1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
//===- PolynomialOps.cpp - Polynomial dialect ops ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Polynomial/IR/PolynomialOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Polynomial/IR/Polynomial.h"
#include "mlir/Dialect/Polynomial/IR/PolynomialAttributes.h"
#include "mlir/Dialect/Polynomial/IR/PolynomialTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/APInt.h"
using namespace mlir;
using namespace mlir::polynomial;
void FromTensorOp::build(OpBuilder &builder, OperationState &result,
Value input, RingAttr ring) {
TensorType tensorType = dyn_cast<TensorType>(input.getType());
auto bitWidth = tensorType.getElementTypeBitWidth();
APInt cmod(1 + bitWidth, 1);
cmod = cmod << bitWidth;
Type resultType = PolynomialType::get(builder.getContext(), ring);
build(builder, result, resultType, input);
}
LogicalResult FromTensorOp::verify() {
ArrayRef<int64_t> tensorShape = getInput().getType().getShape();
RingAttr ring = getOutput().getType().getRing();
IntPolynomialAttr polyMod = ring.getPolynomialModulus();
if (polyMod) {
unsigned polyDegree = polyMod.getPolynomial().getDegree();
bool compatible = tensorShape.size() == 1 && tensorShape[0] <= polyDegree;
if (!compatible) {
InFlightDiagnostic diag = emitOpError()
<< "input type " << getInput().getType()
<< " does not match output type "
<< getOutput().getType();
diag.attachNote()
<< "the input type must be a tensor of shape [d] where d "
"is at most the degree of the polynomialModulus of "
"the output type's ring attribute";
return diag;
}
}
unsigned inputBitWidth = getInput().getType().getElementTypeBitWidth();
if (inputBitWidth > ring.getCoefficientType().getIntOrFloatBitWidth()) {
InFlightDiagnostic diag = emitOpError()
<< "input tensor element type "
<< getInput().getType().getElementType()
<< " is too large to fit in the coefficients of "
<< getOutput().getType();
diag.attachNote() << "the input tensor's elements must be rescaled"
" to fit before using from_tensor";
return diag;
}
return success();
}
LogicalResult ToTensorOp::verify() {
ArrayRef<int64_t> tensorShape = getOutput().getType().getShape();
IntPolynomialAttr polyMod =
getInput().getType().getRing().getPolynomialModulus();
if (polyMod) {
unsigned polyDegree = polyMod.getPolynomial().getDegree();
bool compatible = tensorShape.size() == 1 && tensorShape[0] == polyDegree;
if (compatible)
return success();
InFlightDiagnostic diag = emitOpError()
<< "input type " << getInput().getType()
<< " does not match output type "
<< getOutput().getType();
diag.attachNote()
<< "the output type must be a tensor of shape [d] where d "
"is at most the degree of the polynomialModulus of "
"the input type's ring attribute";
return diag;
}
return success();
}
LogicalResult MulScalarOp::verify() {
Type argType = getPolynomial().getType();
PolynomialType polyType;
if (auto shapedPolyType = dyn_cast<ShapedType>(argType)) {
polyType = cast<PolynomialType>(shapedPolyType.getElementType());
} else {
polyType = cast<PolynomialType>(argType);
}
Type coefficientType = polyType.getRing().getCoefficientType();
if (coefficientType != getScalar().getType())
return emitOpError() << "polynomial coefficient type " << coefficientType
<< " does not match scalar type "
<< getScalar().getType();
return success();
}
/// Test if a value is a primitive nth root of unity modulo cmod.
bool isPrimitiveNthRootOfUnity(const APInt &root, const APInt &n,
const APInt &cmod) {
// The first or subsequent multiplications, may overflow the input bit width,
// so scale them up to ensure they do not overflow.
unsigned requiredBitWidth =
std::max(root.getActiveBits() * 2, cmod.getActiveBits() * 2);
APInt r = APInt(root).zextOrTrunc(requiredBitWidth);
APInt cmodExt = APInt(cmod).zextOrTrunc(requiredBitWidth);
assert(r.ule(cmodExt) && "root must be less than cmod");
uint64_t upperBound = n.getZExtValue();
APInt a = r;
for (size_t k = 1; k < upperBound; k++) {
if (a.isOne())
return false;
a = (a * r).urem(cmodExt);
}
return a.isOne();
}
/// Verify that the types involved in an NTT or INTT operation are
/// compatible.
static LogicalResult verifyNTTOp(Operation *op, RingAttr ring,
RankedTensorType tensorType,
std::optional<PrimitiveRootAttr> root) {
Attribute encoding = tensorType.getEncoding();
if (!encoding) {
return op->emitOpError()
<< "expects a ring encoding to be provided to the tensor";
}
auto encodedRing = dyn_cast<RingAttr>(encoding);
if (!encodedRing) {
return op->emitOpError()
<< "the provided tensor encoding is not a ring attribute";
}
if (encodedRing != ring) {
return op->emitOpError()
<< "encoded ring type " << encodedRing
<< " is not equivalent to the polynomial ring " << ring;
}
unsigned polyDegree = ring.getPolynomialModulus().getPolynomial().getDegree();
ArrayRef<int64_t> tensorShape = tensorType.getShape();
bool compatible = tensorShape.size() == 1 && tensorShape[0] == polyDegree;
if (!compatible) {
InFlightDiagnostic diag = op->emitOpError()
<< "tensor type " << tensorType
<< " does not match output type " << ring;
diag.attachNote() << "the tensor must have shape [d] where d "
"is exactly the degree of the polynomialModulus of "
"the polynomial type's ring attribute";
return diag;
}
if (root.has_value()) {
APInt rootValue = root.value().getValue().getValue();
APInt rootDegree = root.value().getDegree().getValue();
APInt cmod = ring.getCoefficientModulus().getValue();
if (!isPrimitiveNthRootOfUnity(rootValue, rootDegree, cmod)) {
return op->emitOpError()
<< "provided root " << rootValue.getZExtValue()
<< " is not a primitive root "
<< "of unity mod " << cmod.getZExtValue()
<< ", with the specified degree " << rootDegree.getZExtValue();
}
}
return success();
}
LogicalResult NTTOp::verify() {
return verifyNTTOp(this->getOperation(), getInput().getType().getRing(),
getOutput().getType(), getRoot());
}
LogicalResult INTTOp::verify() {
return verifyNTTOp(this->getOperation(), getOutput().getType().getRing(),
getInput().getType(), getRoot());
}
ParseResult ConstantOp::parse(OpAsmParser &parser, OperationState &result) {
// Using the built-in parser.parseAttribute requires the full
// #polynomial.typed_int_polynomial syntax, which is excessive.
// Instead we parse a keyword int to signal it's an integer polynomial
Type type;
if (succeeded(parser.parseOptionalKeyword("float"))) {
Attribute floatPolyAttr = FloatPolynomialAttr::parse(parser, nullptr);
if (floatPolyAttr) {
if (parser.parseColon() || parser.parseType(type))
return failure();
result.addAttribute("value",
TypedFloatPolynomialAttr::get(type, floatPolyAttr));
result.addTypes(type);
return success();
}
}
if (succeeded(parser.parseOptionalKeyword("int"))) {
Attribute intPolyAttr = IntPolynomialAttr::parse(parser, nullptr);
if (intPolyAttr) {
if (parser.parseColon() || parser.parseType(type))
return failure();
result.addAttribute("value",
TypedIntPolynomialAttr::get(type, intPolyAttr));
result.addTypes(type);
return success();
}
}
// In the worst case, still accept the verbose versions.
TypedIntPolynomialAttr typedIntPolyAttr;
OptionalParseResult res =
parser.parseOptionalAttribute<TypedIntPolynomialAttr>(
typedIntPolyAttr, "value", result.attributes);
if (res.has_value() && succeeded(res.value())) {
result.addTypes(typedIntPolyAttr.getType());
return success();
}
TypedFloatPolynomialAttr typedFloatPolyAttr;
res = parser.parseAttribute<TypedFloatPolynomialAttr>(
typedFloatPolyAttr, "value", result.attributes);
if (res.has_value() && succeeded(res.value())) {
result.addTypes(typedFloatPolyAttr.getType());
return success();
}
return failure();
}
void ConstantOp::print(OpAsmPrinter &p) {
p << " ";
if (auto intPoly = dyn_cast<TypedIntPolynomialAttr>(getValue())) {
p << "int";
intPoly.getValue().print(p);
} else if (auto floatPoly = dyn_cast<TypedFloatPolynomialAttr>(getValue())) {
p << "float";
floatPoly.getValue().print(p);
} else {
assert(false && "unexpected attribute type");
}
p << " : ";
p.printType(getOutput().getType());
}
LogicalResult ConstantOp::inferReturnTypes(
MLIRContext *context, std::optional<mlir::Location> location,
ConstantOp::Adaptor adaptor,
llvm::SmallVectorImpl<mlir::Type> &inferredReturnTypes) {
Attribute operand = adaptor.getValue();
if (auto intPoly = dyn_cast<TypedIntPolynomialAttr>(operand)) {
inferredReturnTypes.push_back(intPoly.getType());
} else if (auto floatPoly = dyn_cast<TypedFloatPolynomialAttr>(operand)) {
inferredReturnTypes.push_back(floatPoly.getType());
} else {
assert(false && "unexpected attribute type");
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd canonicalization patterns
//===----------------------------------------------------------------------===//
namespace {
#include "PolynomialCanonicalization.inc"
} // namespace
void SubOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SubAsAdd>(context);
}
void NTTOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<NTTAfterINTT, NTTOfAdd, NTTOfSub>(context);
}
void INTTOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<INTTAfterNTT, INTTOfAdd, INTTOfSub>(context);
}
|