUsers().begin());
return std::make_pair(false, shardOp.getShard());
}
bool anyShardedForUsers = llvm::any_of(val.getUsers(), [](Operation *user) {
auto shardOp = llvm::dyn_cast<mesh::ShardOp>(user);
if (!shardOp)
return false;
return shardOp.getAnnotateForUsers();
});
if (anyShardedForUsers) {
SmallVector<ShardOp> shardOps;
for (Operation *user : val.getUsers()) {
ShardOp shardOp = llvm::dyn_cast<ShardOp>(user);
if (shardOp)
shardOps.push_back(shardOp);
}
MeshShardingAttr shardForDef = shardOps[0].getShard();
for (size_t i = 1; i < shardOps.size(); ++i) {
// TODO: Deduce a reasonable mesh sharding attr for def when they are
// different
assert(shardOps[i].getShard() == shardForDef &&
"only support all shard ops have the same mesh sharding attr");
}
return std::make_pair(true, shardForDef);
}
return failure();
}
FailureOr<std::pair<bool, MeshShardingAttr>>
mesh::getMeshShardingAttr(OpOperand &opOperand) {
Value val = opOperand.get();
if (ShardOp shardOp = val.getDefiningOp<ShardOp>())
return std::make_pair(shardOp.getAnnotateForUsers(), shardOp.getShard());
return failure();
}
//===----------------------------------------------------------------------===//
// ShardingInterface::verifyShardingInterfaceImpl
//===----------------------------------------------------------------------===//
LogicalResult mesh::ShardingInterface::verifyShardingInterfaceImpl() {
Operation *op = getOperation();
// check operands and results type
for (Type type : op->getOperandTypes())
if (!llvm::isa<RankedTensorType>(type))
return failure();
for (Type type : op->getResultTypes())
if (!llvm::isa<RankedTensorType>(type))
return failure();
// check loop types
SmallVector<utils::IteratorType> loopTypes = getLoopIteratorTypes();
if (loopTypes.empty())
return failure();
// check maps
SmallVector<AffineMap> maps = getIndexingMaps();
if (maps.empty())
return failure();
unsigned numOperands = op->getNumOperands();
unsigned numResults = op->getNumResults();
if (numOperands + numResults != maps.size())
return failure();
for (OpResult result : op->getResults()) {
auto resultType = dyn_cast<RankedTensorType>(result.getType());
if (!resultType)
return failure();
AffineMap map = maps[numOperands + result.getResultNumber()];
if (!map.isProjectedPermutation()) {
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// ShardingInterface::printLoopTypesAndIndexingMaps
//===----------------------------------------------------------------------===//
void mesh::ShardingInterface::printLoopTypesAndIndexingMaps(raw_ostream &os) {
os << "print loop types and indexing maps for: \n";
getOperation()->print(os);
os << "\n";
os << "loop types: [";
for (utils::IteratorType type : getLoopIteratorTypes()) {
os << stringifyEnum(type) << " ";
}
os << "]\n";
os << "indexing maps: \n";
for (AffineMap map : getIndexingMaps())
os << map << "\n";
os << "\n";
}
//===----------------------------------------------------------------------===//
// detail::defaultGetShardingOption
//===----------------------------------------------------------------------===//
namespace {
// Update the given `shardingOption` according to `meshAxes` and `loopIdx`
static LogicalResult fillShardingOption(Operation *op,
ShardingOption &shardingOption,
FlatSymbolRefAttr mesh,
ArrayRef<MeshAxis> meshAxes,
unsigned loopIdx) {
if ((shardingOption.mesh && mesh && shardingOption.mesh != mesh) ||
(!shardingOption.shardingArray[loopIdx].empty() &&
shardingOption.shardingArray[loopIdx] != meshAxes)) {
LLVM_DEBUG(DBGS() << "sharding option conflicts on loop iterator "
<< loopIdx << "\n");
return failure();
}
for (size_t i = 0; i < shardingOption.shardingArray.size(); ++i) {
if (i == loopIdx)
continue;
for (MeshAxis axis : meshAxes) {
if (llvm::is_contained(shardingOption.shardingArray[i], axis)) {
LLVM_DEBUG(DBGS() << "sharding option conflicts because mesh axes "
<< axis << " duplicate");
return failure();
}
}
}
if (mesh)
shardingOption.mesh = mesh;
if (shardingOption.shardingArray[loopIdx].empty())
shardingOption.shardingArray[loopIdx].append(meshAxes.begin(),
meshAxes.end());
return success();
}
} // namespace
FailureOr<ShardingOption> mesh::detail::defaultGetShardingOption(
Operation *op, ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings) {
ShardingInterface shardingOp = llvm::cast<ShardingInterface>(op);
ShardingOption shardingOption;
if (failed(shardingOp.verifyShardingInterfaceImpl()))
return op->emitOpError() << "invalid sharding interface implementation";
SmallVector<utils::IteratorType> loopTypes =
shardingOp.getLoopIteratorTypes();
SmallVector<AffineMap> maps = shardingOp.getIndexingMaps();
unsigned numOperands = op->getNumOperands();
shardingOption.shardingArray.resize(loopTypes.size());
llvm::SmallVector<MeshAxis> partialMeshAxes;
llvm::SmallSet<unsigned, 4> visitedLoopIndices;
bool anyShardingInResultsOrOperands = false;
// 1. Fill sharding option based on op results
for (auto shardingIt : llvm::enumerate(resultShardings)) {
MeshShardingAttr shardAttr = shardingIt.value();
if (!shardAttr)
continue;
AffineMap map = maps[numOperands + shardingIt.index()];
anyShardingInResultsOrOperands = true;
// Handle the split axes: calculate the corresponding loop index for each
// split axes sub-array, and then store the sub-array to
// shardingOption[index]
for (auto it : llvm::zip(map.getResults(), shardAttr.getSplitAxes())) {
AffineExpr expr = std::get<0>(it);
ArrayRef<MeshAxis> axes = std::get<1>(it).asArrayRef();
auto dim = cast<AffineDimExpr>(expr);
unsigned index = dim.getPosition();
visitedLoopIndices.insert(index);
if (failed(fillShardingOption(op, shardingOption, shardAttr.getMesh(),
axes, index)))
return failure();
}
// Handle the partial axes: at this stage, the exact loop index/indices
// cannot be decided because there could be multiple reduction loops.
ArrayRef<MeshAxis> partialAxes = shardAttr.getPartialAxes();
if (!partialAxes.empty()) {
if (!partialMeshAxes.empty())
return op->emitOpError() << "at most one result with partial axes is "
"supported at present";
partialMeshAxes.append(partialAxes.begin(), partialAxes.end());
// Add all the reduction loop indices to `visitedLoopIndices` if
// `partialAxes` is not empty
for (size_t loopIdx = 0; loopIdx < loopTypes.size(); ++loopIdx) {
if (isReductionLoop(loopTypes[loopIdx]))
visitedLoopIndices.insert(loopIdx);
}
}
}
// 2. Fill sharding option based on operands
for (auto shardingIt : llvm::enumerate(operandShardings)) {
MeshShardingAttr shardAttr = shardingIt.value();
if (!shardAttr)
continue;
anyShardingInResultsOrOperands = true;
AffineMap map = maps[shardingIt.index()];
unsigned numDims = map.getNumDims();
// Handle the split axes. Partial axes don't need to be handled because they
// only affect the defining op of the operand.
//
// TODO: Change to process the operands with single loop index first and
// then the operands with multiple loop indices.
for (auto it : llvm::zip(map.getResults(), shardAttr.getSplitAxes())) {
AffineExpr expr = std::get<0>(it);
ArrayRef<MeshAxis> axes = std::get<1>(it).asArrayRef();
FailureOr<llvm::SmallSet<unsigned, 2>> loopIndices =
checkOperandAffineExpr(expr, numDims);
if (failed(loopIndices))
return op->emitOpError()
<< "operand's affine expression is restricted to const_i * "
"dim_i + const_j + dim_j + ...";
if (loopIndices->empty())
continue;
if (loopIndices->size() == 1) {
unsigned loopIdx = *loopIndices->begin();
visitedLoopIndices.insert(loopIdx);
if (failed(fillShardingOption(op, shardingOption, shardAttr.getMesh(),
axes, loopIdx)))
return failure();
}
// If multiple loop indices correspond to a dimension of an operand, it is
// difficult to infer which loop indices are responsible for sharding.
// Therefore, the exact loop index must be specified by others.
if (loopIndices->size() > 1) {
bool seenLoopIndices = false;
for (unsigned loopIdx : *loopIndices) {
if (visitedLoopIndices.contains(loopIdx)) {
seenLoopIndices = true;
break;
}
}
if (!seenLoopIndices)
return op->emitOpError()
<< "the operand " << shardingIt.index()
<< " has multiple loop indices in a dimension, but none of "
"them could be found in the exactly specified annotation "
"of op results or operands.";
}
}
}
// 3. Finalize sharding option
if (!partialMeshAxes.empty()) {
bool anyNonEmptyReductionLoop = llvm::any_of(
llvm::enumerate(shardingOption.shardingArray), [&](auto it) {
SmallVector<MeshAxis> &subArray = it.value();
int64_t idx = it.index();
return isReductionLoop(loopTypes[idx]) && !subArray.empty();
});
if (!anyNonEmptyReductionLoop) {
bool filled = false;
for (size_t idx = 0; idx < loopTypes.size(); ++idx) {
if (isReductionLoop(loopTypes[idx])) {
std::ignore = fillShardingOption(op, shardingOption, nullptr,
partialMeshAxes, idx);
filled = true;
break;
}
}
if (!filled)
return op->emitOpError() << "no matched reduction loop found for the "
"result's partial type";
}
}
removeTrailingEmptySubArray(shardingOption.shardingArray);
if (!anyShardingInResultsOrOperands)
shardingOption.empty = true;
return shardingOption;
}
// Get the sharding attributed for the given result and sharding option.
MeshShardingAttr
getShardingAttribute(OpResult result, const ShardingOption &shardingOption,
AffineMap map, ArrayRef<utils::IteratorType> loopTypes,
ArrayRef<ReductionKind> reductionLoopKinds) {
auto resultType = cast<RankedTensorType>(result.getType());
SmallVector<SmallVector<MeshAxis>> splitAxes(resultType.getRank());
SmallVector<MeshAxis> partialAxes;
// process the split axes
for (auto it : llvm::enumerate(map.getResults())) {
AffineExpr expr = it.value();
// `expr` must be an `AffineDimExpr` because `map` is verified by
// isProjectedPermutation
auto dim = cast<AffineDimExpr>(expr);
unsigned loopIdx = dim.getPosition();
if (loopIdx < shardingOption.shardingArray.size())
splitAxes[it.index()].append(shardingOption.shardingArray[loopIdx]);
}
// process the partial axes
// partialType will be ignored if partialAxes is empty
ReductionKind partialType = ReductionKind::Sum;
size_t reductionLoopKindsIdx = 0;
for (auto it : llvm::zip(loopTypes, shardingOption.shardingArray)) {
utils::IteratorType iType = std::get<0>(it);
if (isReductionLoop(iType)) {
ReductionKind curPartialType = reductionLoopKinds[reductionLoopKindsIdx];
++reductionLoopKindsIdx;
if (!partialAxes.empty())
assert(partialType == curPartialType &&
"Only one reduction type is supported");
partialType = curPartialType;
const SmallVector<MeshAxis> &axis = std::get<1>(it);
partialAxes.append(axis);
}
}
removeTrailingEmptySubArray(splitAxes);
return MeshShardingAttr::get(result.getContext(), shardingOption.mesh,
splitAxes, partialAxes, partialType);
}
static FailureOr<MeshShardingAttr>
getShardingAttribute(OpOperand &opOperand, const ShardingOption &shardingOption,
AffineMap map) {
Value operandValue = opOperand.get();
auto operandType = cast<RankedTensorType>(operandValue.getType());
SmallVector<SmallVector<MeshAxis>> splitAxes(operandType.getRank());
unsigned numDims = map.getNumDims();
for (auto it : llvm::enumerate(map.getResults())) {
int64_t idx = it.index();
AffineExpr expr = it.value();
FailureOr<llvm::SmallSet<unsigned, 2>> loopIndices =
checkOperandAffineExpr(expr, numDims);
if (failed(loopIndices))
return failure();
SmallVector<unsigned> shardedLoopIndices;
for (unsigned loopIdx : *loopIndices) {
if ((size_t)loopIdx < shardingOption.shardingArray.size() &&
!shardingOption.shardingArray[loopIdx].empty())
shardedLoopIndices.push_back(loopIdx);
}
// mostly one sharded loop index is accepted
if (shardedLoopIndices.size() > 1)
return failure();
if (shardedLoopIndices.size() == 1) {
splitAxes[idx].append(
shardingOption.shardingArray[shardedLoopIndices[0]]);
}
}
removeTrailingEmptySubArray(splitAxes);
return MeshShardingAttr::get(opOperand.get().getContext(),
shardingOption.mesh, splitAxes);
}
FailureOr<SmallVector<MeshShardingAttr>>
mesh::detail::defaultGetShardingAnnotations(
Operation *op, const ShardingOption &shardingOption) {
SmallVector<MeshShardingAttr> res;
ShardingInterface shardingOp = llvm::cast<ShardingInterface>(op);
SmallVector<utils::IteratorType> loopTypes =
shardingOp.getLoopIteratorTypes();
SmallVector<ReductionKind> reductionKinds =
shardingOp.getReductionLoopIteratorKinds();
SmallVector<AffineMap> maps = shardingOp.getIndexingMaps();
unsigned numOperands = op->getNumOperands();
for (OpOperand &opOperand : op->getOpOperands()) {
FailureOr<MeshShardingAttr> shardingAttr = getShardingAttribute(
opOperand, shardingOption, maps[opOperand.getOperandNumber()]);
if (failed(shardingAttr))
return failure();
res.push_back(*shardingAttr);
}
for (OpResult result : op->getResults()) {
res.push_back(getShardingAttribute(
result, shardingOption, maps[numOperands + result.getResultNumber()],
loopTypes, reductionKinds));
}
return res;
}
//===----------------------------------------------------------------------===//
// detail::defaultAddShardingAnnotations
//===----------------------------------------------------------------------===//
// To add a `mesh.shard` op for the given result, based on the details provided
// in `shardingOption`, `map`, and `loopTypes`.
static LogicalResult addShardOp(OpBuilder &b, OpResult result,
const ShardingOption &shardingOption,
AffineMap map,
ArrayRef<utils::IteratorType> loopTypes,
ArrayRef<ReductionKind> reductionLoopKinds) {
MeshShardingAttr shardAttr = getShardingAttribute(
result, shardingOption, map, loopTypes, reductionLoopKinds);
maybeInsertTargetShardingAnnotation(shardAttr, result, b);
return success();
}
// To add a `mesh.shard` op for the given operand, based on the details provided
// in `shardingOption`, `map`, and `loopTypes`.
static LogicalResult addShardOp(OpBuilder &b, OpOperand &opOperand,
const ShardingOption &shardingOption,
AffineMap map) {
FailureOr<MeshShardingAttr> shardAttr =
getShardingAttribute(opOperand, shardingOption, map);
if (failed(shardAttr)) {
return failure();
}
OpBuilder::InsertionGuard guard(b);
maybeInsertSourceShardingAnnotation(*shardAttr, opOperand, b);
return success();
}
LogicalResult mesh::detail::defaultAddShardingAnnotations(
Operation *op, OpBuilder &b, const ShardingOption &shardingOption) {
assert(!shardingOption.empty && shardingOption.mesh);
ShardingInterface shardingOp = llvm::cast<ShardingInterface>(op);
SmallVector<utils::IteratorType> loopTypes =
shardingOp.getLoopIteratorTypes();
SmallVector<ReductionKind> reductionKinds =
shardingOp.getReductionLoopIteratorKinds();
SmallVector<AffineMap> maps = shardingOp.getIndexingMaps();
unsigned numOperands = op->getNumOperands();
// 1. add mesh.shard ops for all op results
for (OpResult result : op->getResults()) {
if (failed(addShardOp(b, result, shardingOption,
maps[numOperands + result.getResultNumber()],
loopTypes, reductionKinds)))
return failure();
}
// 2. add mesh.shard ops for all operands
for (OpOperand &opOperand : op->getOpOperands()) {
if (failed(addShardOp(b, opOperand, shardingOption,
maps[opOperand.getOperandNumber()])))
return failure();
}
return success();
}
#ifndef NDEBUG
static bool
isValueCompatibleWithFullReplicationSharding(Value value,
MeshShardingAttr sharding) {
if (isa<RankedTensorType>(value.getType())) {
return sharding && isFullReplication(sharding);
}
return !sharding;
}
template <typename ValueRange, typename MeshShardingAttrRage>
static bool areValuesCompatibleWithFullReplicationShardings(
ValueRange &&values, MeshShardingAttrRage &&shardings) {
if (std::size(values) != std::size(shardings)) {
return false;
}
return llvm::all_of(llvm::zip_equal(
std::forward<ValueRange>(values),
std::forward<MeshShardingAttrRage>(shardings)),
[](auto valueAndSharding) {
return isValueCompatibleWithFullReplicationSharding(
std::get<0>(valueAndSharding),
std::get<1>(valueAndSharding));
});
}
#endif // NDEBUG
void mesh::spmdizeFullyReplicatedOperation(
Operation &op, ArrayRef<Value> spmdizedOperands,
ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings, IRMapping &spmdizationMap,
SymbolTableCollection &symbolTable, OpBuilder &builder) {
assert(spmdizedOperands.size() == operandShardings.size());
assert(areValuesCompatibleWithFullReplicationShardings(op.getOperands(),
operandShardings));
assert(areValuesCompatibleWithFullReplicationShardings(op.getResults(),
resultShardings));
// `clone` will populate the mapping of old to new results.
builder.clone(op, spmdizationMap);
}
static void updateMeshAxisAssignmentForLoopIterators(
ArrayRef<MeshAxis> meshAxesAssignmentForTensorAxis, AffineExpr indexingExpr,
SmallVector<std::optional<SmallVector<MeshAxis>>>
&meshAxesAssignmentForLoopIterators) {
AffineDimExpr affineDimExpr = cast<AffineDimExpr>(indexingExpr);
unsigned loopIteratorIdx = affineDimExpr.getPosition();
if (meshAxesAssignmentForLoopIterators[loopIteratorIdx]) {
assert(llvm::equal(meshAxesAssignmentForTensorAxis,
*meshAxesAssignmentForLoopIterators[loopIteratorIdx]));
} else {
meshAxesAssignmentForLoopIterators[loopIteratorIdx] =
llvm::to_vector(meshAxesAssignmentForTensorAxis);
}
}
ShardingArray mesh::getMeshAxisAssignmentForLoopIterators(
ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings,
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<AffineMap> indexingMaps) {
SmallVector<std::optional<SmallVector<MeshAxis>>>
meshAxisAssignmentForLoopIterators(loopIteratorTypes.size());
SmallVector<MeshShardingAttr> operatorAndResultShardings;
operatorAndResultShardings.reserve(operandShardings.size() +
resultShardings.size());
llvm::append_range(operatorAndResultShardings, operandShardings);
for (auto [sharding, affineMap] :
llvm::zip_equal(operatorAndResultShardings, indexingMaps)) {
if (!sharding) {
continue;
}
for (auto [meshAxesAssignmentForTensorAxis, indexingExpr] :
llvm::zip(sharding.getSplitAxes(), affineMap.getResults())) {
updateMeshAxisAssignmentForLoopIterators(
meshAxesAssignmentForTensorAxis.asArrayRef(), indexingExpr,
meshAxisAssignmentForLoopIterators);
}
// Missing trailing split axes means replication on those tensor dimensions.
for (unsigned i = sharding.getSplitAxes().size();
i < affineMap.getNumResults(); ++i) {
updateMeshAxisAssignmentForLoopIterators(
{}, affineMap.getResults()[i], meshAxisAssignmentForLoopIterators);
}
}
ShardingArray res;
llvm::transform(meshAxisAssignmentForLoopIterators, std::back_inserter(res),
[](std::optional<SmallVector<MeshAxis>> &axes) {
if (!axes) {
return SmallVector<MeshAxis>();
};
return std::move(*axes);
});
return res;
}
bool mesh::isAtLeastOneReductionIteratorSharded(
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<SmallVector<MeshAxis>> meshAxisAssignmentForLoopIterators) {
for (auto [loopIteratorType, meshAxisAssignment] :
llvm::zip_equal(loopIteratorTypes, meshAxisAssignmentForLoopIterators)) {
if (loopIteratorType == utils::IteratorType::reduction &&
!meshAxisAssignment.empty()) {
return true;
}
}
return false;
}
SmallVector<MeshAxis> mesh::getReductionMeshAxes(
ArrayRef<utils::IteratorType> loopIteratorTypes,
ArrayRef<SmallVector<MeshAxis>> meshAxisAssignmentForLoopIterators) {
SmallVector<MeshAxis> meshAxes;
for (auto [loopIteratorType, meshAxisAssignment] :
llvm::zip_equal(loopIteratorTypes, meshAxisAssignmentForLoopIterators)) {
if (loopIteratorType == utils::IteratorType::reduction) {
llvm::append_range(meshAxes, meshAxisAssignment);
}
}
return meshAxes;
}
void mesh::spmdizeTriviallyShardableOperation(
Operation &op, ArrayRef<Value> spmdizedOperands,
ArrayRef<MeshShardingAttr> operandShardings,
ArrayRef<MeshShardingAttr> resultShardings, IRMapping &spmdizationMap,
SymbolTableCollection &symbolTable, OpBuilder &builder) {
// `clone` will populate the mapping of old to new results.
Operation *newOp = builder.clone(op, spmdizationMap);
// Set the result types to the sharded counterparts.
for (auto [oldResult, newResult, sharding] :
llvm::zip_equal(op.getResults(), newOp->getResults(), resultShardings)) {
newResult.setType(shardType(newResult.getType(),
getMesh(&op, sharding.getMesh(), symbolTable),
sharding));
}
}
|