1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
|
//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the tiling using TilingInterface.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "tile-using-interface"
using namespace mlir;
scf::SCFTilingOptions &
scf::SCFTilingOptions::setTileSizes(ArrayRef<OpFoldResult> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
auto tileSizes = llvm::to_vector(ts);
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
return tileSizes;
};
return *this;
}
/// Helper method to adjust the interchange vector to match the iteration
/// domain.
static SmallVector<int64_t>
fillInterchangeVector(ArrayRef<int64_t> interchangeVector,
size_t iterationDomainSize) {
SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector);
if (filledVector.size() < iterationDomainSize) {
auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize);
filledVector.append(range.begin(), range.end());
}
if (filledVector.size() > iterationDomainSize)
filledVector.resize(iterationDomainSize);
return filledVector;
}
//===----------------------------------------------------------------------===//
// tileUsingSCF implementation.
//===----------------------------------------------------------------------===//
// Check if `stride` evenly divides the trip count `size - offset`.
static bool tileDividesIterationDomain(Range loopRange) {
std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
if (!offsetAsInt)
return false;
std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size);
if (!sizeAsInt)
return false;
std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride);
if (!strideAsInt)
return false;
return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0);
}
/// Returns the bounded tile size given the current `iv`, `loopRange` and
/// `tileSize`, i.e., `min(tileSize, range.end() - iv)`.
static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc,
Range loopRange, Value iv,
OpFoldResult tileSize) {
std::optional<int64_t> ts = getConstantIntValue(tileSize);
if (ts && ts.value() == 1)
return tileSize;
if (tileDividesIterationDomain(
Range{loopRange.offset, loopRange.size, tileSize}))
return tileSize;
// The tile size to use (to avoid out of bounds access) is minimum of
// `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled
// loop.
AffineExpr s0, s1, d0;
bindDims(b.getContext(), d0);
bindSymbols(b.getContext(), s0, s1);
AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, b.getContext());
Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size);
return affine::makeComposedFoldedAffineMin(
b, loc, minMap, SmallVector<OpFoldResult>{iv, tileSize, size});
}
/// A function that allows returning additional yielded values during
/// `yieldTiledValuesAndReplace`.
/// - `ivs` induction variable for the loop.
/// - `newBbArgs` basic block arguments corresponding to newly added iter_args.
/// - `tiledValues` the tiled values to return. Must be of same size as
/// `newbbArgs`, each element of this array is inserted into the corresponding
/// element in `newbbArgs`.
/// - `resultOffsets` is of the same size as `tiledValues` and represents
/// the offsets to use when inserting corresponding element from `tiledValues`
/// into the element from `newBbArgs`.
/// - `resultSizes` is of the same size as `tiledValues` and represents
/// the size of the corresponding element from `tiledValues` inserted into
/// the element from `newBbArgs`.
/// In case the method needs to return `failure()` the method is expected
/// to clean up any inserted operations.
using YieldTiledValuesFn = std::function<LogicalResult(
RewriterBase &rewriter, Location loc, ValueRange ivs, ValueRange newBbArgs,
SmallVector<Value> &tiledValues,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)>;
/// Clones the operation and updates the destination if the operation
/// implements the `DestinationStyleOpInterface`.
static Operation *cloneOpAndUpdateDestinationArgs(RewriterBase &rewriter,
Operation *op,
ValueRange newDestArgs) {
Operation *clonedOp = rewriter.clone(*op);
if (newDestArgs.empty())
return clonedOp;
if (auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp))
destinationStyleOp.getDpsInitsMutable().assign(newDestArgs);
return clonedOp;
}
/// Generate the tile-loop nest using `scf.for` operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNestUsingForOp(
RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes, ValueRange destinationTensors,
YieldTiledValuesFn yieldTiledValuesFn,
SmallVector<LoopLikeOpInterface> &loops) {
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == tileSizes.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(rewriter);
SmallVector<Value> ivs;
for (auto [loopRange, tileSize] : llvm::zip_equal(loopRanges, tileSizes)) {
// No loops if tile size is zero. Set offset and size to the loop
// offset and size.
if (isConstantIntValue(tileSize, 0))
continue;
Value lb = getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
Value ub = getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
Value step = getValueOrCreateConstantIndexOp(rewriter, loc, tileSize);
auto loop =
rewriter.create<scf::ForOp>(loc, lb, ub, step, destinationTensors,
[](OpBuilder &bodyBuilder, Location bodyLoc,
Value iv, ValueRange /*iterArgs*/) {});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPointToEnd(loop.getBody());
destinationTensors = loop.getRegionIterArgs();
}
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(yieldTiledValuesFn(rewriter, loc, ivs, destinationTensors,
tiledResults, resultOffsets, resultSizes))) {
return rewriter.notifyMatchFailure(
loc, "failed to generate inner tile loop body");
}
if (loops.empty())
return success();
assert(tiledResults.size() == destinationTensors.size() &&
"Number of results of body should be equal to number of iter args");
// 6. Yield all the results of the tiled operation.
SmallVector<Value> yieldedValues;
for (auto [tiledValue, destinationTensor, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, destinationTensors, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
auto insertSlice = rewriter.create<tensor::InsertSliceOp>(
loc, tiledValue, destinationTensor, resultOffset, resultSize,
resultStride);
yieldedValues.push_back(insertSlice);
}
rewriter.create<scf::YieldOp>(loc, yieldedValues);
// Add the scf.yield operations for all the outer loops.
for (auto [outerLoop, innerLoop] :
llvm::zip_equal(MutableArrayRef(loops).drop_back(),
MutableArrayRef(loops).drop_front())) {
rewriter.setInsertionPointToEnd(
cast<scf::ForOp>(outerLoop.getOperation()).getBody());
rewriter.create<scf::YieldOp>(outerLoop.getLoc(), innerLoop->getResults());
}
return success();
}
/// Generate the tile-loop nest using `scf.forall` operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `mappingVector` is the mapping attributes to use for loop construction.
/// Can be empty.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNestUsingForallOp(
RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes, ArrayRef<Attribute> mappingVector,
ValueRange destinationTensors, YieldTiledValuesFn tiledBodyFn,
SmallVector<LoopLikeOpInterface> &loops) {
SmallVector<OpFoldResult> lbs, ubs, steps;
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == tileSizes.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(rewriter);
SmallVector<OpFoldResult> offsets(loopRanges.size()),
sizes(loopRanges.size());
for (auto [tileSize, loopRange] : llvm::zip_equal(tileSizes, loopRanges)) {
if (isConstantIntValue(tileSize, 0))
continue;
lbs.push_back(loopRange.offset);
ubs.push_back(loopRange.size);
steps.push_back(tileSize);
}
assert(!lbs.empty() && "Expected at least one loop range");
std::optional<ArrayAttr> mappingAttr;
if (!mappingVector.empty())
mappingAttr = rewriter.getArrayAttr(mappingVector);
auto forallOp = rewriter.create<scf::ForallOp>(
loc, lbs, ubs, steps, destinationTensors, mappingAttr);
loops.push_back(forallOp);
rewriter.setInsertionPoint(forallOp.getTerminator());
destinationTensors = forallOp.getRegionOutArgs();
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(tiledBodyFn(rewriter, loc, forallOp.getInductionVars(),
destinationTensors, tiledResults, resultOffsets,
resultSizes)))
return rewriter.notifyMatchFailure(loc, "failed to generate loop body");
rewriter.setInsertionPointToEnd(forallOp.getTerminator().getBody());
for (auto [tiledValue, destinationTensor, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, destinationTensors, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
rewriter.create<tensor::ParallelInsertSliceOp>(
loc, tiledValue, destinationTensor, resultOffset, resultSize,
resultStride);
}
return success();
}
/// Generate the tile-loop nest using the loop construct specifed in `options`.
/// - `options`: Tiling options specified.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNest(RewriterBase &rewriter, Location loc,
const scf::SCFTilingOptions &options,
ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes,
ValueRange destinationTensors,
YieldTiledValuesFn tiledBodyFn,
SmallVector<LoopLikeOpInterface> &loops) {
// If the tile sizes are all zero, no loops are generated. Just call the
// callback function to handle untiled case.
if (llvm::all_of(tileSizes, isZeroIndex)) {
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
return tiledBodyFn(rewriter, loc, ValueRange{}, destinationTensors,
tiledResults, resultOffsets, resultSizes);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForOp) {
return generateLoopNestUsingForOp(rewriter, loc, loopRanges, tileSizes,
destinationTensors, tiledBodyFn, loops);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForallOp) {
return generateLoopNestUsingForallOp(
rewriter, loc, loopRanges, tileSizes, options.mappingVector,
destinationTensors, tiledBodyFn, loops);
}
return rewriter.notifyMatchFailure(loc, "unhandled loop type");
}
/// Append the specified additional `newInitOperands` operands to the
/// loops existing `init` operands (or similar), and replace `loopOp` with
/// the new loop that has the additional init operands. The loop body of
/// this loop is moved over to the new loop. `yieldTiledValuesFn`
/// is called to get the new tiled values returned, and the offset
/// and sizes at which the tiled value is inserted into the
/// new region iter_args that correspond to the newly added init operands.
template <typename LoopType>
FailureOr<LoopLikeOpInterface>
yieldTiledValuesAndReplaceLoop(LoopType loopOp, RewriterBase &rewriter,
ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
return rewriter.notifyMatchFailure(loopOp, "unhandled loop type");
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for `scf.for`.
template <>
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop<scf::ForOp>(
scf::ForOp loopOp, RewriterBase &rewriter, ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = loopOp.getLoc();
rewriter.setInsertionPoint(loopOp);
auto inits = llvm::to_vector(loopOp.getInitArgs());
inits.append(newInitOperands.begin(), newInitOperands.end());
auto newLoop = rewriter.create<scf::ForOp>(
loc, loopOp.getLowerBound(), loopOp.getUpperBound(), loopOp.getStep(),
inits, [](OpBuilder &, Location, Value, ValueRange) {});
// Move the loop body to the new op.
Block *loopBody = loopOp.getBody();
Block *newLoopBody = newLoop.getBody();
rewriter.mergeBlocks(
loopBody, newLoopBody,
newLoopBody->getArguments().take_front(loopBody->getNumArguments()));
auto yieldOp = cast<scf::YieldOp>(newLoopBody->getTerminator());
rewriter.setInsertionPoint(yieldOp);
SmallVector<Value> tiledValues;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
ValueRange newRegionIterArgs =
newLoop.getRegionIterArgs().take_back(newInitOperands.size());
if (failed(yieldTiledValuesFn(rewriter, loc, newLoop.getInductionVar(),
newRegionIterArgs, tiledValues, resultOffsets,
resultSizes))) {
rewriter.eraseOp(newLoop);
return rewriter.notifyMatchFailure(loopOp, "failed to get tiled values");
}
SmallVector<Value> newYieldValues = llvm::to_vector(yieldOp.getOperands());
for (auto [tiledValue, regionIterArg, resultOffset, resultSize] :
llvm::zip_equal(tiledValues, newRegionIterArgs, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
Value insert = rewriter.create<tensor::InsertSliceOp>(
yieldOp->getLoc(), tiledValue, regionIterArg, resultOffset, resultSize,
resultStride);
newYieldValues.push_back(insert);
}
rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues);
rewriter.replaceOp(loopOp,
newLoop->getResults().take_front(loopOp.getNumResults()));
return cast<LoopLikeOpInterface>(newLoop.getOperation());
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for `scf.forall`
template <>
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop<scf::ForallOp>(
scf::ForallOp loopOp, RewriterBase &rewriter, ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = loopOp.getLoc();
rewriter.setInsertionPoint(loopOp);
auto inits = llvm::to_vector(loopOp.getOutputs());
inits.append(newInitOperands.begin(), newInitOperands.end());
auto newLoop = rewriter.create<scf::ForallOp>(
loc, loopOp.getMixedLowerBound(), loopOp.getMixedUpperBound(),
loopOp.getMixedStep(), inits, loopOp.getMapping(),
[](OpBuilder &, Location, ValueRange) {});
// Move the region of the current block to the newly created op.
Block *loopBody = loopOp.getBody();
Block *newLoopBody = newLoop.getBody();
rewriter.mergeBlocks(
loopBody, newLoopBody,
newLoopBody->getArguments().take_front(loopBody->getNumArguments()));
auto terminator = cast<scf::InParallelOp>(newLoopBody->getTerminator());
rewriter.setInsertionPoint(terminator);
SmallVector<Value> tiledValues;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
ValueRange regionIterArgs =
newLoop.getRegionIterArgs().take_back(newInitOperands.size());
if (failed(yieldTiledValuesFn(rewriter, loc, newLoop.getInductionVars(),
regionIterArgs, tiledValues, resultOffsets,
resultSizes))) {
rewriter.eraseOp(newLoop);
return rewriter.notifyMatchFailure(loopOp,
"failed to get yielded tiled values");
}
// Update the terminator.
rewriter.setInsertionPointToEnd(terminator.getBody());
for (auto [tiledValue, iterArg, resultOffset, resultSize] : llvm::zip_equal(
tiledValues, regionIterArgs, resultOffsets, resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
rewriter.create<tensor::ParallelInsertSliceOp>(
terminator.getLoc(), tiledValue, iterArg, resultOffset, resultSize,
resultStride);
}
rewriter.replaceOp(loopOp,
newLoop->getResults().take_front(loopOp.getNumResults()));
return cast<LoopLikeOpInterface>(newLoop.getOperation());
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for
/// `LoopLikeOpInterface`, that just dispatches to the implementation for each
/// supported loop type.
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop(
LoopLikeOpInterface loopLikeOp, RewriterBase &rewriter,
ValueRange newInitOperands, YieldTiledValuesFn yieldTiledValuesFn) {
return TypeSwitch<Operation *, FailureOr<LoopLikeOpInterface>>(
loopLikeOp.getOperation())
.Case<scf::ForOp, scf::ForallOp>(
[&](auto loopOp) -> FailureOr<LoopLikeOpInterface> {
return yieldTiledValuesAndReplaceLoop(
loopOp, rewriter, newInitOperands, yieldTiledValuesFn);
})
.Default([&](auto loopOp) -> FailureOr<LoopLikeOpInterface> {
return rewriter.notifyMatchFailure(loopOp, "unhandled loop type");
});
}
/// Method to add new init values to a loop nest. Updates `loops` in-place with
/// new loops that use the `newInitValues`.
/// The outer-loops are updated to yield the new result values of the inner
/// loop. For the innermost loop, the call back `getNewYields` is invoked to get
/// the additional values to yield form the innermost loop.
static LogicalResult addInitOperandsToLoopNest(
RewriterBase &rewriter, MutableArrayRef<LoopLikeOpInterface> loops,
ValueRange newInitValues, YieldTiledValuesFn getNewTiledYieldsFn) {
SmallVector<scf::ForOp> newLoops;
if (loops.empty())
return success();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(loops.front());
SmallVector<Value> ivs;
for (auto &loop : loops.drop_back()) {
rewriter.setInsertionPoint(loop);
// if loops.size() > 1 we assume that scf.for is used for the loops.
auto forLoop = cast<scf::ForOp>(loop.getOperation());
// Create a new loop with the new init values for this loop.
SmallVector<Value> newInits = llvm::to_vector(forLoop.getInitArgs());
newInits.append(newInitValues.begin(), newInitValues.end());
auto newLoop = rewriter.create<scf::ForOp>(
forLoop.getLoc(), forLoop.getLowerBound(), forLoop.getUpperBound(),
forLoop.getStep(), newInits,
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {});
// Merge the body of the new loop with the body of the old loops.
SmallVector<Value> sourceBlockArgs;
sourceBlockArgs.push_back(newLoop.getInductionVar());
auto newRegionIterArgs = newLoop.getRegionIterArgs();
sourceBlockArgs.append(
newRegionIterArgs.begin(),
std::next(newRegionIterArgs.begin(), forLoop.getNumResults()));
rewriter.mergeBlocks(forLoop.getBody(), newLoop.getBody(), sourceBlockArgs);
rewriter.replaceOp(
forLoop, newLoop.getResults().take_front(forLoop.getNumResults()));
loop = newLoop;
ivs.push_back(newLoop.getInductionVar());
newInitValues = newLoop.getRegionIterArgs().take_back(newInitValues.size());
}
// Update the loop body of the innermost loop to get new yield values.
LoopLikeOpInterface innerMostLoop = loops.back();
FailureOr<LoopLikeOpInterface> newInnerMostLoop =
yieldTiledValuesAndReplaceLoop(innerMostLoop, rewriter, newInitValues,
getNewTiledYieldsFn);
if (failed(newInnerMostLoop))
return innerMostLoop.emitOpError("failed to return additional yields");
loops.back() = newInnerMostLoop.value();
// Make all other loops except the innermost loops yield the values returned
// by the inner loop.
for (auto [outerLoop, innerLoop] :
llvm::zip_equal(loops.drop_back(), loops.drop_front())) {
// Again assume that all the outer loops are scf.for operations.
auto outerForLoop = cast<scf::ForOp>(outerLoop);
auto outerLoopYield =
cast<scf::YieldOp>(outerForLoop.getBody()->getTerminator());
SmallVector<Value> newYields =
llvm::to_vector(outerLoopYield.getOperands());
ValueRange additionalYields =
innerLoop->getResults().take_back(newInitValues.size());
newYields.append(additionalYields.begin(), additionalYields.end());
rewriter.setInsertionPoint(outerLoopYield);
rewriter.replaceOpWithNewOp<scf::YieldOp>(outerLoopYield, newYields);
}
return success();
}
/// Implementation of tiling transformation of `op` that implements the
/// `TilingInterface` using `scf.for` to iterate over the tiles.
FailureOr<scf::SCFTilingResult>
mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
const scf::SCFTilingOptions &options) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfter(op);
if (!options.tileSizeComputationFunction) {
return rewriter.notifyMatchFailure(
op, "missing tile size computation function");
}
// 1. Get the range of the loops that are represented by the operation.
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
size_t numLoops = iterationDomain.size();
// 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
// skips tiling a particular dimension. This convention is significantly
// simpler to handle instead of adjusting affine maps to account for missing
// dimensions.
SmallVector<OpFoldResult> tileSizes =
options.tileSizeComputationFunction(rewriter, op);
if (tileSizes.size() < iterationDomain.size()) {
auto zero = rewriter.getIndexAttr(0);
tileSizes.append(numLoops - tileSizes.size(), zero);
}
// 3. If there is an interchange specified, permute the iteration domain and
// the tile sizes.
SmallVector<int64_t> interchangeVector;
if (!options.interchangeVector.empty()) {
interchangeVector = fillInterchangeVector(options.interchangeVector,
iterationDomain.size());
}
if (!interchangeVector.empty()) {
if (!isPermutationVector(interchangeVector)) {
return rewriter.notifyMatchFailure(
op, "invalid intechange vector, not a permutation of the entire "
"iteration space");
}
applyPermutationToVector(iterationDomain, interchangeVector);
applyPermutationToVector(tileSizes, interchangeVector);
}
FailureOr<TilingResult> tilingResult;
// 4. Define the lambda function used later to generate the body of the
// innermost tiled loop.
YieldTiledValuesFn innerYieldTiledValuesFn =
[&](RewriterBase &rewriter, Location loc, ValueRange ivs,
ValueRange regionIterArgs, SmallVector<Value> &tiledResults,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)
-> LogicalResult {
// 4a. Compute the `offsets` and `sizes` to use for tiling.
SmallVector<OpFoldResult> offsets, sizes;
{
int materializedLoopNum = 0;
for (auto [tileSize, loopRange] :
llvm::zip_equal(tileSizes, iterationDomain)) {
if (isConstantIntValue(tileSize, 0)) {
offsets.push_back(loopRange.offset);
sizes.push_back(loopRange.size);
continue;
}
Value iv = ivs[materializedLoopNum++];
offsets.push_back(iv);
sizes.push_back(
getBoundedTileSize(rewriter, loc, loopRange, iv, tileSize));
}
}
// 4b. If interchange was provided, apply inverse of the interchange
// to get back the offsets/sizes in the order to be specified.
if (!interchangeVector.empty()) {
auto inversePermutation = invertPermutationVector(interchangeVector);
applyPermutationToVector(offsets, inversePermutation);
applyPermutationToVector(sizes, inversePermutation);
}
// 5. Generate the tiled implementation within the inner most loop.
// 5a. Clone the operation within the loop body.
auto clonedOp = cast<TilingInterface>(
cloneOpAndUpdateDestinationArgs(rewriter, op, regionIterArgs));
// 5b. Early return cloned op if tiling is not happening. We can not return
// the original op because it could lead to
// `rewriter.replaceOp(op, op->getResults())` and users would get crash.
if (llvm::all_of(tileSizes, isZeroIndex)) {
tiledResults.append(clonedOp->result_begin(), clonedOp->result_end());
tilingResult =
TilingResult{/*tiledOps=*/{clonedOp}, clonedOp->getResults()};
return success();
}
// 5c. Tile the cloned operation.
tilingResult = clonedOp.getTiledImplementation(rewriter, offsets, sizes);
if (failed(tilingResult)) {
rewriter.eraseOp(clonedOp);
return op.emitOpError("faild to tile operation");
}
// 5d. Delete the cloned operation.
rewriter.eraseOp(clonedOp);
// 5e. Compute the offsets at which the result values are to be inserted
// back into its destinations.
for (auto [index, tiledValue] :
llvm::enumerate(tilingResult->tiledValues)) {
tiledResults.push_back(tiledValue);
SmallVector<OpFoldResult> resultOffset, resultSize;
if (failed(op.getResultTilePosition(rewriter, index, offsets, sizes,
resultOffset, resultSize))) {
for (auto op : tilingResult->tiledOps) {
rewriter.eraseOp(op);
}
return rewriter.notifyMatchFailure(
op, "failed to get slice of result produced");
}
resultOffsets.emplace_back(std::move(resultOffset));
resultSizes.emplace_back(std::move(resultSize));
}
return success();
};
// 6. Find the destination tensors to use for the operation.
SmallVector<Value> destinationTensors;
if (failed(tensor::getOrCreateDestinations(rewriter, op.getLoc(), op,
destinationTensors))) {
return rewriter.notifyMatchFailure(op,
"unable to create destination tensors");
}
// 7. Generate the tiled loops nest using the callback defined above.
SmallVector<LoopLikeOpInterface> loops;
if (failed(generateLoopNest(rewriter, op.getLoc(), options, iterationDomain,
tileSizes, destinationTensors,
innerYieldTiledValuesFn, loops)))
return op.emitOpError("failed to generate tiling loops");
assert(succeeded(tilingResult) &&
"expected tiling result to be computed after loop generation");
// If loops are empty, the tiled op is used as the replacement for the untiled
// op.
if (loops.empty()) {
return scf::SCFTilingResult{tilingResult->tiledOps, loops,
tilingResult->tiledValues};
}
SmallVector<Value> replacements = llvm::map_to_vector(
loops.front()->getResults(), [](OpResult r) -> Value { return r; });
return scf::SCFTilingResult{tilingResult->tiledOps, loops, replacements};
}
FailureOr<scf::SCFReductionTilingResult>
mlir::scf::tileReductionUsingScf(RewriterBase &b,
PartialReductionOpInterface op,
ArrayRef<OpFoldResult> tileSizes) {
Location loc = op.getLoc();
// Ops implementing PartialReductionOpInterface are expected to implement
// TilingInterface.
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
auto tileSizesVector = llvm::to_vector(tileSizes);
if (tileSizesVector.size() < iterationDomain.size()) {
auto zero = b.getIndexAttr(0);
tileSizesVector.append(iterationDomain.size() - tileSizesVector.size(),
zero);
}
SmallVector<utils::IteratorType> iterators =
tilingInterfaceOp.getLoopIteratorTypes();
SmallVector<int> reductionDims;
for (auto [idx, iteratorType] :
llvm::enumerate(tilingInterfaceOp.getLoopIteratorTypes())) {
if (iteratorType == utils::IteratorType::reduction)
reductionDims.push_back(idx);
}
// 2. create the inital tensor value.
FailureOr<SmallVector<Value>> maybeInitTensors =
op.generateInitialTensorForPartialReduction(b, loc, tileSizesVector,
reductionDims);
if (failed(maybeInitTensors)) {
return b.notifyMatchFailure(op, "Failed to create initial tensors.");
}
SmallVector<Value> &initTensors = maybeInitTensors.value();
// 3. Define the callback to use for generating the inner most tile loop body.
SmallVector<Operation *> parallelTiledOps;
auto innerYieldTiledValuesFn =
[&](RewriterBase &rewriter, Location loc, ValueRange ivs,
ValueRange regionIterArgs, SmallVector<Value> &tiledResult,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)
-> LogicalResult {
SmallVector<OpFoldResult> offsets, sizes;
{
int materializedLoopNum = 0;
for (auto [tileSize, loopRange] :
llvm::zip_equal(tileSizesVector, iterationDomain)) {
if (isConstantIntValue(tileSize, 0)) {
offsets.push_back(loopRange.offset);
sizes.push_back(loopRange.size);
continue;
}
Value iv = ivs[materializedLoopNum++];
offsets.push_back(iv);
sizes.push_back(
getBoundedTileSize(rewriter, loc, loopRange, iv, tileSize));
}
}
// 4a. Clone the operation.
{
auto clonedOp = cast<PartialReductionOpInterface>(
cloneOpAndUpdateDestinationArgs(b, op, regionIterArgs));
// 4b. Tile the cloned operation.
FailureOr<TilingResult> partialTilingResult =
clonedOp.tileToPartialReduction(b, loc, regionIterArgs, offsets,
sizes, reductionDims);
if (failed(partialTilingResult)) {
return failure();
}
std::swap(parallelTiledOps, partialTilingResult->tiledOps);
std::swap(tiledResult, partialTilingResult->tiledValues);
// 4c. Delete the cloned operation.
b.eraseOp(clonedOp);
}
// 4d. Compute the offsets and sizes needed to insert the result of the
// tiled value back into destination before yielding the destination.
for (auto result : tiledResult) {
SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
resultOffsets.emplace_back(std::move(outOffsets));
SmallVector<OpFoldResult> outSizes;
for (size_t i = 0; i < offsets.size(); i++) {
outSizes.push_back(tensor::getMixedSize(b, loc, result, i));
}
resultSizes.emplace_back(std::move(outSizes));
}
return success();
};
// 5. Generate the tiled implementation using the destination tensors.
SmallVector<LoopLikeOpInterface> loops;
scf::SCFTilingOptions options;
options.setLoopType(scf::SCFTilingOptions::LoopType::ForOp);
if (failed(generateLoopNest(b, loc, options, iterationDomain, tileSizesVector,
initTensors, innerYieldTiledValuesFn, loops)))
return b.notifyMatchFailure(op, "failed to tile for parallel reduction");
SmallVector<Value> replacements = llvm::map_to_vector(
loops.front()->getResults(), [](OpResult r) -> Value { return r; });
// 5. Apply the merge reduction to combine all the partial values.
b.setInsertionPointAfter(*loops.begin());
FailureOr<MergeResult> mergeResult =
op.mergeReductions(b, loc, replacements, reductionDims);
if (failed(mergeResult)) {
return failure();
}
b.replaceOp(op, mergeResult->replacements);
SCFReductionTilingResult reductionTilingResult;
std::swap(reductionTilingResult.parallelTiledOps, parallelTiledOps);
std::swap(reductionTilingResult.mergeOps, mergeResult->mergeOps);
std::swap(reductionTilingResult.initialValues, initTensors);
std::swap(reductionTilingResult.loops, loops);
std::swap(reductionTilingResult.replacements, mergeResult->replacements);
return reductionTilingResult;
}
//===----------------------------------------------------------------------===//
// tileConsumerAndFuseProducersUsingSCF implementation.
//===----------------------------------------------------------------------===//
/// Return the untiled producer whose slice is used in a tiled consumer. The
/// method traverses the tile loop nest (`loops`) if needed, and returns the
/// `iter_args` of the outer most that is encountered. Traversing the iter_args
/// indicates that this is a destination operand of the consumer. If there was
/// no loop traversal needed, the second value of the returned tuple is empty.
static std::tuple<OpResult, std::optional<OpOperand *>>
getUntiledProducerFromSliceSource(OpOperand *source,
ArrayRef<LoopLikeOpInterface> loops) {
std::optional<OpOperand *> destinationIterArg;
auto loopIt = loops.rbegin();
while (auto iterArg = dyn_cast<BlockArgument>(source->get())) {
auto loop = *loopIt;
if (iterArg.getOwner()->getParentOp() != loop)
break;
source = loop.getTiedLoopInit(iterArg);
loopIt++;
}
if (loopIt == loops.rend())
destinationIterArg = source;
return {dyn_cast<OpResult>(source->get()), destinationIterArg};
}
/// Implementation of fusing producer of a single slice by computing the
/// slice of the producer in-place.
std::optional<scf::SCFFuseProducerOfSliceResult>
mlir::scf::tileAndFuseProducerOfSlice(
RewriterBase &rewriter, tensor::ExtractSliceOp candidateSliceOp,
MutableArrayRef<LoopLikeOpInterface> loops) {
// 1. Get the producer of the source (potentially walking through
// `iter_args` of nested `scf.for`)
auto [fusableProducer, destinationInitArg] =
getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable(),
loops);
if (!fusableProducer)
return std::nullopt;
unsigned resultNumber = fusableProducer.getResultNumber();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(candidateSliceOp);
// 2. Clone the fused producer
// 2a. Compute the destination operands to use for the cloned operation.
SmallVector<Value> origDestinationTensors, clonedOpDestinationTensors;
Operation *fusableProducerOp = fusableProducer.getOwner();
if (isa<DestinationStyleOpInterface>(fusableProducerOp) &&
failed(tensor::getOrCreateDestinations(
rewriter, fusableProducerOp->getLoc(), fusableProducerOp,
origDestinationTensors)))
return std::nullopt;
clonedOpDestinationTensors = origDestinationTensors;
if (destinationInitArg &&
isa<DestinationStyleOpInterface>(fusableProducerOp)) {
// 2b. If the producer is also destination style, then to maintain the
// destination passing style, update the destination of the producer to be
// the source of the slice.
clonedOpDestinationTensors[resultNumber] = candidateSliceOp.getSource();
}
// 2c. Clone the fused producer.
Operation *clonedProducerOp = cloneOpAndUpdateDestinationArgs(
rewriter, fusableProducerOp, clonedOpDestinationTensors);
// 2d. Update the source of the candidateSlice to be the cloned producer.
// Easier to just clone the slice with different source since replacements
// and DCE of cloned ops becomes easier
SmallVector<Value> candidateSliceOpOperands =
llvm::to_vector(candidateSliceOp->getOperands());
candidateSliceOpOperands[0] = clonedProducerOp->getResult(resultNumber);
tensor::ExtractSliceOp clonedCandidateSliceOp =
mlir::clone(rewriter, candidateSliceOp,
candidateSliceOp->getResultTypes(), candidateSliceOpOperands);
// 3. Generate the tiled implementation of the producer of the source
FailureOr<TilingResult> tileAndFuseResult =
tensor::replaceExtractSliceWithTiledProducer(
rewriter, clonedCandidateSliceOp,
clonedProducerOp->getResult(resultNumber));
if (failed(tileAndFuseResult))
return std::nullopt;
// Note: Do not delete the candidateSliceOp, since its passed in from the
// caller.
rewriter.replaceAllUsesWith(candidateSliceOp,
tileAndFuseResult->tiledValues[0]);
rewriter.eraseOp(clonedCandidateSliceOp);
rewriter.eraseOp(clonedProducerOp);
// 3. If the slice is for a destination operand, for example,
//
// ```mlir
// %0 = linalg.init
// %1 = linalg.fill .. outs(%0 : )
// %2 = scf.for .. iter_args(%arg0 = %1) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1 [..]
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
//
// the IR is currently
//
// ```
// %0 = linalg.init
// %1 = linalg.fill
// %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1[..]
// %5 = linalg.fill .. outs(%4 : )
// .. = linalg.matmul .. outs(%5 : )
// }
// }
// ```
//
// The untiled `linalg.fill` is still used as the `init_value` since it
// was originally a destination operand of the untiled `linalg.matmul`.
// When fusing an operand that is a destination operand, the iter_arg of
// the outer most loop should be changed to use the destination of the
// fused operation. With this the IR will be.
//
// ```
// %0 = linalg.init
// %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) {
// %2 = scf.for .. iter_args(%arg1 = %arg0) {
// %3 = tensor.extract_slice %arg1[..]
// %4 = linalg.fill .. outs(%3 : )
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
if (destinationInitArg &&
isa<DestinationStyleOpInterface>(fusableProducerOp) && !loops.empty()) {
loops.front()
->getOpOperands()[destinationInitArg.value()->getOperandNumber()]
.set(origDestinationTensors[resultNumber]);
}
return scf::SCFFuseProducerOfSliceResult{fusableProducer,
tileAndFuseResult->tiledValues[0],
tileAndFuseResult->tiledOps};
}
/// Reconstruct the fused producer from within the tiled-and-fused code.
LogicalResult mlir::scf::yieldReplacementForFusedProducer(
RewriterBase &rewriter, tensor::ExtractSliceOp sliceOp,
scf::SCFFuseProducerOfSliceResult fusedProducerInfo,
MutableArrayRef<LoopLikeOpInterface> loops,
ArrayRef<unsigned> yieldResultNumber) {
if (loops.empty())
return success();
Operation *originalOwner = fusedProducerInfo.origProducer.getOwner(),
*tiledOwner = fusedProducerInfo.tiledOps[0];
Location loc = originalOwner->getLoc();
// a. collect all init Value to be appended
SmallVector<unsigned> initNumberList =
yieldResultNumber.empty() ? llvm::to_vector(llvm::seq<unsigned>(
0, originalOwner->getNumResults()))
: llvm::to_vector(yieldResultNumber);
SmallVector<Value> initValueList;
for (const auto &resultNumber : initNumberList) {
FailureOr<Value> initValue = tensor::getOrCreateDestination(
rewriter, loc, originalOwner->getResult(resultNumber));
if (succeeded(initValue)) {
initValueList.push_back(initValue.value());
} else {
return failure();
}
}
YieldTiledValuesFn newYieldValuesFn =
[&](RewriterBase &innerRewriter, Location loc, ValueRange /*ivs*/,
ValueRange newRegionIterArgs, SmallVector<Value> &tiledResult,
SmallVector<SmallVector<OpFoldResult>> &tiledOffset,
SmallVector<SmallVector<OpFoldResult>> &tiledSizes) -> LogicalResult {
OpBuilder::InsertionGuard g(innerRewriter);
// get sliceOp tile information
SmallVector<OpFoldResult> sliceOffset = sliceOp.getMixedOffsets(),
sliceSizes = sliceOp.getMixedSizes();
// expect all strides of sliceOp being 1
if (llvm::any_of(sliceOp.getMixedStrides(), [](OpFoldResult ofr) {
return !isConstantIntValue(ofr, 1);
}))
return failure();
unsigned sliceResultNumber =
fusedProducerInfo.origProducer.getResultNumber();
auto tilableOp = cast<TilingInterface>(originalOwner);
// b. get iterDomain Offset and Sizes based on sliceOp tile
SmallVector<OpFoldResult> iterDomainOffset, iterDomainSizes;
// skip tensor.pack/unpack/pad, which expects single opResult
if (tilableOp->getNumResults() > 1 &&
failed(tilableOp.getIterationDomainTileFromResultTile(
rewriter, sliceResultNumber, sliceOffset, sliceSizes,
iterDomainOffset, iterDomainSizes))) {
// In theory, it is unnecessary to raise an error here. Actually although
// it fails to reconstruct the result tensor, it should not broke current
// fusion anyway. The reason why we must return failure currently is that
// the callback function `newYieldValuesFn` will be called after new init
// operand(s) has already been appended. It will take more refactoring to
// make sure the init operands are added consistently in the future. For
// more details, please refer to:
// https://github.com/llvm/llvm-project/pull/93144#discussion_r1643760814
return failure();
}
// c. calculate offsets and sizes info of all OpResults respectively based
// on iteration Domain Tile
SmallVector<SmallVector<OpFoldResult>> offsetList, sizesList;
for (const auto &resultNumber : initNumberList) {
if (resultNumber == sliceResultNumber) {
offsetList.push_back(sliceOffset);
sizesList.push_back(sliceSizes);
} else {
assert(!iterDomainOffset.empty() && !iterDomainSizes.empty());
// infer result tile according to the iteration domain tile
SmallVector<OpFoldResult> offset, sizes;
if (failed(tilableOp.getResultTilePosition(
rewriter, resultNumber, iterDomainOffset, iterDomainSizes,
offset, sizes))) {
return failure();
}
offsetList.push_back(offset);
sizesList.push_back(sizes);
}
}
// d. create `extract_slice` for `iter_args` for DPS operation if necessary
if (auto tiledDestStyleOp =
dyn_cast<DestinationStyleOpInterface>(tiledOwner)) {
rewriter.setInsertionPoint(tiledDestStyleOp);
for (const auto &&[index, newRegionArg] :
llvm::enumerate(newRegionIterArgs)) {
auto destSlice = rewriter.create<tensor::ExtractSliceOp>(
loc, newRegionArg, offsetList[index], sizesList[index],
SmallVector<OpFoldResult>(offsetList[index].size(),
rewriter.getIndexAttr(1)));
unsigned resultNumber = initNumberList[index];
rewriter.modifyOpInPlace(tiledDestStyleOp, [&]() {
tiledDestStyleOp.getDpsInitsMutable()[resultNumber].set(destSlice);
});
}
}
// e. prepare tiled offset and sizes for later `insert_slice` creation by
// caller
Block *block = rewriter.getInsertionPoint()->getBlock();
rewriter.setInsertionPoint(block->getTerminator());
for (const auto &&[index, resultNumber] : llvm::enumerate(initNumberList)) {
tiledResult.push_back(tiledOwner->getResult(resultNumber));
tiledOffset.emplace_back(offsetList[index]);
tiledSizes.emplace_back(sizesList[index]);
}
return success();
};
return addInitOperandsToLoopNest(rewriter, loops, initValueList,
newYieldValuesFn);
}
/// Implementation of tile consumer and fuse producer greedily.
FailureOr<scf::SCFTileAndFuseResult>
mlir::scf::tileConsumerAndFuseProducersUsingSCF(
RewriterBase &rewriter, TilingInterface consumer,
const scf::SCFTileAndFuseOptions &options) {
// This transformation is only valid for ops that return values (i.e. not
// valid to use with operations that have memref operands).
if (!consumer->getNumResults()) {
return rewriter.notifyMatchFailure(
consumer, "invalid pattern for op with no results");
}
// 1. First tile the consumer.
SetVector<Operation *> fusedProducers, tiledAndFusedOps;
llvm::SmallDenseMap<Value, size_t> origProducerToLoopResultNum;
FailureOr<scf::SCFTilingResult> tilingResult =
tileUsingSCF(rewriter, consumer, options.tilingOptions);
if (failed(tilingResult))
return rewriter.notifyMatchFailure(consumer, "failed to tile consumer");
for (auto *tiledOp : tilingResult->tiledOps)
tiledAndFusedOps.insert(tiledOp);
// If there are no loops generated, fusion is immaterial.
auto &loops = tilingResult->loops;
if (loops.empty()) {
DenseMap<Value, Value> replacements;
for (auto [origVal, replacement] :
llvm::zip_equal(consumer->getResults(), tilingResult->replacements)) {
replacements[origVal] = replacement;
}
return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, loops,
replacements};
}
// To keep track of replacements for now just record the map from the original
// untiled value to the result number of the for loop. Since the loop gets
// potentially replaced during fusion, keeping the value directly wont work.
DenseMap<Value, size_t> origValToResultNumber;
for (auto [index, result] : llvm::enumerate(consumer->getResults())) {
origValToResultNumber[result] = index;
}
// 2. Typically, the operands of the tiled operation are slices of the
// operands of the untiled operation. These are expressed in IR using
// `tensor.extract_slice` operations with source being the operands of the
// untiled operation. Create a worklist of these `tensor.extract_slice`
// operations. If the producers of the source of the `tensor.extract_slice`
// can be tiled such that the tiled value is generated in-place, that
// effectively tiles + fuses the operations.
auto addCandidateSlices = [](Operation *fusedOp,
std::deque<tensor::ExtractSliceOp> &candidates) {
for (Value operand : fusedOp->getOperands())
if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
candidates.push_back(sliceOp);
};
std::deque<tensor::ExtractSliceOp> candidates;
addCandidateSlices(tiledAndFusedOps.back(), candidates);
OpBuilder::InsertionGuard g(rewriter);
while (!candidates.empty()) {
// Traverse the slices in BFS fashion.
tensor::ExtractSliceOp candidateSliceOp = candidates.front();
candidates.pop_front();
// Find the original producer of the slice.
auto [fusableProducer, destinationInitArg] =
getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable(),
loops);
if (!fusableProducer)
continue;
auto [fuseSlice, yieldReplacement] = options.fusionControlFn(
candidateSliceOp, fusableProducer, destinationInitArg.has_value());
if (!fuseSlice)
continue;
// The operands of the fused producer might themselved be slices of
// values produced by operations that implement the `TilingInterface`.
// Add these operations to the worklist.
std::optional<scf::SCFFuseProducerOfSliceResult> fusedResult =
tileAndFuseProducerOfSlice(rewriter, candidateSliceOp, loops);
if (!fusedResult)
continue;
if (yieldReplacement) {
// Reconstruct and yield all opResult of fusableProducerOp by default. The
// caller can specific which one to yield by designating optional argument
// named `yieldResultNumber` of `yieldReplacementForFusedProducer`.
Operation *fusableProducerOp = fusableProducer.getOwner();
if (failed(yieldReplacementForFusedProducer(
rewriter, candidateSliceOp, fusedResult.value(), loops))) {
return rewriter.notifyMatchFailure(
fusableProducerOp, "failed to replacement value for this "
"operation from within the tiled loop");
}
for (auto [index, result] :
llvm::enumerate(fusableProducerOp->getResults())) {
origValToResultNumber[result] = loops.front()->getNumResults() -
fusableProducerOp->getNumResults() +
index;
}
}
if (Operation *tiledAndFusedOp =
fusedResult->tiledAndFusedProducer.getDefiningOp()) {
fusedProducers.insert(fusedResult->origProducer.getDefiningOp());
tiledAndFusedOps.insert(tiledAndFusedOp);
addCandidateSlices(tiledAndFusedOp, candidates);
}
}
DenseMap<Value, Value> replacements;
for (auto [origVal, resultNumber] : origValToResultNumber) {
replacements[origVal] = loops.front()->getResult(resultNumber);
}
return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, loops,
replacements};
}
//===----------------------------------------------------------------------===//
// tileAndFuseConsumerUsingSCF implementation.
//===----------------------------------------------------------------------===//
/// A utility function that checks whether the only use of the result of a
/// tensor.insert_slice op is in a scf.yield op.
static LogicalResult
checkAssumptionForFusingConsumer(tensor::InsertSliceOp candidateSliceOp) {
Value result = candidateSliceOp.getResult();
Value::use_range uses = result.getUses();
if (!llvm::hasSingleElement(uses)) {
LLVM_DEBUG(llvm::dbgs() << "Too many uses of the candidate slice op\n");
return failure();
}
OpOperand &operandUse = (*uses.begin());
Operation *userOp = operandUse.getOwner();
if (!isa<scf::YieldOp>(userOp)) {
LLVM_DEBUG(llvm::dbgs()
<< "Expected scf.yield to be the only user, but got -> "
<< (*userOp));
return failure();
}
if (result.getDefiningOp()->getBlock() != userOp->getBlock()) {
LLVM_DEBUG(llvm::dbgs() << "Expected tensor.insert_slice and scf.yield to "
"be in the same block\n");
return failure();
}
return success();
}
/// Fetches the OpOperand of the only user (and use) of the value `val` which
/// implements `TilingInterface` and `DestinationStyleOpInterface`. Returns
/// failure otherwise.
static FailureOr<OpOperand *> getConsumerFromUses(Value val,
Block *containingOpBlock) {
// Step 1. Check that the value has exactly one use.
if (!llvm::hasSingleElement(val.getUses()))
return failure();
// Step 2. Get uses.
OpOperand &operand = (*val.getUses().begin());
Operation *consumerOp = operand.getOwner();
// TODO: We have to init result of consumer before scf.for, use
// DestinationStyleOpInterface to get result shape from init for now.
// Add support for other op such as op has InferTypeOpInterface.
if (!isa<TilingInterface>(consumerOp) ||
!isa<DestinationStyleOpInterface>(consumerOp))
return failure();
if (containingOpBlock != consumerOp->getBlock())
return failure();
return &operand;
}
/// Fetch the untiled consumer of a scf.for's result which is yielded by a
/// tensor.insert_slice. This function makes the following assumptions :
/// 1. tensor.insert_slice has scf.yield as its only user.
/// 2. scf.for's corresponding result has only one use.
static FailureOr<OpOperand *>
getUntiledConsumerFromSlice(tensor::InsertSliceOp candidateSliceOp) {
if (failed(checkAssumptionForFusingConsumer(candidateSliceOp)))
return failure();
Value sliceResult = candidateSliceOp.getResult();
// Step 1. Fetch the corresponding output.
OpOperand &yieldOpOperand = (*sliceResult.getUses().begin());
unsigned resultNumber = yieldOpOperand.getOperandNumber();
// Step 2. Check containing op is scf.for.
Operation *containingOp = candidateSliceOp->getParentOp();
auto forOp = dyn_cast<scf::ForOp>(containingOp);
if (!forOp)
return failure();
Value resultingValue = forOp->getResult(resultNumber);
return getConsumerFromUses(resultingValue, containingOp->getBlock());
}
/// Fetch the first untiled consumer of a scf.forall's result which is yielded
/// by a tensor.parallel_insert_slice.
static FailureOr<OpOperand *>
getUntiledConsumerFromSlice(tensor::ParallelInsertSliceOp candidateSliceOp) {
// Step 1. Fetch the corresponding output
Value sliceDest = candidateSliceOp.getDest();
auto iterArg = dyn_cast<BlockArgument>(sliceDest);
if (!iterArg)
return failure();
Operation *containingOp = iterArg.getOwner()->getParentOp();
if (containingOp != candidateSliceOp->getParentOp()->getParentOp())
return failure();
// Step 2. Check that the containing op is scf.forall.
auto forallOp = dyn_cast<scf::ForallOp>(containingOp);
if (!forallOp)
return failure();
Value resultingValue =
forallOp.getTiedOpResult(forallOp.getTiedOpOperand(iterArg));
return getConsumerFromUses(resultingValue, containingOp->getBlock());
}
/// This utility currently checks whether the loop either :-
/// 1. Yields exactly one result.
/// 2. Has consumer op as its first user and other users to be in the same
/// containing block as that of consumer op's. Currently we clone the loop op
/// right before the consumer op in order to maintain a valid def-use chain.
/// This utility thus helps ensuring that no invalid IR is formed due to the
/// same.
static LogicalResult checkAssumptionForLoop(Operation *loopOp,
Operation *consumerOp) {
// Check if the loop op yields one result.
if (loopOp->getNumResults() == 1)
return success();
// Check if the consumerOp is the first user of the loopOp and if other users
// are in the same containing block as that of consumer op's.
Block *parentBlock = consumerOp->getBlock();
for (Operation *userOp : loopOp->getUsers()) {
if (userOp == consumerOp)
continue;
if (parentBlock != userOp->getBlock() ||
!consumerOp->isBeforeInBlock(userOp))
return failure();
}
return success();
}
/// A utility to fetch an untiled consumer of
/// tensor.insert_slice/tensor.parallel_insert_slice.
static FailureOr<OpOperand *> getUntiledConsumerFromSlice(Operation *sliceOp) {
if (auto insertSlice = dyn_cast<tensor::InsertSliceOp>(sliceOp)) {
return getUntiledConsumerFromSlice(insertSlice);
} else if (auto parallelInsertSlice =
dyn_cast<tensor::ParallelInsertSliceOp>(sliceOp)) {
return getUntiledConsumerFromSlice(parallelInsertSlice);
} else {
return failure();
}
}
/// After fusing consumer into scf.for we want to modify the scf.yield operation
/// to reflect the same by returning the values yielded by the tiled consumer.
static void
fixTerminatorSCFYield(RewriterBase &rewriter, scf::ForOp newForOp,
TilingResult &tilingResult,
ArrayRef<SmallVector<OpFoldResult>> &resultOffsets,
ArrayRef<SmallVector<OpFoldResult>> &resultSizes,
ArrayRef<BlockArgument> bbArgs) {
scf::YieldOp oldTerminatorOp =
cast<scf::YieldOp>(newForOp.getBody()->getTerminator());
unsigned totalOldResults = oldTerminatorOp->getNumResults();
unsigned totalTiledResults = tilingResult.tiledOps[0]->getNumResults();
SmallVector<Value> newYieldOperands;
newYieldOperands.reserve(totalOldResults + totalTiledResults);
for (auto oldResult : oldTerminatorOp.getResults()) {
newYieldOperands.push_back(oldResult);
}
rewriter.setInsertionPointAfter(oldTerminatorOp);
Location loc = newForOp.getLoc();
for (auto [tiledResult, bbArg, resultOffset, resultSize] :
llvm::zip_equal(tilingResult.tiledOps[0]->getResults(), bbArgs,
resultOffsets, resultSizes)) {
SmallVector<OpFoldResult> strides(resultOffset.size(),
rewriter.getIndexAttr(1));
Value newInsertSliceOp = rewriter.create<tensor::InsertSliceOp>(
loc, tiledResult, bbArg, resultOffset, resultSize, strides);
newYieldOperands.push_back(newInsertSliceOp);
}
rewriter.create<scf::YieldOp>(loc, newYieldOperands);
rewriter.eraseOp(oldTerminatorOp);
}
/// After fusing consumer into scf.forall we want to yield each of the resulting
/// values by the tiled consumer within scf.forall.in_parallel region.
static void
fixTerminatorSCFInParallel(RewriterBase &rewriter, scf::ForallOp newForallOp,
SmallVector<Value> tiledResults,
ArrayRef<SmallVector<OpFoldResult>> &resultOffsets,
ArrayRef<SmallVector<OpFoldResult>> &resultSizes,
ArrayRef<BlockArgument> bbArgs) {
scf::InParallelOp newTerminatorOp = newForallOp.getTerminator();
rewriter.setInsertionPointToStart(newTerminatorOp.getBody());
Location firstYieldOpLoc =
(*(newTerminatorOp.getYieldingOps().begin())).getLoc();
for (auto [tiledResult, bbArg, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, bbArgs, resultOffsets, resultSizes)) {
SmallVector<OpFoldResult> strides(resultOffset.size(),
rewriter.getIndexAttr(1));
rewriter.create<tensor::ParallelInsertSliceOp>(
firstYieldOpLoc, tiledResult, bbArg, resultOffset, resultSize, strides);
}
}
/// Implementation of fusing consumer of a single slice by computing the
/// slice of the consumer in-place for scf loop.
FailureOr<scf::SCFFuseConsumerOfSliceResult>
mlir::scf::tileAndFuseConsumerOfSlice(RewriterBase &rewriter,
Operation *candidateSliceOp) {
if (!isa<tensor::InsertSliceOp, tensor::ParallelInsertSliceOp>(
candidateSliceOp))
return failure();
bool isInsertSliceOp = isa<tensor::InsertSliceOp>(candidateSliceOp);
// 1. Get the consumer of scf.for for the result yielded by
// tensor.insert_slice/parallel_insert_slice.
FailureOr<OpOperand *> maybeConsumerOpOperand =
getUntiledConsumerFromSlice(candidateSliceOp);
if (failed(maybeConsumerOpOperand)) {
return rewriter.notifyMatchFailure(candidateSliceOp,
"could not fetch consumer to fuse");
}
OpOperand *consumerOpOperand = *maybeConsumerOpOperand;
Operation *consumerOp = consumerOpOperand->getOwner();
unsigned operandNumber = consumerOpOperand->getOperandNumber();
unsigned resultNumber = 0;
if (auto producerResult = dyn_cast<OpResult>(consumerOpOperand->get())) {
resultNumber = producerResult.getResultNumber();
} else {
return rewriter.notifyMatchFailure(
consumerOp, "consumer op's operand doesn't seem to be an OpResult");
}
Operation *oldLoopOp = nullptr;
SmallVector<Value> newOuts;
Block *oldLoopBody = nullptr;
unsigned initSize = 0;
unsigned rank = 1;
if (isInsertSliceOp) {
auto forOp = candidateSliceOp->getParentOfType<scf::ForOp>();
oldLoopOp = forOp;
llvm::append_range(newOuts, forOp.getInits());
oldLoopBody = forOp.getBody();
initSize = forOp.getInits().size();
} else {
auto forallOp = candidateSliceOp->getParentOfType<scf::ForallOp>();
oldLoopOp = forallOp;
llvm::append_range(newOuts, forallOp.getOutputs());
oldLoopBody = forallOp.getBody();
initSize = forallOp.getOutputs().size();
rank = forallOp.getRank();
}
if (failed(checkAssumptionForLoop(oldLoopOp, consumerOp))) {
return rewriter.notifyMatchFailure(
oldLoopOp, "containing loop op should either yield just one value or "
"have the consumer op as its first user");
}
OpBuilder::InsertionGuard g(rewriter);
// 2. Check consumer is not using scf loop's output as init.
auto dstOp = cast<DestinationStyleOpInterface>(consumerOp);
SmallVector<Value> dpsInits =
llvm::map_to_vector(dstOp.getDpsInits(), [](Value v) { return v; });
if (llvm::is_contained(dpsInits, oldLoopOp->getResult(resultNumber))) {
return rewriter.notifyMatchFailure(
consumerOp,
"consumer op taking the result of scf.for as init is not supported");
}
newOuts.append(dpsInits);
Location loc = oldLoopOp->getLoc();
// 3. Create new scf loop op.
rewriter.setInsertionPoint(consumerOp);
Operation *newLoopOp = nullptr;
Block *newLoopBody = nullptr;
if (isInsertSliceOp) {
auto forOp = cast<scf::ForOp>(oldLoopOp);
auto newForOp = rewriter.create<scf::ForOp>(loc, forOp.getLowerBound(),
forOp.getUpperBound(),
forOp.getStep(), newOuts);
newLoopOp = newForOp;
newLoopBody = newForOp.getBody();
} else {
auto forallOp = cast<scf::ForallOp>(oldLoopOp);
auto newForallOp = rewriter.create<scf::ForallOp>(
loc, forallOp.getMixedLowerBound(), forallOp.getMixedUpperBound(),
forallOp.getMixedStep(), newOuts, forallOp.getMapping());
newLoopOp = newForallOp;
rewriter.eraseOp(newForallOp.getTerminator());
newLoopBody = newForallOp.getBody();
}
// 4. Move the loop body to the new op.
unsigned oldNumArguments = oldLoopBody->getNumArguments();
rewriter.mergeBlocks(oldLoopBody, newLoopBody,
newLoopBody->getArguments().take_front(oldNumArguments));
// 5. Set insertion point before terminator op of the loop and create a new
// tensor.insert_slice. In the scf.for case this is a clone of the
// candidateSliceOp whereas in the scf.forall case this is created from the
// operands of tensor.parallel_insert_slice.
tensor::InsertSliceOp clonedInsertSliceOp;
if (auto sliceOp =
dyn_cast<tensor::ParallelInsertSliceOp>(candidateSliceOp)) {
auto newForallOp = cast<scf::ForallOp>(newLoopOp);
rewriter.setInsertionPoint(newForallOp.getTerminator());
clonedInsertSliceOp = rewriter.create<tensor::InsertSliceOp>(
loc, sliceOp.getSource(), sliceOp.getDest(), sliceOp.getMixedOffsets(),
sliceOp.getMixedSizes(), sliceOp.getMixedStrides());
} else {
rewriter.setInsertionPoint(candidateSliceOp);
clonedInsertSliceOp =
cast<tensor::InsertSliceOp>(rewriter.clone(*candidateSliceOp));
}
// 6.a. Clone consumer op.
auto newForOpBlockArgsForConsumerDest =
newLoopBody->getArguments().drop_front(oldNumArguments);
auto clonedConsumerOp = cast<TilingInterface>(cloneOpAndUpdateDestinationArgs(
rewriter, consumerOp, newForOpBlockArgsForConsumerDest));
// 6.b. Replace all uses of the loop result with the result of the cloned
// tensor.insert_slice.
OpOperand &operandToReplace = clonedConsumerOp->getOpOperand(operandNumber);
rewriter.modifyOpInPlace(clonedConsumerOp, [&]() {
operandToReplace.set(clonedInsertSliceOp.getResult());
});
// 7 - Perform tiling of the cloned consumer and replace the operand at
// `operandNumber` with the source of the cloned tensor.insert_slice op.
auto ossSliceOp =
cast<OffsetSizeAndStrideOpInterface>(clonedInsertSliceOp.getOperation());
FailureOr<TilingResult> tileAndFuseResult =
tensor::replaceInsertSliceWithTiledConsumer(
rewriter, ossSliceOp, clonedConsumerOp->getOpOperand(operandNumber));
if (failed(tileAndFuseResult)) {
return failure();
}
rewriter.replaceAllUsesWith(
tileAndFuseResult->tiledOps[0]->getOperand(operandNumber),
clonedInsertSliceOp.getSource());
// 8 - Extract offset/sizes/strides required to create the
// tensor.insert_slice/parallel_insert_slice for each result of the consumer.
SmallVector<OpFoldResult> offsets = ossSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = ossSliceOp.getMixedSizes();
SmallVector<OpFoldResult> strides = ossSliceOp.getMixedStrides();
// 9. Check all insert stride is 1.
if (llvm::any_of(strides, [](OpFoldResult stride) {
return !isConstantIntValue(stride, 1);
})) {
return rewriter.notifyMatchFailure(
candidateSliceOp, "containingOp's result yield with stride");
}
// 10. Try to get iter domain position from input position.
SmallVector<OpFoldResult> iterDomainOffsets, iterDomainSizes;
if (failed(clonedConsumerOp.getIterationDomainTileFromOperandTile(
rewriter, operandNumber, offsets, sizes, iterDomainOffsets,
iterDomainSizes))) {
return rewriter.notifyMatchFailure(
clonedConsumerOp, "can't get iter domain position from input position");
}
// 11. Try to fetch the offset and size for all results of the cloned
// consumer. This would then be used to form the corresponding
// tensor.insert_slice/parallel_insert_slice later.
unsigned totalNumResultsOfConsumer = clonedConsumerOp->getNumResults();
SmallVector<SmallVector<OpFoldResult>> resultOffsets(
totalNumResultsOfConsumer);
SmallVector<SmallVector<OpFoldResult>> resultSizes(totalNumResultsOfConsumer);
for (auto [idx, v] : llvm::enumerate(clonedConsumerOp->getResults())) {
if (failed(clonedConsumerOp.getResultTilePosition(
rewriter, idx, iterDomainOffsets, iterDomainSizes,
resultOffsets[idx], resultSizes[idx]))) {
return rewriter.notifyMatchFailure(
clonedConsumerOp,
"can't get result domain position from iter domain position");
}
}
auto arrayRefOffsets = ArrayRef<SmallVector<OpFoldResult>>(resultOffsets);
auto arrayRefSizes = ArrayRef<SmallVector<OpFoldResult>>(resultSizes);
if (isInsertSliceOp) {
auto newForOp = cast<scf::ForOp>(newLoopOp);
fixTerminatorSCFYield(
rewriter, newForOp, *tileAndFuseResult, arrayRefOffsets, arrayRefSizes,
newForOp.getBody()->getArguments().drop_front(1 + initSize));
} else {
auto newForallOp = cast<scf::ForallOp>(newLoopOp);
fixTerminatorSCFInParallel(
rewriter, newForallOp, tileAndFuseResult->tiledOps[0]->getResults(),
arrayRefOffsets, arrayRefSizes,
newForallOp.getBody()->getArguments().drop_front(rank + initSize));
}
// 12. Replace the result of scf loop and consumer op with new loop's results.
for (auto &&[oldResult, newResult] :
llvm::zip_first(oldLoopOp->getResults(), newLoopOp->getResults())) {
rewriter.replaceAllUsesWith(oldResult, newResult);
}
for (auto &&[oldResult, newResult] :
llvm::zip(consumerOp->getResults(),
newLoopOp->getResults().drop_front(initSize))) {
rewriter.replaceAllUsesWith(oldResult, newResult);
}
// 13. Need to erase the old scf loop and the cloned consumer op.
rewriter.eraseOp(oldLoopOp);
rewriter.eraseOp(clonedConsumerOp);
return scf::SCFFuseConsumerOfSliceResult{
consumerOpOperand,
&(tileAndFuseResult->tiledOps[0]->getOpOperand(operandNumber)),
tileAndFuseResult->tiledOps};
}
//===----------------------------------------------------------------------===//
// lowerToLoopsUsingSCFForOp implementation.
//===----------------------------------------------------------------------===//
FailureOr<SmallVector<scf::ForOp>>
mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter,
TilingInterface op) {
// TODO: Handle cases where the op has results if needed.
if (op->getNumResults() > 0) {
return rewriter.notifyMatchFailure(
op, "unable to lower to loops operations with return values");
}
SmallVector<Range> domain = op.getIterationDomain(rewriter);
SmallVector<Value> ivs;
SmallVector<scf::ForOp> loops;
Location loc = op.getLoc();
for (auto loopRange : domain) {
Value offsetVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
Value sizeVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
Value strideVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal,
strideVal, ValueRange{});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPoint(loop.getBody()->getTerminator());
}
if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
return failure();
}
return loops;
}
|