1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
|
//===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities used to lower to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/Dialect/SPIRV/IR/TargetAndABI.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/OneToNTypeConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <functional>
#include <optional>
#define DEBUG_TYPE "mlir-spirv-conversion"
using namespace mlir;
namespace {
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
static int getComputeVectorSize(int64_t size) {
for (int i : {4, 3, 2}) {
if (size % i == 0)
return i;
}
return 1;
}
static std::optional<SmallVector<int64_t>> getTargetShape(VectorType vecType) {
LLVM_DEBUG(llvm::dbgs() << "Get target shape\n");
if (vecType.isScalable()) {
LLVM_DEBUG(llvm::dbgs()
<< "--scalable vectors are not supported -> BAIL\n");
return std::nullopt;
}
SmallVector<int64_t> unrollShape = llvm::to_vector<4>(vecType.getShape());
std::optional<SmallVector<int64_t>> targetShape =
SmallVector<int64_t>(1, getComputeVectorSize(vecType.getShape().back()));
if (!targetShape) {
LLVM_DEBUG(llvm::dbgs() << "--no unrolling target shape defined\n");
return std::nullopt;
}
auto maybeShapeRatio = computeShapeRatio(unrollShape, *targetShape);
if (!maybeShapeRatio) {
LLVM_DEBUG(llvm::dbgs()
<< "--could not compute integral shape ratio -> BAIL\n");
return std::nullopt;
}
if (llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; })) {
LLVM_DEBUG(llvm::dbgs() << "--no unrolling needed -> SKIP\n");
return std::nullopt;
}
LLVM_DEBUG(llvm::dbgs()
<< "--found an integral shape ratio to unroll to -> SUCCESS\n");
return targetShape;
}
/// Checks that `candidates` extension requirements are possible to be satisfied
/// with the given `targetEnv`.
///
/// `candidates` is a vector of vector for extension requirements following
/// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
/// convention.
template <typename LabelT>
static LogicalResult checkExtensionRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> extStrings;
for (spirv::Extension ext : ors)
extStrings.push_back(spirv::stringifyExtension(ext));
llvm::dbgs() << label << " illegal: requires at least one extension in ["
<< llvm::join(extStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Checks that `candidates`capability requirements are possible to be satisfied
/// with the given `isAllowedFn`.
///
/// `candidates` is a vector of vector for capability requirements following
/// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
/// convention.
template <typename LabelT>
static LogicalResult checkCapabilityRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> capStrings;
for (spirv::Capability cap : ors)
capStrings.push_back(spirv::stringifyCapability(cap));
llvm::dbgs() << label << " illegal: requires at least one capability in ["
<< llvm::join(capStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Returns true if the given `storageClass` needs explicit layout when used in
/// Shader environments.
static bool needsExplicitLayout(spirv::StorageClass storageClass) {
switch (storageClass) {
case spirv::StorageClass::PhysicalStorageBuffer:
case spirv::StorageClass::PushConstant:
case spirv::StorageClass::StorageBuffer:
case spirv::StorageClass::Uniform:
return true;
default:
return false;
}
}
/// Wraps the given `elementType` in a struct and gets the pointer to the
/// struct. This is used to satisfy Vulkan interface requirements.
static spirv::PointerType
wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) {
auto structType = needsExplicitLayout(storageClass)
? spirv::StructType::get(elementType, /*offsetInfo=*/0)
: spirv::StructType::get(elementType);
return spirv::PointerType::get(structType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
static spirv::ScalarType getIndexType(MLIRContext *ctx,
const SPIRVConversionOptions &options) {
return cast<spirv::ScalarType>(
IntegerType::get(ctx, options.use64bitIndex ? 64 : 32));
}
// TODO: This is a utility function that should probably be exposed by the
// SPIR-V dialect. Keeping it local till the use case arises.
static std::optional<int64_t>
getTypeNumBytes(const SPIRVConversionOptions &options, Type type) {
if (isa<spirv::ScalarType>(type)) {
auto bitWidth = type.getIntOrFloatBitWidth();
// According to the SPIR-V spec:
// "There is no physical size or bit pattern defined for values with boolean
// type. If they are stored (in conjunction with OpVariable), they can only
// be used with logical addressing operations, not physical, and only with
// non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
// Private, Function, Input, and Output."
if (bitWidth == 1)
return std::nullopt;
return bitWidth / 8;
}
if (auto complexType = dyn_cast<ComplexType>(type)) {
auto elementSize = getTypeNumBytes(options, complexType.getElementType());
if (!elementSize)
return std::nullopt;
return 2 * *elementSize;
}
if (auto vecType = dyn_cast<VectorType>(type)) {
auto elementSize = getTypeNumBytes(options, vecType.getElementType());
if (!elementSize)
return std::nullopt;
return vecType.getNumElements() * *elementSize;
}
if (auto memRefType = dyn_cast<MemRefType>(type)) {
// TODO: Layout should also be controlled by the ABI attributes. For now
// using the layout from MemRef.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (!memRefType.hasStaticShape() ||
failed(getStridesAndOffset(memRefType, strides, offset)))
return std::nullopt;
// To get the size of the memref object in memory, the total size is the
// max(stride * dimension-size) computed for all dimensions times the size
// of the element.
auto elementSize = getTypeNumBytes(options, memRefType.getElementType());
if (!elementSize)
return std::nullopt;
if (memRefType.getRank() == 0)
return elementSize;
auto dims = memRefType.getShape();
if (llvm::is_contained(dims, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset) ||
llvm::is_contained(strides, ShapedType::kDynamic))
return std::nullopt;
int64_t memrefSize = -1;
for (const auto &shape : enumerate(dims))
memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
return (offset + memrefSize) * *elementSize;
}
if (auto tensorType = dyn_cast<TensorType>(type)) {
if (!tensorType.hasStaticShape())
return std::nullopt;
auto elementSize = getTypeNumBytes(options, tensorType.getElementType());
if (!elementSize)
return std::nullopt;
int64_t size = *elementSize;
for (auto shape : tensorType.getShape())
size *= shape;
return size;
}
// TODO: Add size computation for other types.
return std::nullopt;
}
/// Converts a scalar `type` to a suitable type under the given `targetEnv`.
static Type
convertScalarType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, spirv::ScalarType type,
std::optional<spirv::StorageClass> storageClass = {}) {
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.getExtensions(extensions, storageClass);
type.getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
// Otherwise we need to adjust the type, which really means adjusting the
// bitwidth given this is a scalar type.
if (!options.emulateLT32BitScalarTypes)
return nullptr;
// We only emulate narrower scalar types here and do not truncate results.
if (type.getIntOrFloatBitWidth() > 32) {
LLVM_DEBUG(llvm::dbgs()
<< type
<< " not converted to 32-bit for SPIR-V to avoid truncation\n");
return nullptr;
}
if (auto floatType = dyn_cast<FloatType>(type)) {
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return Builder(targetEnv.getContext()).getF32Type();
}
auto intType = cast<IntegerType>(type);
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(targetEnv.getContext(), /*width=*/32,
intType.getSignedness());
}
/// Converts a sub-byte integer `type` to i32 regardless of target environment.
///
/// Note that we don't recognize sub-byte types in `spirv::ScalarType` and use
/// the above given that these sub-byte types are not supported at all in
/// SPIR-V; there are no compute/storage capability for them like other
/// supported integer types.
static Type convertSubByteIntegerType(const SPIRVConversionOptions &options,
IntegerType type) {
if (options.subByteTypeStorage != SPIRVSubByteTypeStorage::Packed) {
LLVM_DEBUG(llvm::dbgs() << "unsupported sub-byte storage kind\n");
return nullptr;
}
if (!llvm::isPowerOf2_32(type.getWidth())) {
LLVM_DEBUG(llvm::dbgs()
<< "unsupported non-power-of-two bitwidth in sub-byte" << type
<< "\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(type.getContext(), /*width=*/32,
type.getSignedness());
}
/// Returns a type with the same shape but with any index element type converted
/// to the matching integer type. This is a noop when the element type is not
/// the index type.
static ShapedType
convertIndexElementType(ShapedType type,
const SPIRVConversionOptions &options) {
Type indexType = dyn_cast<IndexType>(type.getElementType());
if (!indexType)
return type;
return type.clone(getIndexType(type.getContext(), options));
}
/// Converts a vector `type` to a suitable type under the given `targetEnv`.
static Type
convertVectorType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, VectorType type,
std::optional<spirv::StorageClass> storageClass = {}) {
type = cast<VectorType>(convertIndexElementType(type, options));
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
// If this is not a spec allowed scalar type, try to handle sub-byte integer
// types.
auto intType = dyn_cast<IntegerType>(type.getElementType());
if (!intType) {
LLVM_DEBUG(llvm::dbgs()
<< type
<< " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
Type elementType = convertSubByteIntegerType(options, intType);
if (type.getRank() <= 1 && type.getNumElements() == 1)
return elementType;
if (type.getNumElements() > 4) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: > 4-element unimplemented\n");
return nullptr;
}
return VectorType::get(type.getShape(), elementType);
}
if (type.getRank() <= 1 && type.getNumElements() == 1)
return convertScalarType(targetEnv, options, scalarType, storageClass);
if (!spirv::CompositeType::isValid(type)) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: not a valid composite type\n");
return nullptr;
}
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
cast<spirv::CompositeType>(type).getExtensions(extensions, storageClass);
cast<spirv::CompositeType>(type).getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
auto elementType =
convertScalarType(targetEnv, options, scalarType, storageClass);
if (elementType)
return VectorType::get(type.getShape(), elementType);
return nullptr;
}
static Type
convertComplexType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, ComplexType type,
std::optional<spirv::StorageClass> storageClass = {}) {
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
auto elementType =
convertScalarType(targetEnv, options, scalarType, storageClass);
if (!elementType)
return nullptr;
if (elementType != type.getElementType()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: complex type emulation unsupported\n");
return nullptr;
}
return VectorType::get(2, elementType);
}
/// Converts a tensor `type` to a suitable type under the given `targetEnv`.
///
/// Note that this is mainly for lowering constant tensors. In SPIR-V one can
/// create composite constants with OpConstantComposite to embed relative large
/// constant values and use OpCompositeExtract and OpCompositeInsert to
/// manipulate, like what we do for vectors.
static Type convertTensorType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
TensorType type) {
// TODO: Handle dynamic shapes.
if (!type.hasStaticShape()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: dynamic shape unimplemented\n");
return nullptr;
}
type = cast<TensorType>(convertIndexElementType(type, options));
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
std::optional<int64_t> scalarSize = getTypeNumBytes(options, scalarType);
std::optional<int64_t> tensorSize = getTypeNumBytes(options, type);
if (!scalarSize || !tensorSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
int64_t arrayElemCount = *tensorSize / *scalarSize;
if (arrayElemCount == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot handle zero-element tensors\n");
return nullptr;
}
Type arrayElemType = convertScalarType(targetEnv, options, scalarType);
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
return spirv::ArrayType::get(arrayElemType, arrayElemCount);
}
static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type,
spirv::StorageClass storageClass) {
unsigned numBoolBits = options.boolNumBits;
if (numBoolBits != 8) {
LLVM_DEBUG(llvm::dbgs()
<< "using non-8-bit storage for bool types unimplemented");
return nullptr;
}
auto elementType = dyn_cast<spirv::ScalarType>(
IntegerType::get(type.getContext(), numBoolBits));
if (!elementType)
return nullptr;
Type arrayElemType =
convertScalarType(targetEnv, options, elementType, storageClass);
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
if (type.getNumElements() == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: zero-element memrefs are not supported\n");
return nullptr;
}
int64_t memrefSize = llvm::divideCeil(type.getNumElements() * numBoolBits, 8);
int64_t arrayElemCount = llvm::divideCeil(memrefSize, *arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
static Type convertSubByteMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type,
spirv::StorageClass storageClass) {
IntegerType elementType = cast<IntegerType>(type.getElementType());
Type arrayElemType = convertSubByteIntegerType(options, elementType);
if (!arrayElemType)
return nullptr;
int64_t arrayElemSize = *getTypeNumBytes(options, arrayElemType);
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
if (type.getNumElements() == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: zero-element memrefs are not supported\n");
return nullptr;
}
int64_t memrefSize =
llvm::divideCeil(type.getNumElements() * elementType.getWidth(), 8);
int64_t arrayElemCount = llvm::divideCeil(memrefSize, arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type) {
auto attr = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace());
if (!attr) {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " illegal: expected memory space to be a SPIR-V storage class "
"attribute; please use MemorySpaceToStorageClassConverter to map "
"numeric memory spaces beforehand\n");
return nullptr;
}
spirv::StorageClass storageClass = attr.getValue();
if (isa<IntegerType>(type.getElementType())) {
if (type.getElementTypeBitWidth() == 1)
return convertBoolMemrefType(targetEnv, options, type, storageClass);
if (type.getElementTypeBitWidth() < 8)
return convertSubByteMemrefType(targetEnv, options, type, storageClass);
}
Type arrayElemType;
Type elementType = type.getElementType();
if (auto vecType = dyn_cast<VectorType>(elementType)) {
arrayElemType =
convertVectorType(targetEnv, options, vecType, storageClass);
} else if (auto complexType = dyn_cast<ComplexType>(elementType)) {
arrayElemType =
convertComplexType(targetEnv, options, complexType, storageClass);
} else if (auto scalarType = dyn_cast<spirv::ScalarType>(elementType)) {
arrayElemType =
convertScalarType(targetEnv, options, scalarType, storageClass);
} else if (auto indexType = dyn_cast<IndexType>(elementType)) {
type = cast<MemRefType>(convertIndexElementType(type, options));
arrayElemType = type.getElementType();
} else {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " unhandled: can only convert scalar or vector element type\n");
return nullptr;
}
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
std::optional<int64_t> memrefSize = getTypeNumBytes(options, type);
if (!memrefSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
if (*memrefSize == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: zero-element memrefs are not supported\n");
return nullptr;
}
int64_t arrayElemCount = llvm::divideCeil(*memrefSize, *arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type casting materialization
//===----------------------------------------------------------------------===//
/// Converts the given `inputs` to the original source `type` considering the
/// `targetEnv`'s capabilities.
///
/// This function is meant to be used for source materialization in type
/// converters. When the type converter needs to materialize a cast op back
/// to some original source type, we need to check whether the original source
/// type is supported in the target environment. If so, we can insert legal
/// SPIR-V cast ops accordingly.
///
/// Note that in SPIR-V the capabilities for storage and compute are separate.
/// This function is meant to handle the **compute** side; so it does not
/// involve storage classes in its logic. The storage side is expected to be
/// handled by MemRef conversion logic.
static std::optional<Value> castToSourceType(const spirv::TargetEnv &targetEnv,
OpBuilder &builder, Type type,
ValueRange inputs, Location loc) {
// We can only cast one value in SPIR-V.
if (inputs.size() != 1) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
Value input = inputs.front();
// Only support integer types for now. Floating point types to be implemented.
if (!isa<IntegerType>(type)) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
auto inputType = cast<IntegerType>(input.getType());
auto scalarType = dyn_cast<spirv::ScalarType>(type);
if (!scalarType) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// Only support source type with a smaller bitwidth. This would mean we are
// truncating to go back so we don't need to worry about the signedness.
// For extension, we cannot have enough signal here to decide which op to use.
if (inputType.getIntOrFloatBitWidth() < scalarType.getIntOrFloatBitWidth()) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// Boolean values would need to use different ops than normal integer values.
if (type.isInteger(1)) {
Value one = spirv::ConstantOp::getOne(inputType, loc, builder);
return builder.create<spirv::IEqualOp>(loc, input, one);
}
// Check that the source integer type is supported by the environment.
SmallVector<ArrayRef<spirv::Extension>, 1> exts;
SmallVector<ArrayRef<spirv::Capability>, 2> caps;
scalarType.getExtensions(exts);
scalarType.getCapabilities(caps);
if (failed(checkCapabilityRequirements(type, targetEnv, caps)) ||
failed(checkExtensionRequirements(type, targetEnv, exts))) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// We've already made sure this is truncating previously, so we don't need to
// care about signedness here. Still try to use a corresponding op for better
// consistency though.
if (type.isSignedInteger()) {
return builder.create<spirv::SConvertOp>(loc, type, input);
}
return builder.create<spirv::UConvertOp>(loc, type, input);
}
//===----------------------------------------------------------------------===//
// Builtin Variables
//===----------------------------------------------------------------------===//
static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
spirv::BuiltIn builtin) {
// Look through all global variables in the given `body` block and check if
// there is a spirv.GlobalVariable that has the same `builtin` attribute.
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
if (auto builtinAttr = varOp->getAttrOfType<StringAttr>(
spirv::SPIRVDialect::getAttributeName(
spirv::Decoration::BuiltIn))) {
auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
if (varBuiltIn && *varBuiltIn == builtin) {
return varOp;
}
}
}
return nullptr;
}
/// Gets name of global variable for a builtin.
std::string getBuiltinVarName(spirv::BuiltIn builtin, StringRef prefix,
StringRef suffix) {
return Twine(prefix).concat(stringifyBuiltIn(builtin)).concat(suffix).str();
}
/// Gets or inserts a global variable for a builtin within `body` block.
static spirv::GlobalVariableOp
getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder,
StringRef prefix, StringRef suffix) {
if (auto varOp = getBuiltinVariable(body, builtin))
return varOp;
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&body);
spirv::GlobalVariableOp newVarOp;
switch (builtin) {
case spirv::BuiltIn::NumWorkgroups:
case spirv::BuiltIn::WorkgroupSize:
case spirv::BuiltIn::WorkgroupId:
case spirv::BuiltIn::LocalInvocationId:
case spirv::BuiltIn::GlobalInvocationId: {
auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType),
spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin, prefix, suffix);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
case spirv::BuiltIn::SubgroupId:
case spirv::BuiltIn::NumSubgroups:
case spirv::BuiltIn::SubgroupSize: {
auto ptrType =
spirv::PointerType::get(integerType, spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin, prefix, suffix);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
default:
emitError(loc, "unimplemented builtin variable generation for ")
<< stringifyBuiltIn(builtin);
}
return newVarOp;
}
//===----------------------------------------------------------------------===//
// Push constant storage
//===----------------------------------------------------------------------===//
/// Returns the pointer type for the push constant storage containing
/// `elementCount` 32-bit integer values.
static spirv::PointerType getPushConstantStorageType(unsigned elementCount,
Builder &builder,
Type indexType) {
auto arrayType = spirv::ArrayType::get(indexType, elementCount,
/*stride=*/4);
auto structType = spirv::StructType::get({arrayType}, /*offsetInfo=*/0);
return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant);
}
/// Returns the push constant varible containing `elementCount` 32-bit integer
/// values in `body`. Returns null op if such an op does not exit.
static spirv::GlobalVariableOp getPushConstantVariable(Block &body,
unsigned elementCount) {
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
auto ptrType = dyn_cast<spirv::PointerType>(varOp.getType());
if (!ptrType)
continue;
// Note that Vulkan requires "There must be no more than one push constant
// block statically used per shader entry point." So we should always reuse
// the existing one.
if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) {
auto numElements = cast<spirv::ArrayType>(
cast<spirv::StructType>(ptrType.getPointeeType())
.getElementType(0))
.getNumElements();
if (numElements == elementCount)
return varOp;
}
}
return nullptr;
}
/// Gets or inserts a global variable for push constant storage containing
/// `elementCount` 32-bit integer values in `block`.
static spirv::GlobalVariableOp
getOrInsertPushConstantVariable(Location loc, Block &block,
unsigned elementCount, OpBuilder &b,
Type indexType) {
if (auto varOp = getPushConstantVariable(block, elementCount))
return varOp;
auto builder = OpBuilder::atBlockBegin(&block, b.getListener());
auto type = getPushConstantStorageType(elementCount, builder, indexType);
const char *name = "__push_constant_var__";
return builder.create<spirv::GlobalVariableOp>(loc, type, name,
/*initializer=*/nullptr);
}
//===----------------------------------------------------------------------===//
// func::FuncOp Conversion Patterns
//===----------------------------------------------------------------------===//
/// A pattern for rewriting function signature to convert arguments of functions
/// to be of valid SPIR-V types.
struct FuncOpConversion final : OpConversionPattern<func::FuncOp> {
using OpConversionPattern<func::FuncOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
FunctionType fnType = funcOp.getFunctionType();
if (fnType.getNumResults() > 1)
return failure();
TypeConverter::SignatureConversion signatureConverter(
fnType.getNumInputs());
for (const auto &argType : enumerate(fnType.getInputs())) {
auto convertedType = getTypeConverter()->convertType(argType.value());
if (!convertedType)
return failure();
signatureConverter.addInputs(argType.index(), convertedType);
}
Type resultType;
if (fnType.getNumResults() == 1) {
resultType = getTypeConverter()->convertType(fnType.getResult(0));
if (!resultType)
return failure();
}
// Create the converted spirv.func op.
auto newFuncOp = rewriter.create<spirv::FuncOp>(
funcOp.getLoc(), funcOp.getName(),
rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
resultType ? TypeRange(resultType)
: TypeRange()));
// Copy over all attributes other than the function name and type.
for (const auto &namedAttr : funcOp->getAttrs()) {
if (namedAttr.getName() != funcOp.getFunctionTypeAttrName() &&
namedAttr.getName() != SymbolTable::getSymbolAttrName())
newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue());
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(
&newFuncOp.getBody(), *getTypeConverter(), &signatureConverter)))
return failure();
rewriter.eraseOp(funcOp);
return success();
}
};
/// A pattern for rewriting function signature to convert vector arguments of
/// functions to be of valid types
struct FuncOpVectorUnroll final : OpRewritePattern<func::FuncOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(func::FuncOp funcOp,
PatternRewriter &rewriter) const override {
FunctionType fnType = funcOp.getFunctionType();
// TODO: Handle declarations.
if (funcOp.isDeclaration()) {
LLVM_DEBUG(llvm::dbgs()
<< fnType << " illegal: declarations are unsupported\n");
return failure();
}
// Create a new func op with the original type and copy the function body.
auto newFuncOp = rewriter.create<func::FuncOp>(funcOp.getLoc(),
funcOp.getName(), fnType);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
Location loc = newFuncOp.getBody().getLoc();
Block &entryBlock = newFuncOp.getBlocks().front();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&entryBlock);
OneToNTypeMapping oneToNTypeMapping(fnType.getInputs());
// For arguments that are of illegal types and require unrolling.
// `unrolledInputNums` stores the indices of arguments that result from
// unrolling in the new function signature. `newInputNo` is a counter.
SmallVector<size_t> unrolledInputNums;
size_t newInputNo = 0;
// For arguments that are of legal types and do not require unrolling.
// `tmpOps` stores a mapping from temporary operations that serve as
// placeholders for new arguments that will be added later. These operations
// will be erased once the entry block's argument list is updated.
llvm::SmallDenseMap<Operation *, size_t> tmpOps;
// This counts the number of new operations created.
size_t newOpCount = 0;
// Enumerate through the arguments.
for (auto [origInputNo, origType] : enumerate(fnType.getInputs())) {
// Check whether the argument is of vector type.
auto origVecType = dyn_cast<VectorType>(origType);
if (!origVecType) {
// We need a placeholder for the old argument that will be erased later.
Value result = rewriter.create<arith::ConstantOp>(
loc, origType, rewriter.getZeroAttr(origType));
rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result);
tmpOps.insert({result.getDefiningOp(), newInputNo});
oneToNTypeMapping.addInputs(origInputNo, origType);
++newInputNo;
++newOpCount;
continue;
}
// Check whether the vector needs unrolling.
auto targetShape = getTargetShape(origVecType);
if (!targetShape) {
// We need a placeholder for the old argument that will be erased later.
Value result = rewriter.create<arith::ConstantOp>(
loc, origType, rewriter.getZeroAttr(origType));
rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result);
tmpOps.insert({result.getDefiningOp(), newInputNo});
oneToNTypeMapping.addInputs(origInputNo, origType);
++newInputNo;
++newOpCount;
continue;
}
VectorType unrolledType =
VectorType::get(*targetShape, origVecType.getElementType());
auto originalShape =
llvm::to_vector_of<int64_t, 4>(origVecType.getShape());
// Prepare the result vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, origVecType, rewriter.getZeroAttr(origVecType));
++newOpCount;
// Prepare the placeholder for the new arguments that will be added later.
Value dummy = rewriter.create<arith::ConstantOp>(
loc, unrolledType, rewriter.getZeroAttr(unrolledType));
++newOpCount;
// Create the `vector.insert_strided_slice` ops.
SmallVector<int64_t> strides(targetShape->size(), 1);
SmallVector<Type> newTypes;
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(originalShape, *targetShape)) {
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, dummy, result, offsets, strides);
newTypes.push_back(unrolledType);
unrolledInputNums.push_back(newInputNo);
++newInputNo;
++newOpCount;
}
rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result);
oneToNTypeMapping.addInputs(origInputNo, newTypes);
}
// Change the function signature.
auto convertedTypes = oneToNTypeMapping.getConvertedTypes();
auto newFnType = fnType.clone(convertedTypes, fnType.getResults());
rewriter.modifyOpInPlace(newFuncOp,
[&] { newFuncOp.setFunctionType(newFnType); });
// Update the arguments in the entry block.
entryBlock.eraseArguments(0, fnType.getNumInputs());
SmallVector<Location> locs(convertedTypes.size(), newFuncOp.getLoc());
entryBlock.addArguments(convertedTypes, locs);
// Replace the placeholder values with the new arguments. We assume there is
// only one block for now.
size_t unrolledInputIdx = 0;
for (auto [count, op] : enumerate(entryBlock.getOperations())) {
// We first look for operands that are placeholders for initially legal
// arguments.
Operation &curOp = op;
for (auto [operandIdx, operandVal] : llvm::enumerate(op.getOperands())) {
Operation *operandOp = operandVal.getDefiningOp();
if (auto it = tmpOps.find(operandOp); it != tmpOps.end()) {
size_t idx = operandIdx;
rewriter.modifyOpInPlace(&curOp, [&curOp, &newFuncOp, it, idx] {
curOp.setOperand(idx, newFuncOp.getArgument(it->second));
});
}
}
// Since all newly created operations are in the beginning, reaching the
// end of them means that any later `vector.insert_strided_slice` should
// not be touched.
if (count >= newOpCount)
continue;
if (auto vecOp = dyn_cast<vector::InsertStridedSliceOp>(op)) {
size_t unrolledInputNo = unrolledInputNums[unrolledInputIdx];
rewriter.modifyOpInPlace(&curOp, [&] {
curOp.setOperand(0, newFuncOp.getArgument(unrolledInputNo));
});
++unrolledInputIdx;
}
}
// Erase the original funcOp. The `tmpOps` do not need to be erased since
// they have no uses and will be handled by dead-code elimination.
rewriter.eraseOp(funcOp);
return success();
}
};
//===----------------------------------------------------------------------===//
// func::ReturnOp Conversion Patterns
//===----------------------------------------------------------------------===//
/// A pattern for rewriting function signature and the return op to convert
/// vectors to be of valid types.
struct ReturnOpVectorUnroll final : OpRewritePattern<func::ReturnOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(func::ReturnOp returnOp,
PatternRewriter &rewriter) const override {
// Check whether the parent funcOp is valid.
auto funcOp = dyn_cast<func::FuncOp>(returnOp->getParentOp());
if (!funcOp)
return failure();
FunctionType fnType = funcOp.getFunctionType();
OneToNTypeMapping oneToNTypeMapping(fnType.getResults());
Location loc = returnOp.getLoc();
// For the new return op.
SmallVector<Value> newOperands;
// Enumerate through the results.
for (auto [origResultNo, origType] : enumerate(fnType.getResults())) {
// Check whether the argument is of vector type.
auto origVecType = dyn_cast<VectorType>(origType);
if (!origVecType) {
oneToNTypeMapping.addInputs(origResultNo, origType);
newOperands.push_back(returnOp.getOperand(origResultNo));
continue;
}
// Check whether the vector needs unrolling.
auto targetShape = getTargetShape(origVecType);
if (!targetShape) {
// The original argument can be used.
oneToNTypeMapping.addInputs(origResultNo, origType);
newOperands.push_back(returnOp.getOperand(origResultNo));
continue;
}
VectorType unrolledType =
VectorType::get(*targetShape, origVecType.getElementType());
// Create `vector.extract_strided_slice` ops to form legal vectors from
// the original operand of illegal type.
auto originalShape =
llvm::to_vector_of<int64_t, 4>(origVecType.getShape());
SmallVector<int64_t> strides(targetShape->size(), 1);
SmallVector<Type> newTypes;
Value returnValue = returnOp.getOperand(origResultNo);
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(originalShape, *targetShape)) {
Value result = rewriter.create<vector::ExtractStridedSliceOp>(
loc, returnValue, offsets, *targetShape, strides);
newOperands.push_back(result);
newTypes.push_back(unrolledType);
}
oneToNTypeMapping.addInputs(origResultNo, newTypes);
}
// Change the function signature.
auto newFnType =
FunctionType::get(rewriter.getContext(), TypeRange(fnType.getInputs()),
TypeRange(oneToNTypeMapping.getConvertedTypes()));
rewriter.modifyOpInPlace(funcOp,
[&] { funcOp.setFunctionType(newFnType); });
// Replace the return op using the new operands. This will automatically
// update the entry block as well.
rewriter.replaceOp(returnOp,
rewriter.create<func::ReturnOp>(loc, newOperands));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public function for builtin variables
//===----------------------------------------------------------------------===//
Value mlir::spirv::getBuiltinVariableValue(Operation *op,
spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder,
StringRef prefix, StringRef suffix) {
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp =
getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(),
builtin, integerType, builder, prefix, suffix);
Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
}
//===----------------------------------------------------------------------===//
// Public function for pushing constant storage
//===----------------------------------------------------------------------===//
Value spirv::getPushConstantValue(Operation *op, unsigned elementCount,
unsigned offset, Type integerType,
OpBuilder &builder) {
Location loc = op->getLoc();
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable(
loc, parent->getRegion(0).front(), elementCount, builder, integerType);
Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder);
Value offsetOp = builder.create<spirv::ConstantOp>(
loc, integerType, builder.getI32IntegerAttr(offset));
auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp);
auto acOp = builder.create<spirv::AccessChainOp>(
loc, addrOp, llvm::ArrayRef({zeroOp, offsetOp}));
return builder.create<spirv::LoadOp>(loc, acOp);
}
//===----------------------------------------------------------------------===//
// Public functions for index calculation
//===----------------------------------------------------------------------===//
Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides,
int64_t offset, Type integerType,
Location loc, OpBuilder &builder) {
assert(indices.size() == strides.size() &&
"must provide indices for all dimensions");
// TODO: Consider moving to use affine.apply and patterns converting
// affine.apply to standard ops. This needs converting to SPIR-V passes to be
// broken down into progressive small steps so we can have intermediate steps
// using other dialects. At the moment SPIR-V is the final sink.
Value linearizedIndex = builder.createOrFold<spirv::ConstantOp>(
loc, integerType, IntegerAttr::get(integerType, offset));
for (const auto &index : llvm::enumerate(indices)) {
Value strideVal = builder.createOrFold<spirv::ConstantOp>(
loc, integerType,
IntegerAttr::get(integerType, strides[index.index()]));
Value update =
builder.createOrFold<spirv::IMulOp>(loc, index.value(), strideVal);
linearizedIndex =
builder.createOrFold<spirv::IAddOp>(loc, update, linearizedIndex);
}
return linearizedIndex;
}
Value mlir::spirv::getVulkanElementPtr(const SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset)) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
// Add a '0' at the start to index into the struct.
linearizedIndices.push_back(zero);
if (baseType.getRank() == 0) {
linearizedIndices.push_back(zero);
} else {
linearizedIndices.push_back(
linearizeIndex(indices, strides, offset, indexType, loc, builder));
}
return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
}
Value mlir::spirv::getOpenCLElementPtr(const SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset)) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
Value linearIndex;
if (baseType.getRank() == 0) {
linearIndex = spirv::ConstantOp::getZero(indexType, loc, builder);
} else {
linearIndex =
linearizeIndex(indices, strides, offset, indexType, loc, builder);
}
Type pointeeType =
cast<spirv::PointerType>(basePtr.getType()).getPointeeType();
if (isa<spirv::ArrayType>(pointeeType)) {
linearizedIndices.push_back(linearIndex);
return builder.create<spirv::AccessChainOp>(loc, basePtr,
linearizedIndices);
}
return builder.create<spirv::PtrAccessChainOp>(loc, basePtr, linearIndex,
linearizedIndices);
}
Value mlir::spirv::getElementPtr(const SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
if (typeConverter.allows(spirv::Capability::Kernel)) {
return getOpenCLElementPtr(typeConverter, baseType, basePtr, indices, loc,
builder);
}
return getVulkanElementPtr(typeConverter, baseType, basePtr, indices, loc,
builder);
}
//===----------------------------------------------------------------------===//
// SPIR-V TypeConverter
//===----------------------------------------------------------------------===//
SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr,
const SPIRVConversionOptions &options)
: targetEnv(targetAttr), options(options) {
// Add conversions. The order matters here: later ones will be tried earlier.
// Allow all SPIR-V dialect specific types. This assumes all builtin types
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
// were tried before.
//
// TODO: This assumes that the SPIR-V types are valid to use in the given
// target environment, which should be the case if the whole pipeline is
// driven by the same target environment. Still, we probably still want to
// validate and convert to be safe.
addConversion([](spirv::SPIRVType type) { return type; });
addConversion([this](IndexType /*indexType*/) { return getIndexType(); });
addConversion([this](IntegerType intType) -> std::optional<Type> {
if (auto scalarType = dyn_cast<spirv::ScalarType>(intType))
return convertScalarType(this->targetEnv, this->options, scalarType);
if (intType.getWidth() < 8)
return convertSubByteIntegerType(this->options, intType);
return Type();
});
addConversion([this](FloatType floatType) -> std::optional<Type> {
if (auto scalarType = dyn_cast<spirv::ScalarType>(floatType))
return convertScalarType(this->targetEnv, this->options, scalarType);
return Type();
});
addConversion([this](ComplexType complexType) {
return convertComplexType(this->targetEnv, this->options, complexType);
});
addConversion([this](VectorType vectorType) {
return convertVectorType(this->targetEnv, this->options, vectorType);
});
addConversion([this](TensorType tensorType) {
return convertTensorType(this->targetEnv, this->options, tensorType);
});
addConversion([this](MemRefType memRefType) {
return convertMemrefType(this->targetEnv, this->options, memRefType);
});
// Register some last line of defense casting logic.
addSourceMaterialization(
[this](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
return castToSourceType(this->targetEnv, builder, type, inputs, loc);
});
addTargetMaterialization([](OpBuilder &builder, Type type, ValueRange inputs,
Location loc) {
auto cast = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return std::optional<Value>(cast.getResult(0));
});
}
Type SPIRVTypeConverter::getIndexType() const {
return ::getIndexType(getContext(), options);
}
MLIRContext *SPIRVTypeConverter::getContext() const {
return targetEnv.getAttr().getContext();
}
bool SPIRVTypeConverter::allows(spirv::Capability capability) const {
return targetEnv.allows(capability);
}
//===----------------------------------------------------------------------===//
// SPIR-V ConversionTarget
//===----------------------------------------------------------------------===//
std::unique_ptr<SPIRVConversionTarget>
SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
std::unique_ptr<SPIRVConversionTarget> target(
// std::make_unique does not work here because the constructor is private.
new SPIRVConversionTarget(targetAttr));
SPIRVConversionTarget *targetPtr = target.get();
target->addDynamicallyLegalDialect<spirv::SPIRVDialect>(
// We need to capture the raw pointer here because it is stable:
// target will be destroyed once this function is returned.
[targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
return target;
}
SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr)
: ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
bool SPIRVConversionTarget::isLegalOp(Operation *op) {
// Make sure this op is available at the given version. Ops not implementing
// QueryMinVersionInterface/QueryMaxVersionInterface are available to all
// SPIR-V versions.
if (auto minVersionIfx = dyn_cast<spirv::QueryMinVersionInterface>(op)) {
std::optional<spirv::Version> minVersion = minVersionIfx.getMinVersion();
if (minVersion && *minVersion > this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring min version "
<< spirv::stringifyVersion(*minVersion) << "\n");
return false;
}
}
if (auto maxVersionIfx = dyn_cast<spirv::QueryMaxVersionInterface>(op)) {
std::optional<spirv::Version> maxVersion = maxVersionIfx.getMaxVersion();
if (maxVersion && *maxVersion < this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring max version "
<< spirv::stringifyVersion(*maxVersion) << "\n");
return false;
}
}
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryExtensionInterface do not require extensions to be
// available.
if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
extensions.getExtensions())))
return false;
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryCapabilityInterface do not require capabilities to be
// available.
if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
capabilities.getCapabilities())))
return false;
SmallVector<Type, 4> valueTypes;
valueTypes.append(op->operand_type_begin(), op->operand_type_end());
valueTypes.append(op->result_type_begin(), op->result_type_end());
// Ensure that all types have been converted to SPIRV types.
if (llvm::any_of(valueTypes,
[](Type t) { return !isa<spirv::SPIRVType>(t); }))
return false;
// Special treatment for global variables, whose type requirements are
// conveyed by type attributes.
if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
valueTypes.push_back(globalVar.getType());
// Make sure the op's operands/results use types that are allowed by the
// target environment.
SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
for (Type valueType : valueTypes) {
typeExtensions.clear();
cast<spirv::SPIRVType>(valueType).getExtensions(typeExtensions);
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
typeExtensions)))
return false;
typeCapabilities.clear();
cast<spirv::SPIRVType>(valueType).getCapabilities(typeCapabilities);
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
typeCapabilities)))
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Public functions for populating patterns
//===----------------------------------------------------------------------===//
void mlir::populateBuiltinFuncToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<FuncOpConversion>(typeConverter, patterns.getContext());
}
void mlir::populateFuncOpVectorRewritePatterns(RewritePatternSet &patterns) {
patterns.add<FuncOpVectorUnroll>(patterns.getContext());
}
void mlir::populateReturnOpVectorRewritePatterns(RewritePatternSet &patterns) {
patterns.add<ReturnOpVectorUnroll>(patterns.getContext());
}
|